Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Creatininium hydrogen maleate

A. Jahubar Ali, ${ }^{\text {a }}$ S. Athimoolam ${ }^{\text {b }}$ and S. Asath Bahadur ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, ${ }^{\text {b }}$ Department of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629004 , India, and ${ }^{\text {c }}$ Department of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India
Correspondence e-mail: athi81s@yahoo.co.in

Received 28 September 2011; accepted 29 September 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.038 ; w R$ factor $=0.102$; data-to-parameter ratio $=11.3$.

In the title compound, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}^{-}$, the cations and anions are linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds making a ionic pair with an $R_{2}^{2}(8)$ ring motif. These ionic pairs are further connected through another $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, leading to an $R_{6}^{6}(16)$ ring motif around the inversion centres of the unit cell. These approximately planar aggregates are further connected through weak van der Waals interactions in the unit cell. The anions have a characteristic intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with a self-associated ring $S(7)$ motif.

Related literature

For related structures, see: Ali et al. (2011); Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007); Bahadur, Rajalakshmi et al. (2007). For hydrogen-bonding motif notation, see: Bernstein et al. (1995); Desiraju (1989). For the importance of creatinine, see: Madaras \& Buck (1996); Sharma et al. (2004); Narayanan \& Appleton (1980).

Experimental

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}^{+} . \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-}$

$$
\begin{aligned}
& b=24.8915(17) \AA \\
& c=7.7752(6) \AA \\
& \beta=108.69(2)^{\circ} \\
& V=1031.62(18) \AA^{3}
\end{aligned}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.24 \times 0.21 \times 0.17 \mathrm{~mm}$

Data collection
Bruker SMART APEX CCD area-
1823 independent reflections 1699 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N14-H14 \cdots O22	$0.93(2)$	$1.79(2)$	$2.725(2)$	$178(2)$
N16-H15A \cdots O24	$0.89(2)$	$1.96(2)$	$2.833(2)$	$168(2)$
N16-H15B \cdots O21	$0.93(2)$	$1.88(2)$	$2.804(2)$	$174(2)$
O23-H23A \cdots O21	$1.00(3)$	$1.46(3)$	$2.457(2)$	$174(2)$

Symmetry code: (i) $-x,-y,-z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC.

AJA and SAB sincerely thank the Vice Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA thanks the Principal and Management of the National College of Engineering for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5104).

References

Ali, A. J., Athimoolam, S. \& Bahadur, S. A. (2011). Acta Cryst. E67, o1376.
Bahadur, S. A., Kannan, R. S. \& Sridhar, B. (2007). Acta Cryst. E63, o2387o2389.
Bahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. \& Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.
Bahadur, S. A., Sivapragasam, S., Kannan, R. S. \& Sridhar, B. (2007). Acta Cryst. E63, o1714-o1716.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
Madaras, M. B. \& Buck, R. P. (1996). Anal. Chem. 68, 3832-3839.
Narayanan, S. \& Appleton, H. D. (1980). Clin. Chem. 26, 1119-1126.
Sharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. \& Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971-2977.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2905 [doi:10.1107/S1600536811040050]

Creatininium hydrogen maleate

A. Jahubar Ali, S. Athimoolam and S. Asath Bahadur

S1. Comment

Intermolecular forces play an essential role in the formation of supramolecular systems which are useful for definite social applications. In which, the phenomenon of hydrogen bond has its importance in the areas of molecular recognition, crystal engineering research and supramolecular chemistry. Their strength and directionality is responsible for crystal packing and entire molecular arrays (Desiraju, 1989). We are interested on the the specificity of recognition between inorganic / organic acids and cretinine molecule. Creatinine, a blood metabolite of considerable importance in clinical chemistry, particularly as an indicator of renal function. It has been proven that determination of creatinine is more valuable for the detection of renal dysfunction than that of urea (Sharma et al., 2004). In renal physiology, creatinine clearance (CCr; Madaras \& Buck, 1996) is the volume of blood plasma that is cleared of creatinine per unit time. Clinically, creatinine clearance is a useful measure for estimating the glomerular Filtration rate (GFR) of the kidneys. Anabnormal level of creatinine in biological fluids is an indicator of various disease states (Narayanan \& Appleton, 1980).

The asymmetric part of the title compound, (I), contains one creatininium cation and one maleate anion (Fig.1). The protonation of the N site of the cation is evident from $\mathrm{C}-\mathrm{N}$ bond distances and the other bond distances and angles are comaparable with Creatininium cinnamate (Ali et al., 2011), Creatininium hydrogen oxalate monohydrate (Bahadur, Kannan et al., 2007), Creatininium benzoate (Bahadur, Sivapragasam et al., 2007) and bis(creatininium) sulfate (Bahadur, Rajalakshmi et al., 2007). The deprotonation on the one of the -COOH groups of the maleic acid is confirmed from that -COO^{-}bond geometry.
In the crystal structure, the molecular aggregations are stabilized through a two dimensional hydrogen bonding pattern
(Fig. 2; Table 1). Cations are linked to anions forming an ion pair through two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds that produce ring $R_{2}{ }^{2}(8)$ motifs (Bernstein et al., 1995). The same type of ring motif is observed in previously reported structures from our laboratory. Anions are having a characteristic intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with a self-associated $\mathrm{S}(7)$ motif. This cation-anion pairs are further linked through another $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond leading to a ring $R_{6}{ }^{6}(16)$ motif around the inversion centres of the unit cell. This ring motifs are almost planar. These ring motifs are connected through weak Van der Waals interactions in the unit cell.

S2. Experimental

The title compound was crystallized from an aqueous mixture containing creatinine and maleic acid in the stoichiometric ratio of $1: 1$ at room temperature by slow evaporation technique.

S3. Refinement

All the H atoms except the atoms involved in hydrogen bonds were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93(-\mathrm{CH})$ and $0.96 \AA\left(-\mathrm{CH}_{3}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}$ (parent atom). H atoms involved in
hydrogen bonds were located from differential fourier map and refined isotropically.

Figure 1

The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids. H bonds are drawn as dashed lines.

Figure 2
Packing diagram of the molecules viewed down the b-axis. H atoms not involved in the H -bonds (dashed lines) are omitted for clarity.

2-amino-1-methyl-4-oxo-4,5-dihydro-1 H-imidazol-3-ium 3-carboxyprop-2-enoate
Crystal data
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}^{-}$

$$
\text { Monoclinic, } P 2_{1} / n
$$

$$
\text { Hall symbol: -P } 2 y n
$$

$$
\begin{aligned}
& b=24.8915(17) \AA \\
& c=7.7752(6) \AA \\
& \beta=108.69(2)^{\circ} \\
& V=1031.62(18) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
M_{r}=229.20 \quad c=7.7752(6) \AA \AA
$$

$F(000)=480$
$D_{\mathrm{x}}=1.476 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3738 reflections
$\theta=2.3-24.6^{\circ}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
9754 measured reflections
1823 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.102$
$S=1.06$
1823 reflections
162 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.24 \times 0.21 \times 0.17 \mathrm{~mm} \\
& \\
& 1699 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.022 \\
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=2.9^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-29 \rightarrow 29 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0593 P)^{2}+0.2134 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C11	$0.7258(3)$	$0.15606(7)$	$-0.1940(2)$	$0.0572(4)$
H11A	0.7728	0.1188	-0.1812	0.086^{*}
H11B	0.8598	0.1769	-0.2113	0.086^{*}
H11C	0.5775	0.1604	-0.2970	0.086^{*}
N11	$0.6762(2)$	$0.17415(4)$	$-0.03149(16)$	$0.0437(3)$
C12	$0.7738(3)$	$0.22340(5)$	$0.0666(2)$	$0.0459(3)$
H12A	0.7215	0.2547	-0.0107	0.055^{*}
H12B	0.9555	0.2227	0.1152	0.055^{*}
C13	$0.6576(3)$	$0.22303(5)$	$0.2162(2)$	$0.0444(3)$
O13	$0.6882(2)$	$0.25506(4)$	$0.33827(17)$	$0.0623(3)$
N14	$0.5068(2)$	$0.17843(4)$	$0.18824(16)$	$0.0418(3)$
C15	$0.5203(2)$	$0.15060(5)$	$0.04068(18)$	$0.0390(3)$

N16	$0.3960(2)$	$0.10634(5)$	$-0.01514(19)$	$0.0489(3)$
H14	$0.403(3)$	$0.1680(7)$	$0.255(2)$	$0.056(5)^{*}$
H15A	$0.412(3)$	$0.0883(8)$	$-0.109(3)$	$0.062(5)^{*}$
H15B	$0.296(3)$	$0.0947(7)$	$0.052(2)$	$0.060(5)^{*}$
O21	$0.1034(2)$	$0.07770(4)$	$0.20235(16)$	$0.0606(3)$
O22	$0.1978(2)$	$0.14924(4)$	$0.37969(15)$	$0.0555(3)$
C21	$0.0833(3)$	$0.10606(5)$	$0.33167(19)$	$0.0428(3)$
C22	$-0.0877(3)$	$0.08869(6)$	$0.43292(19)$	$0.0451(3)$
H22	-0.0881	0.1112	0.5284	0.054^{*}
C23	$-0.2406(3)$	$0.04642(6)$	$0.41017(19)$	$0.0450(3)$
H23	-0.3351	0.0453	0.4887	0.054^{*}
C24	$-0.2848(3)$	$0.00087(5)$	$0.28009(18)$	$0.0433(3)$
O23	$-0.1681(2)$	$-0.00175(4)$	$0.16102(15)$	$0.0601(3)$
O24	$-0.4294(2)$	$-0.03477(4)$	$0.28982(16)$	$0.0573(3)$
H23A	$-0.056(5)$	$0.0298(11)$	$0.170(3)$	$0.104(8)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0641(10)$	$0.0581(10)$	$0.0588(9)$	$-0.0113(7)$	$0.0330(8)$	$-0.0079(7)$
N 11	$0.0461(6)$	$0.0370(6)$	$0.0523(7)$	$-0.0057(5)$	$0.0220(5)$	$-0.0044(5)$
C12	$0.0446(7)$	$0.0338(7)$	$0.0586(8)$	$-0.0044(5)$	$0.0157(6)$	$-0.0021(6)$
C13	$0.0428(7)$	$0.0332(7)$	$0.0550(8)$	$0.0017(5)$	$0.0126(6)$	$-0.0044(6)$
O13	$0.0661(7)$	$0.0493(7)$	$0.0743(7)$	$-0.0085(5)$	$0.0263(6)$	$-0.0232(6)$
N14	$0.0470(6)$	$0.0343(6)$	$0.0467(6)$	$-0.0021(5)$	$0.0188(5)$	$-0.0025(5)$
C15	$0.0404(7)$	$0.0329(7)$	$0.0439(7)$	$0.0016(5)$	$0.0139(5)$	$0.0006(5)$
N16	$0.0579(8)$	$0.0412(7)$	$0.0543(7)$	$-0.0131(5)$	$0.0274(6)$	$-0.0098(6)$
O21	$0.0827(8)$	$0.0500(6)$	$0.0664(7)$	$-0.0229(6)$	$0.0479(6)$	$-0.0165(5)$
O22	$0.0700(7)$	$0.0399(6)$	$0.0656(7)$	$-0.0154(5)$	$0.0345(6)$	$-0.0100(5)$
C21	$0.0505(8)$	$0.0344(7)$	$0.0458(7)$	$-0.0009(6)$	$0.0187(6)$	$0.0002(5)$
C22	$0.0579(8)$	$0.0377(7)$	$0.0452(7)$	$-0.0016(6)$	$0.0242(6)$	$-0.0058(6)$
C23	$0.0527(8)$	$0.0413(7)$	$0.0479(7)$	$-0.0026(6)$	$0.0255(6)$	$-0.0015(6)$
C24	$0.0495(8)$	$0.0378(7)$	$0.0455(8)$	$-0.0041(6)$	$0.0191(6)$	$0.0000(6)$
O23	$0.0839(8)$	$0.0481(6)$	$0.0638(7)$	$-0.0241(6)$	$0.0452(6)$	$-0.0178(5)$
O24	$0.0671(7)$	$0.0485(6)$	$0.0655(7)$	$-0.0187(5)$	$0.0340(6)$	$-0.0107(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 11-\mathrm{N} 11$	$1.450(2)$	$\mathrm{C} 15-\mathrm{N} 16$	$1.3025(18)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600	$\mathrm{~N} 16-\mathrm{H} 15 \mathrm{~A}$	$0.89(2)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600	$\mathrm{~N} 16-\mathrm{H} 15 \mathrm{~B}$	$0.93(2)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600	$\mathrm{O} 21-\mathrm{C} 21$	$1.2630(17)$
$\mathrm{N} 11-\mathrm{C} 15$	$1.3206(18)$	$\mathrm{O} 22-\mathrm{C} 21$	$1.2471(17)$
$\mathrm{N} 11-\mathrm{C} 12$	$1.4552(17)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.490(2)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.506(2)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.334(2)$
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9700	$\mathrm{C} 22-\mathrm{H} 22$	0.9300
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9700	$\mathrm{C} 23-\mathrm{C} 24$	$1.4862(19)$
$\mathrm{C} 13-\mathrm{O} 13$	$1.2090(17)$	$\mathrm{C} 23-\mathrm{H} 23$	0.9300

supporting information

C13-N14	1.3719 (17)
N14-C15	1.3631 (18)
N14-H14	0.934 (19)
N11-C11-H11A	109.5
N11-C11-H11B	109.5
H11A-C11-H11B	109.5
N11-C11-H11C	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C15-N11-C11	124.88 (12)
C15-N11-C12	109.99 (11)
C11-N11-C12	124.93 (12)
N11-C12-C13	102.44 (11)
N11-C12-H12A	111.3
C13-C12-H12A	111.3
N11-C12-H12B	111.3
C13-C12-H12B	111.3
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.2
O13-C13-N14	125.67 (14)
$\mathrm{O} 13-\mathrm{C} 13-\mathrm{C} 12$	127.94 (13)
N14-C13-C12	106.40 (11)
C15-N14-C13	110.25 (12)
C15-N14-H14	122.6 (11)
C15-N11-C12-C13	2.95 (15)
C11-N11-C12-C13	178.00 (14)
N11-C12-C13-O13	177.46 (14)
N11-C12-C13-N14	-2.45 (14)
$\mathrm{O} 13-\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 15$	-178.69 (14)
C12-C13-N14-C15	1.22 (15)
C11-N11-C15-N16	3.7 (2)
C12-N11-C15-N16	178.73 (13)
C11-N11-C15-N14	-177.45 (14)

C24-O24	1.2225 (17)
$\mathrm{C} 24-\mathrm{O} 23$	1.2967 (17)
$\mathrm{O} 23-\mathrm{H} 23 \mathrm{~A}$	1.00 (3)
C13-N14-H14	127.1 (11)
N16-C15-N11	126.35 (13)
N16-C15-N14	122.80 (13)
N11-C15-N14	110.84 (12)
C15-N16-H15A	121.2 (12)
C15-N16-H15B	115.6 (11)
H15A-N16-H15B	123.2 (16)
$\mathrm{O} 22-\mathrm{C} 21-\mathrm{O} 21$	123.41 (13)
$\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 22$	116.82 (12)
$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22$	119.76 (12)
C23-C22-C21	131.07 (13)
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	114.5
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	114.5
C22-C23-C24	130.69 (13)
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	114.7
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23$	114.7
$\mathrm{O} 24-\mathrm{C} 24-\mathrm{O} 23$	120.46 (13)
O24-C24-C23	118.75 (12)
$\mathrm{O} 23-\mathrm{C} 24-\mathrm{C} 23$	120.77 (12)
C24-O23-H23A	111.2 (14)
C12-N11-C15-N14	-2.40 (16)
$\mathrm{C} 13-\mathrm{N} 14-\mathrm{C} 15-\mathrm{N} 16$	179.61 (13)
C13-N14-C15-N11	0.69 (16)
O22-C21-C22-C23	177.12 (16)
$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	-1.9 (2)
C21-C22-C23-C24	2.8 (3)
C22-C23-C24-O24	177.17 (16)
C22-C23-C24-O23	-1.3 (2)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 14-\mathrm{H} 14 \cdots \mathrm{O} 22$	$0.93(2)$	$1.79(2)$	$2.725(2)$	$178(2)$
$\mathrm{N} 16-\mathrm{H} 15 A \cdots \mathrm{O} 24^{\mathrm{i}}$	$0.89(2)$	$1.96(2)$	$2.833(2)$	$168(2)$
$\mathrm{N} 16-\mathrm{H} 15 B \cdots \mathrm{O} 21$	$0.93(2)$	$1.88(2)$	$2.804(2)$	$174(2)$
$\mathrm{O} 23 — \mathrm{H} 23 A \cdots \mathrm{O} 21$	$1.00(3)$	$1.46(3)$	$2.457(2)$	$174(2)$

Symmetry code: (i) $-x,-y,-z$.

