

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]-3-[3-methoxy-4-(methoxymethoxy)phenyl]prop-2-en-1-one

Liu-Shuan Chang,^a Chen-Yang Li,^b Yan-Mei Zhao,^a Fang Xu^b and Zheng-Yi Gu^b*

^aDepartment of Military Protective Medicine, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, People's Republic of China, and ^bXinjiang Institute of Materia Medica, Xinjiang 830004, People's Republic of China Correspondence e-mail: zhengyigu2011@yahoo.cn

Received 27 September 2011; accepted 6 October 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.076; data-to-parameter ratio = 9.2.

The title compound, $C_{22}H_{26}O_9$, crystallizes with two independent molecules in the asymmetric unit in which the dihedral angles between the two benzene rings are 21.4 (2) and 5.1 (2)°. An intramolecular O-H···O hydrogen bond occurs in each molecule. Intermolecular C-H···O hydrogen bonds stabilize the crystal structure.

Related literature

For the biological activity of flavonoids, see: Jung *et al.* (2006); Ong & Khoo (1996); Vessal *et al.* (2003); Sousa *et al.* (2004). For bond-length data, see: Allen *et al.* (1987); Chu *et al.* (2004); Zhang *et al.* (2011). For the preparation, see: Duan *et al.* (2006).

Experimental

a = 12.008 (3) Å
b = 13.016 (4) Å
c = 13.663 (4) Å

```
\beta = 97.154 (4)^{\circ}

V = 2119.0 (10) \text{ Å}^3

Z = 4

Mo K\alpha radiation
```

Data collection

Rigaku Saturn CCD area-detector	22288 measured reflections
diffractometer	5259 independent reflections
Absorption correction: multi-scan	4715 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.045$
2009)	
$T_{\min} = 0.975, \ T_{\max} = 0.981$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 & 1 \text{ restraint} \\ wR(F^2) &= 0.076 & H\text{-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\max} = 0.21 \text{ e } \text{ Å}^{-3} \\ 5259 \text{ reflections} & \Delta\rho_{\min} = -0.18 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5···O6	0.84	1.75	2.506 (2)	148
O14-H14···O15	0.84	1.72	2.475 (2)	148
$C8-H8C\cdots O8^{i}$	0.98	2.57	3.312 (3)	132
$C9-H9A\cdots O5^{ii}$	0.99	2.52	3.444 (3)	155

Symmetry codes: (i) x - 1, y, z - 1; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1.

Data collection: *CrystalClear-SM Expert* (Rigaku/MSC, 2009); cell refinement: *CrystalClear-SM Expert*; data reduction: *CrystalClear-SM Expert*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5103).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Chu, H. W., Wu, H. T. & Lee, Y. J. (2004). Tetrahedron, 60, 2647-2655.
- Duan, Y. B., Qi, Y., Ji, Z., Fang, G., Cheng, Y. H. & Wu, S. (2006). J. Chin. J. Med. Chem. 16, 342–346.
- Jung, U. J., Lee, M. K., Park, Y. B., Kang, M. A. & Choi, M. S. (2006). Biochem. Cell Biol. 38, 1134–1145.
- Ong, K. C. & Khoo, H. E. (1996). J. Biochem. Pharmacol. 51, 423-429.
- Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/ MSC, The Woodlands, Texas, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sousa, E. D., Zanatta, L., Seifriz, I., Creczynski-Pasa, T. B., Pizzolatti, M. G., Szpoganicz, B. & Silva, F. R. (2004). J. Nat. Prod. 67, 829–832.
- Vessal, M., Hemmati, M. & VaseiM, M. (2003). Biochem. Physiol. C, 135, 357– 364.
- Zhang, Y., Zhang, Y.-N., Liu, M.-M., Ryu, K.-C. & Ye, D.-Y. (2011). Acta Cryst. E67, 0912–0913.

 $\mu = 0.11 \text{ mm}^{-1}$

 $0.24 \times 0.22 \times 0.18 \text{ mm}$

T = 113 K

supporting information

Acta Cryst. (2011). E67, o2931 [doi:10.1107/S1600536811041213]

(*E*)-1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]-3-[3-methoxy-4-(methoxy-methoxy)phenyl]prop-2-en-1-one

Liu-Shuan Chang, Chen-Yang Li, Yan-Mei Zhao, Fang Xu and Zheng-Yi Gu

S1. Comment

Several flavonoids, such as Hesperidin and naringin(Jung *et al.*, 2006), myricetin (Ong & Khoo, 1996), quercetin (Vessal *et al.*, 2003), Kaempferol-3,7-O-(*r*)-dirhamnoside (Sousa *et al.*, 2004), have been reported to treat diabetes. We synthesized a series of 5,7-dihydroxy flavonoids. The vitro antidiabetic activity experiment showed that most of the flavonoids showed a remarkable *in vitro* anti-diabetic activity. The title compound, (*E*)-1-(2-hydroxy-4,6-bis(methoxy-methoxy)phenyl)-3- (3-methoxy-4-(methoxymethoxy)phenyl)prop-2-en-1-one was prepared as an intermediate.

In title compound, C₂₂H₂₆O₉, crystallizes with two independent molecules in the asymmetric unit. All bond lengths and angles in the molecular are normal (Allen *et al.*, 1987) and in a good agreement with those reported previously (Chu *et al.*, 2004; Zhang *et al.*, 2011). The dihedral angle between two phenyl ring (C1—C6 and C14—C19; C23—C28 and C36—C41) are 21.4 (2)° and 5.1 (2) °, respectively. The C—H…O intermolecular hydrogen bonds stabilized the crystal structure (Table 1).

S2. Experimental

A round-bottomed flask was charged with 1.52 g (10 mmol) of 4-hydroxy-3-methoxybenzaldehyde, 9.66 g (70 mmol) of K₂CO₃, 805 mg (10 mmol) of chloromethyl methyl ether (MOMCl) and 30 ml of anhydrous acetone, and the mixture was stirred at room temperature for four hours. The reaction mixture was filtered, and evaporated to afford 3-meth-oxy-4-(methoxymethoxy)benzaldehyde. Dropwise chloromethyl methyl ether (4.83 g, 6 mmol) was added to a mixture of 2,4,6-trihydroxyacetophenone (503.0 mg, 3 mmol) and K₂CO₃ (2.89 g, 21 mmol) in anhydrous acetone (30 ml). The mixture was heated at reflux for 1.5 h, filtered, and evaporated to afford 2-hydroxy-4,6-dimethoxymethoxyacetophenone. Then 3-methoxy-4-(methoxymethoxy)benzaldehyde (589 mg, 3.0 mmol) in 60% NaOH aqua (8 ml) and MeOH (15 ml) was added and stirred for 24 h. The resulting mixture was poured into cold 2 *M* HCl (40 ml), and then extracted with three 20-ml portions of EtOAc. The organic layer was washed with water and saturated brine, dried over MgSO4, and evaporated to afford the title compound *via* recrystallization from EtOH (Duan *et al.*, 2006). Single crystals suitable for X-ray diffraction were obtained from slow evaporation of a solution of the pure title compound in ethanol at room temperature.

S3. Refinement

All H atoms were found on difference maps, with C—H = 0.95–0.99, O—H = 0.84 Å and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C, O)$ for the methyl and hydroxyl H atoms.

Figure 1

View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

(E)-1-[2-Hydroxy-4,6-bis(methoxymethoxy)phenyl]-3- [3-methoxy-4-(methoxymethoxy)phenyl]prop-2-en-1-one

Crystal data

 $C_{22}H_{26}O_9$ $M_r = 434.43$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 12.008 (3) Å b = 13.016 (4) Å c = 13.663 (4) Å $\beta = 97.154$ (4)° V = 2119.0 (10) Å³ Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer Radiation source: rotating anode Multilayer monochromator Detector resolution: 14.63 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2009) $T_{\min} = 0.975, T_{\max} = 0.981$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.076$ S = 1.035259 reflections 569 parameters F(000) = 920 $D_x = 1.362 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7434 reflections $\theta = 1.7-27.9^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 113 KBlock, orange $0.24 \times 0.22 \times 0.18 \text{ mm}$

22288 measured reflections 5259 independent reflections 4715 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 27.9^\circ, \ \theta_{min} = 1.7^\circ$ $h = -14 \rightarrow 15$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 17$

 restraint
 Primary atom site location: structure-invariant direct methods
 Secondary atom site location: difference Fourier map
 Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0347P)^2]$	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.22434 (13)	0.90191 (12)	0.50952 (12)	0.0273 (4)	
O2	0.14482 (13)	0.95752 (11)	0.35274 (11)	0.0244 (4)	
O3	0.58068 (13)	0.88250 (11)	0.69967 (11)	0.0249 (4)	
O4	0.46961 (13)	0.78830 (13)	0.79761 (12)	0.0312 (4)	
05	0.48367 (14)	1.17704 (12)	0.49837 (12)	0.0302 (4)	
Н5	0.5482	1.1951	0.5233	0.045*	
O6	0.66802 (13)	1.16766 (12)	0.60636 (11)	0.0267 (4)	
O7	0.91164 (14)	0.91335 (12)	1.08562 (11)	0.0273 (4)	
08	1.09693 (14)	1.01811 (12)	1.11830 (11)	0.0257 (4)	
09	1.19143 (13)	1.17603 (12)	1.14491 (11)	0.0266 (4)	
O10	0.18533 (13)	0.81450 (12)	0.00995 (11)	0.0265 (4)	
011	0.15303 (14)	0.77679 (11)	-0.15985 (12)	0.0275 (4)	
O12	0.49745 (13)	0.80118 (12)	0.25640 (11)	0.0273 (4)	
O13	0.44653 (14)	0.97448 (11)	0.26498 (12)	0.0296 (4)	
O14	0.46845 (14)	0.56582 (13)	-0.01679 (12)	0.0329 (4)	
H14	0.5328	0.5489	0.0095	0.049*	
O15	0.64358 (14)	0.57331 (13)	0.09948 (12)	0.0360 (4)	
016	0.89706 (13)	0.82460 (12)	0.57367 (11)	0.0248 (4)	
O17	1.08189 (13)	0.71974 (11)	0.60496 (11)	0.0233 (4)	
O18	1.18426 (13)	0.56566 (12)	0.63086 (11)	0.0266 (4)	
C1	0.53421 (18)	1.03548 (16)	0.60884 (15)	0.0195 (5)	
C2	0.45869 (19)	1.08459 (16)	0.53524 (16)	0.0213 (5)	
C3	0.35580 (19)	1.04253 (17)	0.49855 (16)	0.0222 (5)	
Н3	0.3074	1.0772	0.4489	0.027*	
C4	0.32511 (19)	0.94969 (17)	0.53531 (16)	0.0225 (5)	
C5	0.39895 (19)	0.89474 (17)	0.60430 (16)	0.0244 (5)	
H5A	0.3777	0.8297	0.6274	0.029*	
C6	0.50153 (18)	0.93550 (17)	0.63790 (16)	0.0218 (5)	
C7	0.13674 (19)	0.95890 (18)	0.45297 (17)	0.0255 (5)	
H7A	0.0633	0.9298	0.4645	0.031*	
H7B	0.1394	1.0310	0.4762	0.031*	
C8	0.1145 (2)	0.85967 (17)	0.30924 (18)	0.0297 (6)	

H8A	0.0405	0.8394	0.3259	0.045*
H8B	0.1703	0.8082	0.3347	0.045*
H8C	0.1120	0.8645	0.2374	0.045*
С9	0.5511 (2)	0.78293 (17)	0.73444 (17)	0.0277 (5)
H9A	0.5233	0.7394	0.6772	0.033*
H9B	0.6190	0.7498	0.7692	0.033*
C10	0.5096 (2)	0.8409 (2)	0.8875 (2)	0.0481 (8)
H10A	0.5307	0.9113	0.8724	0.072*
H10B	0.5751	0.8047	0.9210	0.072*
H10C	0.4501	0.8426	0.9306	0.072*
C11	0.63687 (19)	1.08955 (17)	0.64962 (16)	0.0214 (5)
C12	0.70300 (18)	1.05763 (16)	0.74328 (16)	0.0211 (5)
H12	0.6728	1.0086	0.7842	0.025*
C13	0.80475 (18)	1.09697 (16)	0.77090 (16)	0.0207 (5)
H13	0.8301	1.1467	0.7278	0.025*
C14	0.88206 (18)	1.07296 (17)	0.85929 (16)	0.0203(5)
C15	0.85724 (19)	0.99989 (16)	0.92922 (16)	0.0212 (5)
H15	0.7888	0.9626	0.9184	0.025*
C16	0.9308 (2)	0.98154 (16)	1.01337 (16)	0.0205 (5)
C17	1.03260 (19)	1.03632 (16)	1.03000 (16)	0.0211 (5)
C18	1.05886 (19)	1.10596 (16)	0.95928 (16)	0.0221 (5)
H18	1.1287	1.1411	0.9683	0.027*
C19	0.98402 (18)	1.12444 (17)	0.87596 (16)	0.0222(5)
H19	1.0026	1.1734	0.8290	0.027*
C20	0.8059 (2)	0.86135 (18)	1.07342 (18)	0.0313 (6)
H20A	0.7979	0.8226	1.0114	0.047*
H20B	0.7451	0.9118	1.0718	0.047*
H20C	0.8021	0.8140	1.1287	0.047*
C21	1.2022 (2)	1.07013 (18)	1.13626 (17)	0.0269 (5)
H21A	1.2443	1.0430	1.1977	0.032*
H21B	1.2466	1.0551	1.0815	0.032*
C22	1.1447 (2)	1.20680 (19)	1.23220 (17)	0.0318 (6)
H22A	1.1861	1.1735	1.2899	0.048*
H22B	1.0656	1.1863	1.2265	0.048*
H22C	1.1505	1.2816	1.2397	0.048*
C23	0.49240 (19)	0.68245 (17)	0.12260 (16)	0.0224 (5)
C24	0.42976 (19)	0.64374 (17)	0.03440 (16)	0.0230 (5)
C25	0.32671 (19)	0.68403 (17)	-0.00400 (16)	0.0236 (5)
H25	0.2863	0.6555	-0.0619	0.028*
C26	0.28369 (19)	0.76586 (17)	0.04285 (16)	0.0227(5)
C27	0.34081 (18)	0.80713 (17)	0.12906 (16)	0.0228 (5)
H27	0.3101	0.8640	0.1600	0.027*
C28	0.44134 (18)	0.76566 (16)	0.16925 (16)	0.0215 (5)
C29	0.11434 (19)	0.76794 (18)	-0.06884 (17)	0.0265 (5)
H29A	0.1061	0.6941	-0.0537	0.032*
H29B	0.0390	0.7997	-0.0729	0.032*
C30	0.1521 (2)	0.88016 (18)	-0.19537(19)	0.0395 (7)
H30A	0.2100	0.9201	-0.1551	0.059*

H30B	0.0784	0.9109	-0.1912	0.059*
H30C	0.1674	0.8803	-0.2642	0.059*
C31	0.4462 (2)	0.87896 (17)	0.31042 (17)	0.0269 (5)
H31A	0.3678	0.8589	0.3164	0.032*
H31B	0.4871	0.8839	0.3778	0.032*
C32	0.5560 (2)	1.0166 (2)	0.2683 (2)	0.0408 (7)
H32A	0.6041	0.9689	0.2373	0.061*
H32B	0.5875	1.0279	0.3372	0.061*
H32C	0.5521	1.0822	0.2328	0.061*
C33	0.60378 (19)	0.63850 (17)	0.15390 (16)	0.0235 (5)
C34	0.67431 (19)	0.66787 (17)	0.24565 (17)	0.0243 (5)
H34	0.6443	0.7116	0.2915	0.029*
C35	0.77910 (18)	0.63422 (16)	0.26537 (16)	0.0207 (5)
H35	0.8046	0.5895	0.2180	0.025*
C36	0.85976 (18)	0.65812 (16)	0.35166 (16)	0.0191 (5)
C37	0.96138 (18)	0.60702 (16)	0.36697 (16)	0.0210 (5)
H37	0.9787	0.5577	0.3199	0.025*
C38	1.03903 (18)	0.62596 (17)	0.44958 (16)	0.0206 (5)
H38	1.1084	0.5900	0.4582	0.025*
C39	1.01467 (18)	0.69756 (16)	0.51928 (16)	0.0192 (5)
C40	0.91248 (18)	0.75263 (15)	0.50337 (16)	0.0190 (5)
C41	0.83640 (19)	0.73288 (16)	0.42099 (16)	0.0204 (5)
H41	0.7678	0.7700	0.4110	0.024*
C42	0.7928 (2)	0.87817 (18)	0.56172 (17)	0.0300 (6)
H42A	0.7310	0.8287	0.5595	0.045*
H42B	0.7859	0.9175	0.5001	0.045*
H42C	0.7898	0.9251	0.6174	0.045*
C43	1.18969 (18)	0.67200 (18)	0.61951 (17)	0.0249 (5)
H43A	1.2300	0.6875	0.5623	0.030*
H43B	1.2336	0.7018	0.6789	0.030*
C44	1.1416 (2)	0.53416 (19)	0.71952 (18)	0.0299 (6)
H44A	1.0617	0.5514	0.7151	0.045*
H44B	1.1827	0.5698	0.7761	0.045*
H44C	1.1513	0.4598	0.7280	0.045*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0205 (9)	0.0293 (9)	0.0301 (9)	-0.0058 (7)	-0.0044 (7)	0.0054 (7)
O2	0.0271 (9)	0.0210 (8)	0.0239 (9)	-0.0014 (7)	-0.0013 (7)	0.0003 (6)
03	0.0236 (9)	0.0231 (8)	0.0272 (9)	0.0009 (6)	-0.0002 (7)	0.0071 (6)
O4	0.0299 (9)	0.0339 (9)	0.0309 (10)	-0.0061 (8)	0.0076 (8)	0.0061 (7)
05	0.0312 (10)	0.0249 (8)	0.0324 (10)	-0.0075 (7)	-0.0049 (8)	0.0089 (7)
O6	0.0249 (9)	0.0274 (8)	0.0272 (9)	-0.0059 (7)	0.0009 (7)	0.0063 (7)
O7	0.0338 (10)	0.0255 (9)	0.0217 (9)	-0.0054 (7)	0.0003 (8)	0.0053 (7)
08	0.0266 (9)	0.0271 (9)	0.0215 (9)	-0.0012 (7)	-0.0046 (7)	0.0001 (7)
09	0.0287 (9)	0.0263 (8)	0.0242 (9)	-0.0023 (7)	0.0012 (7)	-0.0024 (7)
O10	0.0210 (9)	0.0304 (9)	0.0266 (9)	0.0054 (7)	-0.0035 (7)	-0.0024 (7)

011	0.0361 (10)	0.0220 (8)	0.0234 (9)	0.0031 (7)	-0.0002 (7)	0.0016 (7)
O12	0.0292 (9)	0.0286 (9)	0.0227 (8)	0.0087 (7)	-0.0023 (7)	-0.0068 (7)
O13	0.0269 (10)	0.0278 (9)	0.0332 (10)	0.0035 (7)	-0.0001 (8)	-0.0038 (7)
O14	0.0334 (11)	0.0320 (9)	0.0309 (10)	0.0127 (8)	-0.0054 (8)	-0.0098 (8)
015	0.0318 (10)	0.0381 (10)	0.0354 (10)	0.0125 (8)	-0.0064 (8)	-0.0142 (8)
O16	0.0291 (9)	0.0213 (8)	0.0248 (9)	0.0044 (7)	0.0060 (7)	-0.0048 (7)
O17	0.0226 (9)	0.0259 (8)	0.0202 (8)	0.0005 (7)	-0.0015 (7)	-0.0016 (6)
O18	0.0278 (10)	0.0280 (9)	0.0239 (9)	0.0033 (7)	0.0023 (7)	0.0001 (7)
C1	0.0197 (12)	0.0213 (11)	0.0176 (11)	-0.0005 (9)	0.0025 (9)	0.0011 (8)
C2	0.0250 (12)	0.0190 (11)	0.0202 (12)	-0.0016 (9)	0.0033 (10)	0.0023 (9)
C3	0.0221 (12)	0.0245 (12)	0.0191 (12)	0.0008 (9)	-0.0009(10)	0.0019 (9)
C4	0.0211 (12)	0.0246 (11)	0.0219 (12)	-0.0038 (9)	0.0028 (10)	-0.0033 (9)
C5	0.0272 (13)	0.0216 (11)	0.0242 (12)	-0.0034 (9)	0.0025 (10)	0.0038 (9)
C6	0.0214 (12)	0.0264 (11)	0.0171 (11)	0.0024 (9)	0.0001 (9)	0.0008 (9)
C7	0.0186 (12)	0.0301 (13)	0.0271 (13)	0.0016 (10)	-0.0004 (10)	-0.0049 (10)
C8	0.0340 (15)	0.0240 (12)	0.0306 (14)	-0.0011 (11)	0.0021 (11)	-0.0023 (10)
C9	0.0308 (14)	0.0219 (11)	0.0301 (13)	-0.0002(10)	0.0026 (11)	0.0050 (10)
C10	0.060 (2)	0.0535 (18)	0.0340 (16)	-0.0199 (15)	0.0169 (14)	-0.0058 (13)
C11	0.0211 (12)	0.0224 (11)	0.0212 (12)	-0.0003(9)	0.0041 (10)	-0.0016 (9)
C12	0.0210 (12)	0.0209 (11)	0.0215 (12)	-0.0012(9)	0.0035 (9)	0.0006 (9)
C13	0.0237 (12)	0.0184 (11)	0.0202 (12)	-0.0010 (9)	0.0039 (9)	-0.0001 (8)
C14	0.0197 (12)	0.0226 (11)	0.0186 (11)	0.0002 (9)	0.0024 (9)	-0.0017 (9)
C15	0.0209 (12)	0.0212 (12)	0.0215 (12)	-0.0023 (9)	0.0031 (10)	-0.0018 (9)
C16	0.0263 (13)	0.0184 (10)	0.0170 (11)	0.0005 (9)	0.0045 (9)	-0.0002(9)
C17	0.0264 (13)	0.0200 (11)	0.0167 (12)	0.0031 (10)	0.0017 (9)	-0.0046 (9)
C18	0.0218 (12)	0.0234 (12)	0.0213 (12)	-0.0014 (9)	0.0031 (10)	-0.0021 (9)
C19	0.0252 (12)	0.0240 (12)	0.0175 (11)	-0.0032 (10)	0.0035 (9)	-0.0026 (9)
C20	0.0347 (15)	0.0288 (13)	0.0299 (14)	-0.0098 (11)	0.0019 (12)	0.0041 (10)
C21	0.0247 (13)	0.0295 (13)	0.0247 (13)	0.0034 (10)	-0.0044 (10)	-0.0021 (10)
C22	0.0335 (15)	0.0368 (15)	0.0245 (13)	0.0003 (12)	0.0012 (11)	-0.0058 (11)
C23	0.0235 (12)	0.0223 (11)	0.0211 (12)	0.0015 (9)	0.0015 (9)	0.0000 (9)
C24	0.0242 (13)	0.0217 (11)	0.0230 (12)	0.0013 (9)	0.0022 (10)	-0.0007 (9)
C25	0.0230 (12)	0.0250 (12)	0.0216 (12)	-0.0005 (10)	-0.0022 (10)	-0.0018 (9)
C26	0.0193 (12)	0.0263 (12)	0.0222 (12)	0.0010 (9)	0.0010 (9)	0.0036 (9)
C27	0.0250 (13)	0.0216 (11)	0.0219 (12)	0.0021 (9)	0.0029 (10)	-0.0022 (9)
C28	0.0248 (13)	0.0216 (11)	0.0178 (11)	-0.0028 (9)	0.0020 (9)	-0.0001 (8)
C29	0.0186 (12)	0.0276 (12)	0.0317 (14)	0.0008 (10)	-0.0030 (10)	0.0000 (10)
C30	0.063 (2)	0.0250 (13)	0.0297 (14)	0.0034 (13)	0.0042 (14)	0.0063 (11)
C31	0.0282 (14)	0.0279 (12)	0.0246 (13)	0.0033 (10)	0.0028 (11)	-0.0073 (10)
C32	0.0335 (16)	0.0358 (14)	0.0536 (19)	-0.0032(12)	0.0074 (13)	-0.0035 (13)
C33	0.0236 (12)	0.0232 (12)	0.0235 (12)	0.0030 (10)	0.0022 (10)	0.0002 (9)
C34	0.0242 (13)	0.0269 (12)	0.0217 (12)	0.0035 (10)	0.0022 (10)	0.0005 (9)
C35	0.0232 (12)	0.0186 (11)	0.0203 (12)	0.0002 (9)	0.0034 (9)	0.0001 (9)
C36	0.0194 (12)	0.0213 (11)	0.0168 (11)	-0.0020 (9)	0.0030 (9)	0.0015 (8)
C37	0.0233 (12)	0.0211 (11)	0.0191 (12)	0.0012 (9)	0.0050 (9)	-0.0010 (9)
C38	0.0162 (11)	0.0229 (11)	0.0228 (12)	0.0035 (9)	0.0031 (9)	0.0020 (9)
C39	0.0174 (11)	0.0227 (11)	0.0174 (11)	-0.0033 (9)	0.0015 (9)	0.0022 (9)
C40	0.0239 (12)	0.0156 (10)	0.0189 (11)	-0.0021 (9)	0.0075 (9)	-0.0004 (8)

supporting information

C41	0.0175 (11)	0.0193 (11)	0.0249 (12)	0.0018 (9)	0.0043 (9)	0.0027 (9)
C42	0.0374 (15)	0.0249 (12)	0.0285 (14)	0.0083 (11)	0.0074 (12)	-0.0050 (10)
C43	0.0190 (12)	0.0306 (13)	0.0242 (13)	-0.0009 (10)	-0.0011 (10)	-0.0010 (10)
C44	0.0316 (14)	0.0289 (13)	0.0284 (14)	0.0000 (11)	0.0012 (11)	0.0031 (10)

Geometric parameters (Å, °)

01—C4	1.367 (3)	C14—C19	1.389 (3)
O1—C7	1.432 (3)	C14—C15	1.406 (3)
O2—C7	1.385 (3)	C15—C16	1.380 (3)
O2—C8	1.433 (3)	C15—H15	0.9500
O3—C6	1.375 (3)	C16—C17	1.409 (3)
О3—С9	1.440 (3)	C17—C18	1.389 (3)
O4—C9	1.384 (3)	C18—C19	1.381 (3)
O4—C10	1.436 (3)	C18—H18	0.9500
O5—C2	1.353 (3)	C19—H19	0.9500
O5—H5	0.8400	C20—H20A	0.9800
O6—C11	1.256 (3)	C20—H20B	0.9800
O7—C16	1.368 (2)	C20—H20C	0.9800
O7—C20	1.431 (3)	C21—H21A	0.9900
O8—C17	1.370 (3)	C21—H21B	0.9900
O8—C21	1.428 (3)	C22—H22A	0.9800
O9—C21	1.391 (3)	C22—H22B	0.9800
O9—C22	1.437 (3)	C22—H22C	0.9800
O10-C26	1.366 (3)	C23—C24	1.430 (3)
O10—C29	1.423 (3)	C23—C28	1.433 (3)
O11—C29	1.385 (3)	C23—C33	1.468 (3)
O11—C30	1.430 (3)	C24—C25	1.386 (3)
O12—C28	1.373 (3)	C25—C26	1.376 (3)
O12—C31	1.436 (2)	C25—H25	0.9500
O13—C31	1.390 (3)	C26—C27	1.395 (3)
O13—C32	1.420 (3)	C27—C28	1.373 (3)
O14—C24	1.347 (3)	С27—Н27	0.9500
O14—H14	0.8400	C29—H29A	0.9900
O15—C33	1.261 (3)	C29—H29B	0.9900
O16—C40	1.371 (2)	C30—H30A	0.9800
O16—C42	1.424 (3)	C30—H30B	0.9800
O17—C39	1.367 (2)	C30—H30C	0.9800
O17—C43	1.427 (3)	C31—H31A	0.9900
O18—C43	1.395 (3)	C31—H31B	0.9900
O18—C44	1.432 (3)	C32—H32A	0.9800
C1—C2	1.419 (3)	C32—H32B	0.9800
C1—C6	1.430 (3)	C32—H32C	0.9800
C1C11	1.468 (3)	C33—C34	1.473 (3)
C2—C3	1.387 (3)	C34—C35	1.328 (3)
С3—С4	1.376 (3)	C34—H34	0.9500
С3—Н3	0.9500	C35—C36	1.463 (3)
C4—C5	1.406 (3)	С35—Н35	0.9500

C5—C6	1.367 (3)	C36—C37	1.383 (3)
С5—Н5А	0.9500	C36—C41	1.410 (3)
C7—H7A	0.9900	C37—C38	1.393 (3)
С7—Н7В	0.9900	С37—Н37	0.9500
C8—H8A	0.9800	C38—C39	1.389 (3)
C8—H8B	0.9800	С38—Н38	0.9500
C8—H8C	0.9800	C39—C40	1.414 (3)
С9—Н9А	0.9900	C40—C41	1.383 (3)
C9—H9B	0.9900	C41—H41	0.9500
C10—H10A	0.9800	C42—H42A	0.9800
C10—H10B	0.9800	C42—H42B	0.9800
C10 $H10D$	0.9800	C42 - H42C	0.9800
C_{11} C_{12}	1.70(3)	$C_{42} = H_{42}C_{43}$	0.9800
$C_{12} = C_{12}$	1.479(3) 1 335(3)	$C_{43} = H_{43}R$	0.9900
C12 H12	0.0500		0.9900
C_{12} C_{12} C_{14}	0.9500	C44 = H44P	0.9800
C13—C14	1.402 (5)	С44—П44В	0.9800
С13—Н13	0.9500	С44—Н44С	0.9800
C4—O1—C7	118 07 (18)	08—C21—H21B	108.9
C7-02-C8	112.09(17)	H21A—C21—H21B	107.7
C6-03-C9	118.27 (18)	09—C22—H22A	109.5
C9-O4-C10	111 77 (18)	09—C22—H22B	109.5
C2	109 5	H22A_C22_H22B	109.5
$C_{16} - C_{20}$	116 70 (18)	$09-C^{22}-H^{22}C$	109.5
C17 - 08 - C21	117 35 (18)	$H_{22}^{2}A = C_{22}^{2} = H_{22}^{2}C_{22}^{2}$	109.5
$C_{21} = 09 = C_{22}$	113 39 (19)	H22R = C22 = H22C	109.5
$C_{26} = 010 = C_{29}$	117.62 (18)	C_{24} C_{23} C_{28}	115 58 (19)
$C_{20} = 010 - C_{20}$	117.02(10) 113.18(18)	$C_{24} = C_{23} = C_{26}$	119.30(17) 118.2(2)
$C_{29} = 011 = 0.000$	113.10(10) 110.10(17)	$C_{24} = C_{23} = C_{33}$	110.2(2)
$C_{20} = 012 = C_{31}$	112.17(17) 112.67(10)	014 024 025	120.1(2)
$C_{24} = 013 = 032$	100.5	014 - 024 - 023	110.0(2)
$C_{24} = 014 = 1114$	109.5	$C_{25} = C_{24} = C_{23}$	121.0(2) 122.5(2)
$C_{40} = 010 = C_{42}$	110.00(18) 117.11(17)	$C_{25} = C_{24} = C_{25}$	122.3(2)
$C_{33} = 017 = C_{43}$	117.11(17) 112.96(17)	$C_{20} = C_{23} = C_{24}$	119.1 (2)
$C_{43} = 01_{6} = 0.44$	115.60(17) 115.60(10)	$C_{20} = C_{23} = H_{23}$	120.5
$C_2 - C_1 - C_0$	113.09(19) 110.02(10)	$C_{24} = C_{23} = H_{23}$	120.3
$C_2 = C_1 = C_{11}$	119.03(19) 125.28(10)	010 - 020 - 023	124.4(2)
	125.28 (19)	010-020-027	114.43 (19)
05 - 02 - 03	110.5 (2)	$C_{25} = C_{20} = C_{27}$	121.2(2)
03-02-01	120.8(2)	$C_{28} = C_{27} = C_{26}$	120.1 (2)
$C_3 = C_2 = C_1$	122.7(2)	C28—C27—H27	119.9
C4—C3—C2	118.8 (2)	C26—C27—H27	119.9
C4—C3—H3	120.6	C27—C28—O12	121.77 (19)
C2—C3—H3	120.6	$C_2/-C_2 = C_2 =$	121.5 (2)
01	125.0 (2)	012-C28-C23	116.70 (19)
01	113.91 (19)	O11—C29—O10	114.05 (19)
C3—C4—C5	121.1 (2)	O11—C29—H29A	108.7
C6—C5—C4	119.6 (2)	O10—C29—H29A	108.7
С6—С5—Н5А	120.2	O11—C29—H29B	108.7

С4—С5—Н5А	120.2	O10—C29—H29B	108.7
C5—C6—O3	122.4 (2)	H29A—C29—H29B	107.6
C5—C6—C1	121.8 (2)	O11—C30—H30A	109.5
O3—C6—C1	115.75 (19)	O11—C30—H30B	109.5
O2—C7—O1	112.93 (18)	H30A—C30—H30B	109.5
O2—C7—H7A	109.0	O11—C30—H30C	109.5
O1—C7—H7A	109.0	H30A—C30—H30C	109.5
O2—C7—H7B	109.0	H30B—C30—H30C	109.5
O1—C7—H7B	109.0	O13—C31—O12	112.08 (18)
H7A—C7—H7B	107.8	O13—C31—H31A	109.2
O2—C8—H8A	109.5	O12—C31—H31A	109.2
O2—C8—H8B	109.5	O13—C31—H31B	109.2
H8A—C8—H8B	109.5	O12—C31—H31B	109.2
O2—C8—H8C	109.5	H31A—C31—H31B	107.9
H8A—C8—H8C	109.5	O13—C32—H32A	109.5
H8B-C8-H8C	109.5	013—C32—H32B	109.5
04-09-03	112.51 (18)	H32A—C32—H32B	109.5
O4—C9—H9A	109.1	013—C32—H32C	109.5
O3-C9-H9A	109.1	H32A—C32—H32C	109.5
04—C9—H9B	109.1	H32B-C32-H32C	109.5
O3—C9—H9B	109.1	015-C33-C23	119.3 (2)
H9A—C9—H9B	107.8	015-033-034	117.2 (2)
04—C10—H10A	109.5	C_{23} — C_{33} — C_{34}	123.6 (2)
04—C10—H10B	109.5	C_{35} — C_{34} — C_{33}	121.1(2)
H10A—C10—H10B	109.5	С35—С34—Н34	119.4
O4—C10—H10C	109.5	С33—С34—Н34	119.4
H10A—C10—H10C	109.5	C34—C35—C36	127.5 (2)
H10B—C10—H10C	109.5	С34—С35—Н35	116.2
06—C11—C1	119.6 (2)	С36—С35—Н35	116.2
O6—C11—C12	118.4 (2)	C37—C36—C41	118.4 (2)
C1—C11—C12	121.93 (19)	C37—C36—C35	120.2 (2)
C13—C12—C11	120.7 (2)	C41—C36—C35	121.4 (2)
C13—C12—H12	119.6	C36—C37—C38	121.8 (2)
C11—C12—H12	119.6	С36—С37—Н37	119.1
C12—C13—C14	128.0 (2)	С38—С37—Н37	119.1
С12—С13—Н13	116.0	C39—C38—C37	119.8 (2)
C14—C13—H13	116.0	С39—С38—Н38	120.1
C19—C14—C15	118.2 (2)	С37—С38—Н38	120.1
C19—C14—C13	119.2 (2)	017-C39-C38	125.2 (2)
C15—C14—C13	122.6 (2)	017-C39-C40	115.65 (19)
C16—C15—C14	121.0 (2)	C38—C39—C40	119.16 (19)
С16—С15—Н15	119.5	016-C40-C41	124.3 (2)
C14—C15—H15	119.5	016-C40-C39	115.41 (19)
07-C16-C15	124.5 (2)	C41—C40—C39	120.24 (19)
07—C16—C17	115.6 (2)	C40—C41—C36	120.6 (2)
C15—C16—C17	119.9 (2)	C40—C41—H41	119.7
08—C17—C18	125.0 (2)	C36—C41—H41	119.7
08-C17-C16	115.94 (19)	016—C42—H42A	109.5

C18—C17—C16	119.0 (2)	O16—C42—H42B	109.5
C19—C18—C17	120.4 (2)	H42A—C42—H42B	109.5
C19—C18—H18	119.8	O16—C42—H42C	109.5
C17—C18—H18	119.8	H42A—C42—H42C	109.5
C18—C19—C14	121.4 (2)	H42B—C42—H42C	109.5
C18—C19—H19	119.3	O18—C43—O17	113.16 (19)
C14—C19—H19	119.3	O18—C43—H43A	108.9
O7—C20—H20A	109.5	O17—C43—H43A	108.9
O7—C20—H20B	109.5	O18—C43—H43B	108.9
H20A—C20—H20B	109.5	O17—C43—H43B	108.9
O7—C20—H20C	109.5	H43A—C43—H43B	107.8
H20A—C20—H20C	109.5	018—C44—H44A	109.5
H20B—C20—H20C	109.5	018—C44—H44B	109.5
09-C21-O8	113.23 (19)	H44A—C44—H44B	109.5
09—C21—H21A	108.9	018—C44—H44C	109.5
08-C21-H21A	108.9	H44A—C44—H44C	109.5
09-C21-H21B	108.9	H44B— $C44$ — $H44C$	109.5
0) 021 11210	100.9		109.5
C6—C1—C2—O5	-176.5(2)	C28—C23—C24—O14	179.8 (2)
C11—C1—C2—O5	4.1 (3)	C33—C23—C24—O14	3.1 (3)
C6—C1—C2—C3	4.6 (3)	C28—C23—C24—C25	0.3 (3)
C11—C1—C2—C3	-174.7 (2)	C33—C23—C24—C25	-176.4(2)
Q5—C2—C3—C4	-178.5(2)	Q14—C24—C25—C26	-178.03(19)
C1-C2-C3-C4	0.4 (3)	C_{23} C_{24} C_{25} C_{26}	1.5 (3)
C7-01-C4-C3	-10.9(3)	$C_{29} = 010 = C_{26} = C_{25}$	10.2 (3)
C7-01-C4-C5	169.68 (18)	C29—O10—C26—C27	-170.93(18)
$C_2 - C_3 - C_4 - O_1$	176.7 (2)	C_{24} C_{25} C_{26} O_{10}	177.4 (2)
C_{2} C_{3} C_{4} C_{5}	-3.9(3)	C_{24} C_{25} C_{26} C_{27}	-1.4(3)
01-C4-C5-C6	-178.4(2)	010-C26-C27-C28	-179.44(19)
$C_{3}-C_{4}-C_{5}-C_{6}$	2.1 (3)	C_{25} C_{26} C_{27} C_{28}	-0.6(3)
C4-C5-C6-O3	-175.10(19)	$C_{26} = C_{27} = C_{28} = 012$	-176.98(19)
C4-C5-C6-C1	3 3 (3)	$C_{26} = C_{27} = C_{28} = C_{23}$	2.5 (3)
C9-O3-C6-C5	-3.8(3)	$C_{31} = 012 = C_{28} = C_{27}$	4.3 (3)
C9-O3-C6-C1	177 69 (18)	$C_{31} = 0_{12} = C_{28} = C_{23}$	-175 19 (18)
C_{2} C_{1} C_{6} C_{5}	-65(3)	C_{24} C_{23} C_{28} C_{27}	-2.3(3)
$C_{11} - C_{1} - C_{6} - C_{5}$	172 8 (2)	C_{33} C_{23} C_{28} C_{27}	1741(2)
C_{2} C_{1} C_{6} C_{3}	172.0(2) 172.05(18)	C_{24} C_{23} C_{28} C_{28} C_{27}	177.19(19)
$C_{11} - C_{1} - C_{6} - O_{3}$	-87(3)	C_{33} C_{23} C_{28} C_{12}	-64(3)
$C_{8} = 0^{2} = C_{7} = 0^{1}$	72.9(2)	$C_{30} = 0.011 = 0.020 = 0.012$	-67.2(3)
$C_{4} = 0_{1} = C_{7} = 0_{2}^{2}$	83.6 (2)	$C_{26} = 0.10 = C_{29} = 0.11$	-73.6(2)
$C_{10} - 04 - C_{9} - 03$	-653(2)	$C_{32} = 013 = C_{31} = 012$	-68.7(2)
$C_{10} = 0$	-67.5(2)	$C_{32} = 013 = 031 = 012$	-727(2)
$C_{0} = C_{0} = C_{0} = C_{0}$	-143(3)	$C_{26} = 012 = 013$ $C_{24} = C_{23} = C_{33} = 015$	12.7(2)
$C_{2} = C_{1} = C_{11} = 00$	166 5 (2)	$C_{24} = C_{23} = C_{33} = C_{13}$	-1710(2)
$C_{2} = C_{1} = C_{11} = C_{12}$	160.3(2) 162.08(10)	$C_{20} = C_{23} = C_{33} = C_{13}$	-1760(2)
$C_2 - C_1 - C_{11} - C_{12}$	-16.3(3)	$C_{24} = C_{23} = C_{33} = C_{34}$	1/0.9(2)
$C_0 - C_1 - C_{12} - C_{12}$	-10.5(5) -125(2)	015 023 024 025	0.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-13.3(3)	013 - 033 - 034 - 035	0.1(3)
C1 - C11 - C12 - C13	109.2 (2)	$U_{23} - U_{33} - U_{34} - U_{35}$	-1/2.0(2)

C11—C12—C13—C14	-178.7 (2)	C33—C34—C35—C36	178.6 (2)
C12—C13—C14—C19	-178.5 (2)	C34—C35—C36—C37	172.2 (2)
C12—C13—C14—C15	1.0 (4)	C34—C35—C36—C41	-7.6 (3)
C19—C14—C15—C16	1.6 (3)	C41—C36—C37—C38	1.5 (3)
C13—C14—C15—C16	-177.9 (2)	C35—C36—C37—C38	-178.38 (19)
C20—O7—C16—C15	-2.5 (3)	C36—C37—C38—C39	0.3 (3)
C20—O7—C16—C17	176.30 (19)	C43—O17—C39—C38	5.8 (3)
C14—C15—C16—O7	178.64 (19)	C43—O17—C39—C40	-174.90 (18)
C14—C15—C16—C17	-0.1 (3)	C37—C38—C39—O17	177.26 (19)
C21—O8—C17—C18	-4.0 (3)	C37—C38—C39—C40	-2.1 (3)
C21—O8—C17—C16	178.21 (19)	C42—O16—C40—C41	3.0 (3)
O7—C16—C17—O8	-3.0 (3)	C42—O16—C40—C39	-177.43 (19)
C15—C16—C17—O8	175.86 (18)	O17—C39—C40—O16	3.1 (3)
O7—C16—C17—C18	179.07 (18)	C38—C39—C40—O16	-177.50 (18)
C15—C16—C17—C18	-2.0 (3)	O17—C39—C40—C41	-177.32 (18)
O8—C17—C18—C19	-174.9 (2)	C38—C39—C40—C41	2.1 (3)
C16—C17—C18—C19	2.8 (3)	O16—C40—C41—C36	179.23 (19)
C17—C18—C19—C14	-1.3 (3)	C39—C40—C41—C36	-0.3 (3)
C15—C14—C19—C18	-0.8 (3)	C37—C36—C41—C40	-1.5 (3)
C13—C14—C19—C18	178.70 (19)	C35—C36—C41—C40	178.39 (19)
C22—O9—C21—O8	68.4 (2)	C44—O18—C43—O17	-66.9 (2)
C17—O8—C21—O9	66.4 (2)	C39—O17—C43—O18	-66.7 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	$H \cdots A$	D··· A	D—H···A
0.84	1.75	2.506 (2)	148
0.84	1.72	2.475 (2)	148
0.98	2.57	3.312 (3)	132
0.99	2.52	3.444 (3)	155
	<i>D</i> —H 0.84 0.84 0.98 0.99	D—H H…A 0.84 1.75 0.84 1.72 0.98 2.57 0.99 2.52	D—H H···A D···A 0.84 1.75 2.506 (2) 0.84 1.72 2.475 (2) 0.98 2.57 3.312 (3) 0.99 2.52 3.444 (3)

Symmetry codes: (i) *x*-1, *y*, *z*-1; (ii) -*x*+1, *y*-1/2, -*z*+1.