Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(3,4-Dichlorophenyl)-4-phenylbenzo-[*h*]quinoline

Nan Wu^a and Zhou Xu^{b*}

^aDepartment of Aviation Oil and Materials, Xuzhou Airforce College, Xuzhou Jiangsu 221110, People's Republic of China, and ^bDepartment of Chemistry, Xuzhou Medical College, Xuzhou Jiangsu 221004, People's Republic of China Correspondence e-mail: wu.nanxuzhou@gmail.com

Received 23 September 2011; accepted 29 September 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.110; data-to-parameter ratio = 17.9.

In the title compound, $C_{25}H_{15}Cl_2N$, the benzo[*h*]quinoline system exhibits an approximately planar conformation with an r.m.s. deviation of 0.0202Å and a maximum deviation of 0.039 (1) Å. The aryl group at position 2 is nearly coplanar with the parent ring [dihedral angle = 6.68 (7)°] while the parent ring and the phenyl substituent at position 4 form a dihedral angle of 67.11 (4)°. Intermolecular $C-H\cdots\pi$ interactions stabilize the crystal packing.

Related literature

For the uses of metal complexes of benzo[h]quinoline as electronic materials and organic electronic devices, see: Cho *et al.* (2010). For the medicinal uses of benzo[h]quinoline and its complexes, see: Pantoom*et al.*(2011); Liu*et al.*(2011). For the preparation of the title compound, see: Zhang*et al.*(2010).

Experimental

Crystal data C₂₅H₁₅Cl₂N

 $M_r = 400.28$

Monoclinic, $P2_1/c$
a = 10.6066 (14) Å
b = 9.5667 (12) Å
c = 18.824 (2) Å
$\beta = 94.264 (7)^{\circ}$
V = 1904.8 (4) Å ³

Data collection

Rigaku Saturn724 CCD	23687 measured reflections
diffractometer	4523 independent reflections
Absorption correction: multi-scan	3630 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.045$
2002)	
$T_{\min} = 0.933, T_{\max} = 0.959$	

Z = 4

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.12 \ \mathrm{mm}$

 $\mu = 0.35 \text{ mm}^{-1}$

T = 113 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	253 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
4523 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

 $Cg1,\,Cg2$ and Cg3 are the centroids of the C20–C25, C14–C19 and N1/C1/C10–C13 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C6-H6\cdots Cg1^{i}$ $C22-H22\cdots Cg2^{ii}$ $C25-H25\cdots Cg3^{iii}$	0.95 0.95 0.95	2.98 2.94 2.63	3.8577 (19) 3.8204 (19) 3.4738 (17)	154 156 148

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x - 1, y, z; (iii) -x, -y + 2, -z + 2.

Data collection: *CrystalClear* (Rigaku/MSC, 2002); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful to the Special Presidential Foundation of Xuzhou Medical College (2010KJZ15) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5101).

References

- Cho, Y. J., Kwon, H. J., Kim, B. O., Kim, S. M. & Yoon, S. S. (2010). Eur. Patent No. 2182002.
- Liu, J., Leung, C.-H., Chow, A. L.-F., Sun, R. W.-Y., Yan, S.-C. & Che, C.-M. (2011). Chem. Commun. 47, 719–721.
- Pantoom, S., Vetter, I. R., Prinz, H. & Suginta, W. (2011). J. Biol. Chem. 286, 24312–24323.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, Y., Li, P. & Wang, L. (2010). J. Heterocycl. Chem. 48, 153-157.

supporting information

Acta Cryst. (2011). E67, o2850 [doi:10.1107/S1600536811040049]

2-(3,4-Dichlorophenyl)-4-phenylbenzo[h]quinoline

Nan Wu and Zhou Xu

S1. Comment

The benzo[*h*]quinoline derivatives and their complexes can be used as electronic material and organic electronic device (Cho *et al.*, 2010), potent family-18 chitinase inhibitors (Pantoom *et al.*, 2011), topoisomerase II*a* poisons (Liu *et al.*, 2011). Besides, They can also treat Alzheimer's disease. These properties arouse our interset in the relationship between their structures and activities. During the synthesis of benzo[*h*]quinoline derivatives, the title compound, (I) was isolated and its structure was determined by X-ray diffraction. Herein we shall report its crystal structure. The molecular structure of (I) is shown in Fig. 1. In the molecular structure, the benzo[*h*]quinoline exhibits a planar conformation with RMS of 0.0202Å and the largest deviation is 0.039 (1) Å. The 3,4-dichlorophenyl is almost coplanar with benzo[*h*]quinoline, since the dihedral angle between them is only 6.68 (7)°. The parent ring and the phenyl substituent at position 4 form a dihedral angle of 67.11 (4)°. In addition, there is a non-classical intramolecular hydrogen bond (C19—H19…N1). The crystal packing is stabilized by the intermolecular C—H… π interactions (Fig. 2, Table 1).

S2. Experimental

The title compound was synthesized according to the reported procedure (Zhang *et al.*, 2010). Under an air atmosphere, a 10 ml of sealable reaction tube equipped with a magnetic stir bar was charged with an 3,4-dichlorobenzaldehyde (1.00 mmol), naphthalen-1-amine (1.00 mmol), and the mixture was heated and stirred in an oil bath at 333 K for 1 h. Then FeCl₃ (16.2 mg, 0.10 mmol), ethynylbenzene (1.10 mmol) were added. The reaction mixture was then stirred in an oil bath at 393 K until the substrates were consumed completely (about 12 h), and then it was cooled to room temperature and the solvent was evaporated, the residue was purified by flash chromatography(hexane/AcOEt = 15:1) to afford the desired product. The single-crystal suitable for X-ray diffraction was obtained through the evaporation of ethanol solution.

S3. Refinement

All H atoms were placed in calculated positions, with C—H = 0.95 Å, and included in the final cycles of refinement using a riding model, with Uiso~(H) = 1.2U~eq~(parent atom).

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Cg1 is the centroid of the ring of C20/C21/C22/C23/C24/C25. Cg2 is the centroid of the ring of C14/C15/C16/C17/C18/C19. Cg3 is the centroid of the ring of N1/C1/C10/C11/C12/C13.

Figure 2

The packing diagram of (I).

2-(3,4-Dichlorophenyl)-4-phenylbenzo[h]quinoline

Crystal data

C₂₅H₁₅Cl₂N $M_r = 400.28$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 10.6066 (14) Å b = 9.5667 (12) Å c = 18.824 (2) Å $\beta = 94.264 (7)^{\circ}$ $V = 1904.8 (4) \text{ Å}^{3}$ Z = 4 F(000) = 824 $D_x = 1.396 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6694 reflections $\theta = 1.9-27.9^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 113 KPrism, colorless $0.20 \times 0.18 \times 0.12 \text{ mm}$ Data collection

Rigaku Saturn724 CCD diffractometer Radiation source: rotating anode Multilayer monochromator Detector resolution: 14.22 pixels mm ⁻¹ ω and φ scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku/MSC, 2002) $T_{\min} = 0.933$, $T_{\max} = 0.959$	23687 measured reflections 4523 independent reflections 3630 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 27.8^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -13 \rightarrow 13$ $k = -12 \rightarrow 12$ $l = -24 \rightarrow 24$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.110$ S = 1.07 4523 reflections 253 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0602P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.37$ e Å ⁻³ $\Delta\rho_{min} = -0.36$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.52078 (4)	0.42736 (4)	1.09062 (2)	0.03323 (13)	
Cl2	0.56082 (4)	0.57108 (5)	1.24136 (2)	0.03876 (14)	
N1	0.09940 (11)	0.64203 (12)	0.98050 (6)	0.0220 (3)	
C1	-0.00408 (13)	0.66067 (15)	0.93439 (8)	0.0217 (3)	
C2	-0.00284 (14)	0.59559 (15)	0.86472 (8)	0.0226 (3)	
C3	0.10040 (15)	0.51461 (17)	0.84545 (8)	0.0270 (4)	
H3	0.1729	0.5043	0.8778	0.032*	
C4	0.09621 (16)	0.45062 (16)	0.78003 (9)	0.0310 (4)	
H4	0.1656	0.3950	0.7678	0.037*	
C5	-0.00939 (16)	0.46621 (17)	0.73071 (9)	0.0318 (4)	
H5	-0.0110	0.4210	0.6857	0.038*	
C6	-0.11019 (16)	0.54695 (16)	0.74773 (9)	0.0292 (4)	
H6	-0.1807	0.5586	0.7141	0.035*	
C7	-0.10939 (14)	0.61255 (16)	0.81487 (8)	0.0239 (3)	
C8	-0.21411 (14)	0.69559 (16)	0.83422 (8)	0.0260 (3)	
H8	-0.2849	0.7073	0.8008	0.031*	

C9	-0.21506 (14)	0.75764 (15)	0.89867 (8)	0.0264 (3)
H9	-0.2853	0.8136	0.9092	0.032*
C10	-0.11070 (13)	0.73999 (15)	0.95172 (8)	0.0231 (3)
C11	-0.10774 (14)	0.79943 (15)	1.02076 (8)	0.0236 (3)
C12	-0.00148 (14)	0.78015 (16)	1.06638 (8)	0.0249 (3)
H12	0.0027	0.8206	1.1126	0.030*
C13	0.10125 (14)	0.70060 (15)	1.04485 (8)	0.0229 (3)
C14	0.21694 (14)	0.67568 (15)	1.09325 (8)	0.0231 (3)
C15	0.23628 (14)	0.73938 (16)	1.15973 (8)	0.0291 (4)
H15	0.1761	0.8048	1.1745	0.035*
C16	0.34251 (14)	0.70838 (17)	1.20477 (8)	0.0311 (4)
H16	0.3546	0.7529	1.2499	0.037*
C17	0.43053 (14)	0.61299 (17)	1.18414 (8)	0.0276 (4)
C18	0.41328 (14)	0.55001 (15)	1.11722 (8)	0.0250 (3)
C19	0.30761 (14)	0.58159 (15)	1.07252 (8)	0.0238 (3)
H19	0.2967	0.5385	1.0270	0.029*
C20	-0.21559 (14)	0.88347 (16)	1.04496 (8)	0.0245 (3)
C21	-0.33198 (14)	0.82296 (18)	1.05638 (9)	0.0328 (4)
H21	-0.3450	0.7260	1.0476	0.039*
C22	-0.42876 (16)	0.90333 (19)	1.08044 (9)	0.0361 (4)
H22	-0.5078	0.8614	1.0881	0.043*
C23	-0.41049 (16)	1.04477 (17)	1.09328 (9)	0.0335 (4)
H23	-0.4769	1.0996	1.1100	0.040*
C24	-0.29624 (16)	1.10611 (18)	1.08182 (9)	0.0330 (4)
H24	-0.2842	1.2034	1.0899	0.040*
C25	-0.19865 (15)	1.02549 (16)	1.05835 (8)	0.0274 (4)
H25	-0.1195	1.0678	1.0514	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0260 (2)	0.0342 (2)	0.0393 (3)	0.01057 (17)	0.00126 (18)	-0.00259 (18)
Cl2	0.0285 (2)	0.0490 (3)	0.0374 (3)	0.00308 (19)	-0.00704 (18)	-0.0028 (2)
N1	0.0228 (7)	0.0176 (6)	0.0260 (7)	0.0012 (5)	0.0046 (5)	0.0016 (5)
C1	0.0220 (8)	0.0166 (7)	0.0269 (8)	-0.0008 (6)	0.0039 (6)	0.0018 (6)
C2	0.0223 (8)	0.0188 (7)	0.0270 (8)	-0.0010 (6)	0.0047 (6)	0.0022 (6)
C3	0.0245 (8)	0.0254 (8)	0.0312 (9)	0.0021 (7)	0.0023 (7)	-0.0014 (7)
C4	0.0302 (9)	0.0294 (9)	0.0339 (9)	0.0042 (7)	0.0059 (7)	-0.0066 (7)
C5	0.0343 (9)	0.0322 (9)	0.0292 (9)	-0.0019 (8)	0.0046 (7)	-0.0052 (7)
C6	0.0278 (9)	0.0296 (9)	0.0298 (9)	-0.0028 (7)	-0.0002 (7)	0.0016 (7)
C7	0.0232 (8)	0.0202 (8)	0.0287 (8)	-0.0026 (6)	0.0038 (6)	0.0033 (6)
C8	0.0214 (8)	0.0260 (8)	0.0306 (8)	-0.0008 (6)	0.0006 (6)	0.0066 (7)
С9	0.0210 (7)	0.0234 (8)	0.0354 (9)	0.0028 (6)	0.0055 (7)	0.0040 (7)
C10	0.0205 (7)	0.0194 (7)	0.0298 (8)	0.0005 (6)	0.0055 (6)	0.0032 (6)
C11	0.0234 (8)	0.0184 (7)	0.0297 (8)	0.0003 (6)	0.0078 (6)	0.0038 (6)
C12	0.0281 (8)	0.0215 (8)	0.0259 (8)	0.0024 (6)	0.0072 (6)	0.0007 (6)
C13	0.0238 (8)	0.0173 (7)	0.0279 (8)	-0.0009 (6)	0.0051 (6)	0.0027 (6)
C14	0.0239 (8)	0.0188 (7)	0.0272 (8)	-0.0008 (6)	0.0054 (6)	0.0022 (6)

C15	0.0288 (9)	0.0267 (8)	0.0323 (9)	0.0042 (7)	0.0050 (7)	-0.0027 (7)	
C16	0.0329 (9)	0.0313 (9)	0.0291 (9)	-0.0019 (7)	0.0024 (7)	-0.0055 (7)	
C17	0.0235 (8)	0.0284 (9)	0.0302 (9)	-0.0026 (7)	-0.0022 (7)	0.0029 (7)	
C18	0.0228 (8)	0.0214 (8)	0.0314 (9)	0.0013 (6)	0.0060 (7)	0.0008 (7)	
C19	0.0256 (8)	0.0217 (8)	0.0242 (8)	0.0004 (6)	0.0030 (6)	0.0001 (6)	
C20	0.0246 (8)	0.0245 (8)	0.0249 (8)	0.0049 (6)	0.0052 (6)	0.0037 (6)	
C21	0.0291 (9)	0.0256 (9)	0.0447 (10)	-0.0001 (7)	0.0105 (8)	0.0016 (7)	
C22	0.0276 (9)	0.0366 (10)	0.0458 (11)	0.0022 (8)	0.0142 (8)	0.0046 (8)	
C23	0.0307 (9)	0.0345 (10)	0.0368 (10)	0.0113 (8)	0.0129 (7)	0.0052 (8)	
C24	0.0345 (9)	0.0256 (9)	0.0399 (10)	0.0085 (7)	0.0096 (8)	0.0018 (7)	
C25	0.0252 (8)	0.0253 (8)	0.0324 (9)	0.0021 (7)	0.0073 (7)	0.0036 (7)	

Geometric parameters (Å, °)

Cl1—C18	1.7356 (15)	C12—C13	1.413 (2)
Cl2—C17	1.7347 (16)	C12—H12	0.9500
N1-C13	1.3334 (18)	C13—C14	1.492 (2)
N1-C1	1.3595 (19)	C14—C15	1.393 (2)
C1-C10	1.420 (2)	C14—C19	1.394 (2)
C1—C2	1.453 (2)	C15—C16	1.391 (2)
C2—C3	1.411 (2)	C15—H15	0.9500
C2—C7	1.423 (2)	C16—C17	1.382 (2)
C3—C4	1.373 (2)	C16—H16	0.9500
С3—Н3	0.9500	C17—C18	1.396 (2)
C4—C5	1.409 (2)	C18—C19	1.384 (2)
C4—H4	0.9500	C19—H19	0.9500
C5—C6	1.376 (2)	C20—C25	1.391 (2)
С5—Н5	0.9500	C20—C21	1.395 (2)
С6—С7	1.411 (2)	C21—C22	1.385 (2)
С6—Н6	0.9500	C21—H21	0.9500
С7—С8	1.435 (2)	C22—C23	1.386 (2)
С8—С9	1.351 (2)	C22—H22	0.9500
С8—Н8	0.9500	C23—C24	1.378 (2)
C9—C10	1.444 (2)	С23—Н23	0.9500
С9—Н9	0.9500	C24—C25	1.389 (2)
C10—C11	1.417 (2)	C24—H24	0.9500
C11—C12	1.378 (2)	C25—H25	0.9500
C11—C20	1.497 (2)		
C13—N1—C1	118.79 (12)	N1-C13-C14	116.32 (13)
N1-C1-C10	122.84 (14)	C12—C13—C14	121.84 (14)
N1-C1-C2	117.34 (13)	C15—C14—C19	118.38 (14)
C10—C1—C2	119.82 (13)	C15—C14—C13	122.55 (14)
C3—C2—C7	119.10 (14)	C19—C14—C13	119.04 (14)
C3—C2—C1	121.79 (14)	C16—C15—C14	120.85 (14)
C7—C2—C1	119.10 (13)	C16—C15—H15	119.6
C4—C3—C2	120.10 (14)	C14—C15—H15	119.6
С4—С3—Н3	119.9	C17—C16—C15	120.21 (15)

С2—С3—Н3	119.9	C17—C16—H16	119.9
C3—C4—C5	121.00 (15)	C15—C16—H16	119.9
C3—C4—H4	119.5	C16—C17—C18	119.52 (14)
C5—C4—H4	119.5	C16—C17—Cl2	120.12 (12)
C6—C5—C4	119.97 (15)	C18—C17—Cl2	120.36 (12)
С6—С5—Н5	120.0	C19—C18—C17	120.01 (14)
C4—C5—H5	120.0	C19-C18-C11	11947(12)
C_{5} C_{6} C_{7}	120.35(15)	C17 - C18 - C11	120.48(12)
$C_5 C_6 H_6$	110.8	C_{18} C_{19} C_{14}	120.10(12) 121.01(14)
C7 C6 H6	110.8	C_{18} C_{19} H_{10}	121.01 (14)
C = C = C = C	119.0	$C_{10} = C_{10} = H_{10}$	119.5
$C_0 - C_7 - C_2$	119.43(14)		119.3
	121.38 (14)		118.78 (14)
C2—C7—C8	119.18 (14)	C25—C20—C11	119.24 (14)
C9—C8—C7	121.92 (14)	C21—C20—C11	121.95 (14)
С9—С8—Н8	119.0	C22—C21—C20	120.39 (16)
С7—С8—Н8	119.0	C22—C21—H21	119.8
C8—C9—C10	120.86 (14)	C20—C21—H21	119.8
С8—С9—Н9	119.6	C21—C22—C23	120.11 (16)
С10—С9—Н9	119.6	С21—С22—Н22	119.9
C11—C10—C1	117.49 (13)	C23—C22—H22	119.9
C11—C10—C9	123.43 (13)	C24—C23—C22	120.12 (15)
C1—C10—C9	119.08 (14)	С24—С23—Н23	119.9
C12—C11—C10	118.65 (13)	С22—С23—Н23	119.9
C_{12} C_{11} C_{20}	119 37 (14)	C^{23} C^{24} C^{25}	119.88 (16)
C10-C11-C20	121.98 (13)	C_{23} C_{24} H_{24}	120.1
C_{11} C_{12} C_{13}	121.90(15) 120.30(14)	$C_{25} C_{24} H_{24}$	120.1
$C_{11} = C_{12} = C_{13}$	110.8	$C_{23} = C_{24} = 1124$	120.1 120.71(15)
$C_{12} = C_{12} = U_{12}$	119.0	$C_{24} = C_{25} = C_{20}$	120.71 (13)
С13—С12—П12 N1—С12—С12	119.0	С24—С25—Н25	119.0
NI-CI3-CI2	121.85 (15)	С20—С23—Н23	119.0
			170 (1 (12)
C13 - N1 - C1 - C10	0.0 (2)	CI - NI - CI - CI - CI - CI - CI - CI -	179.61 (12)
C13—N1—C1—C2	1/9.91 (13)	C11—C12—C13—N1	0.0 (2)
N1—C1—C2—C3	0.8 (2)	C11—C12—C13—C14	-179.01 (13)
C10—C1—C2—C3	-179.29 (14)	N1—C13—C14—C15	174.74 (13)
N1—C1—C2—C7	179.98 (13)	C12—C13—C14—C15	-6.2 (2)
C10—C1—C2—C7	-0.1 (2)	N1—C13—C14—C19	-7.5 (2)
C7—C2—C3—C4	-1.5 (2)	C12-C13-C14-C19	171.63 (14)
C1—C2—C3—C4	177.67 (14)	C19—C14—C15—C16	-0.9 (2)
C2—C3—C4—C5	1.1 (2)	C13—C14—C15—C16	176.90 (14)
C3—C4—C5—C6	0.2 (2)	C14—C15—C16—C17	-0.3 (2)
C4—C5—C6—C7	-1.0(2)	C15—C16—C17—C18	1.2 (2)
C5—C6—C7—C2	0.6 (2)	C15—C16—C17—Cl2	-178.31(13)
C_{5} C_{6} C_{7} C_{8}	-17910(15)	$C_{16} - C_{17} - C_{18} - C_{19}$	-1.0(2)
C_{3} C_{2} C_{7} C_{6}	0.7(2)	C_{12} C_{17} C_{18} C_{19}	1.0(2) 178 52 (11)
$C_1 - C_2 - C_7 - C_6$	-178 51 (13)	$C_{12} = C_{17} = C_{18} = C_{17}$	-17877(12)
$C_1 = C_2 = C_1 = C_0$	-170.51(13)	$C_{10} = C_{17} = C_{10} = C_{11}$	170.77(12)
$C_{1} = C_{2} = C_{1} = C_{0}$	1/7.01(14)	$C_{12} - C_{13} - C_{10} - C_{11}$	-0.2(2)
$C_1 - C_2 - C_1 - C_3$	1.2(2)	$C_{11} = C_{10} = C_{10} = C_{14}$	=0.2(2)
0-0/-08-09	1/9.24 (15)	UII—UI8—UI9—UI4	1//.60(12)

C2—C7—C8—C9	-0.4(2)	C15—C14—C19—C18	1.1 (2)
N1-C1-C10-C11	-1.4(2) -1.0(2)	C12—C11—C20—C25	-176.76 (13) 65.91 (19)
C2-C1-C10-C11	179.08 (13)	C10—C11—C20—C25	-113.34 (17)
N1—C1—C10—C9	178.24 (13)	C12—C11—C20—C21	-112.36 (17)
C2-C1-C10-C9	-1.7 (2)	C10-C11-C20-C21	68.4 (2)
C8—C9—C10—C11	-178.35 (14)	C25—C20—C21—C22	0.2 (2)
C8—C9—C10—C1	2.5 (2)	C11—C20—C21—C22	178.44 (15)
C1-C10-C11-C12	1.5 (2)	C20—C21—C22—C23	0.1 (3)
C9—C10—C11—C12	-177.71 (14)	C21—C22—C23—C24	0.3 (3)
C1—C10—C11—C20	-179.25 (13)	C22—C23—C24—C25	-0.9 (3)
C9—C10—C11—C20	1.5 (2)	C23—C24—C25—C20	1.2 (2)
C10—C11—C12—C13	-1.1 (2)	C21—C20—C25—C24	-0.8 (2)
C20—C11—C12—C13	179.67 (13)	C11—C20—C25—C24	-17/9.11 (14)
C1—N1—C13—C12	0.5 (2)		

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C20-C25, C14-C19 and N1/C1/C10-C13 rings, respectively.

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
C6—H6···Cg1 ⁱ	0.95	2.98	3.8577 (19)	154
C22—H22··· $Cg2^{ii}$	0.95	2.94	3.8204 (19)	156
C25—H25…Cg3 ⁱⁱⁱ	0.95	2.63	3.4738 (17)	148
C19—H19…N1	0.95	2.42	2.765 (2)	101

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*+2, -*z*+2.