

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### 4-(4-Methylpiperazin-1-yl)-3-(5-phenyl-1,3,4-oxadiazol-2-yl)-7-(trifluoromethyl)quinoline

#### Hoong-Kun Fun,<sup>a</sup>\* + Suhana Arshad,<sup>a</sup> B. Garudachari,<sup>b</sup> Arun M. Isloor<sup>b</sup> and M. N. Satyanarayan<sup>c</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, <sup>b</sup>Organic Electronics Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and <sup>c</sup>Department of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India

Correspondence e-mail: hkfun@usm.my

Received 19 October 2011; accepted 25 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.061; wR factor = 0.231; data-to-parameter ratio = 16.7.

In the title compound,  $C_{23}H_{20}F_3N_5O$ , the piperazine ring adopts a chair conformation. The quinoline ring makes dihedral angles of 56.61 (11), 49.94 (12) and 42.58 (14)° with the piperazine ring, the 1,3,4-oxadiazole ring and the benzene ring, respectively. An intramolecular C-H···O hydrogen bond generates an S(7) ring motif. In the crystal, molecules are linked into infinite chains along the b axis by  $C-H\cdots N$ hydrogen bonds.

#### **Related literature**

For background to the properties and uses of quinoline derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bondlength data, see: Allen et al. (1987).

#### ‡ Thomson Reuters ResearcherID: A-3561-2009.

mm

13724 measured reflections

 $R_{\rm int}=0.040$ 

4831 independent reflections

2890 reflections with  $I > 2\sigma(I)$ 

#### **Experimental**

#### Crystal data

β

| $C_{23}H_{20}F_{3}N_{5}O$        | $\gamma = 109.034 \ (4)^{\circ}$ |
|----------------------------------|----------------------------------|
| $M_r = 439.44$                   | V = 1060.0 (4) Å <sup>3</sup>    |
| Triclinic, P1                    | Z = 2                            |
| a = 8.5065 (15)  Å               | Mo $K\alpha$ radiation           |
| b = 10.2176 (17)  Å              | $\mu = 0.11 \text{ mm}^{-1}$     |
| c = 13.709 (3)  Å                | $T = 296 { m K}$                 |
| $\alpha = 103.840 \ (5)^{\circ}$ | $0.44 \times 0.20 \times 0.13$   |
| $\beta = 98.515 \ (5)^{\circ}$   |                                  |

#### Data collection

Bruker SMART APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2009)  $T_{\min} = 0.954, T_{\max} = 0.987$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.061$ | 290 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.231$               | H-atom parameters constrained                              |
| S = 1.04                        | $\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$  |
| 4831 reflections                | $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| C21-H21A···O1               | 0.97 | 2.38                    | 3.018 (3)    | 123                                  |
| $C4-H4A\cdots N4^{i}$       | 0.93 | 2.56                    | 3.426 (4)    | 155                                  |

Symmetry code: (i) x, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award. GB thanks the Department of Information Technology, New Delhi, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6464).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.

- Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383.

Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). *Eur. J. Med. Chem.* **44**, 4244–4248.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

## supporting information

Acta Cryst. (2011). E67, o3117-o3118 [doi:10.1107/S1600536811044370]

# 4-(4-Methylpiperazin-1-yl)-3-(5-phenyl-1,3,4-oxadiazol-2-yl)-7-(trifluoro-methyl)quinoline

#### Hoong-Kun Fun, Suhana Arshad, B. Garudachari, Arun M. Isloor and M. N. Satyanarayan

#### S1. Comment

The quinoline moiety is of great importance to chemists as well as biologists since it is one of the key building blocks for many naturally occurring compounds. Members of this family have wide range of applications in pharmaceuticals as antimalarial (Kaur *et al.*, 2010), anti-tuberculosis (Eswaran *et al.*, 2010), antitumor (Chou *et al.*, 2010), anticancer (Chen *et al.*, 2004) and antiviral (Shingalapur *et al.*, 2009) agents. Some of the present day drugs such as chloroquine, mefloquine, tafenoquine and primaquine carry the quinoline moiety as the basic unit in their structures. Keeping in view of these biological importance, we have synthesized the title compound to study its crystal structure.

The molecular structure is shown in Fig. 1. The piperazine ring adopts a chair conformation with puckering parameters Q= 0.586 (3) Å,  $\Theta$ = 4.2 (3)° and  $\varphi$ = 259 (4)° (Cremer & Pople, 1975). The quinoline (N1/C1–C9) ring makes dihedral angles of 56.61 (11), 49.94 (12) and 42.58 (14)° with the piperazine ring (N2/N3/C19–C22), 1,3,4-oxadiazole ring (O1/N4/N5/C10/C11) and benzene ring (C12–C17), respectively. An intramolecular C21–H21A···O1 hydrogen bond (Table 1) stabilized the molecular structure and forms an *S*(7) ring motif (Bernstein *et al.*, 1995). Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the molecules are linked into infinite one-dimensional chains along the *b*-axis by intermolecular C4—H4A…N4 hydrogen bonds (Table 1).

#### **S2. Experimental**

The mixture of 4-chloro-3-(5-phenyl-1,3,4-oxadiazol-2-yl)-7-(trifluoromethyl) quinoline (0.10 g, 0.00026 mol), potassium carbonate (0.040 g, 0.00029 mol) and 1-methylpiperazine (0.028 g, 0.00028 mol) in dimethylformamide (5 ml) was stirred at 90 °C for 5 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized using ethanol to yield colouress blocks. Yield: 0.09 g; 77.58%. *M.p.*: 425–426 K.

#### **S3. Refinement**

All H atoms were positioned geometrically [C–H = 0.93, 0.96 or 0.97 Å] and refined using a riding model with  $U_{iso}(H) = 1.2$  or 1.5  $U_{eq}(C)$ . A rotating group model was applied to the methyl group.



#### Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates the intramolecular bond.



#### Figure 2

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding have been omitted for the sake of clarity.

#### 4-(4-Methylpiperazin-1-yl)-3-(5-phenyl-1,3,4-oxadiazol-2-yl)-7-(trifluoromethyl)quinoline

| Crystal data                     |                                                       |
|----------------------------------|-------------------------------------------------------|
| $C_{23}H_{20}F_3N_5O$            | $\gamma = 109.034 \ (4)^{\circ}$                      |
| $M_r = 439.44$                   | V = 1060.0 (4) Å <sup>3</sup>                         |
| Triclinic, $P\overline{1}$       | Z = 2                                                 |
| Hall symbol: -P 1                | F(000) = 456                                          |
| a = 8.5065 (15)  Å               | $D_{\rm x} = 1.377 {\rm ~Mg} {\rm ~m}^{-3}$           |
| b = 10.2176 (17)  Å              | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| c = 13.709 (3)  Å                | Cell parameters from 4219 reflections                 |
| $\alpha = 103.840 \ (5)^{\circ}$ | $\theta = 2.3 - 26.9^{\circ}$                         |
| $\beta = 98.515 \ (5)^{\circ}$   | $\mu = 0.11 \mathrm{~mm^{-1}}$                        |

#### T = 296 KBlock, colourless

Data collection

| Bruker SMART APEXII DUO CCD<br>diffractometer | 13724 measured reflections<br>4831 independent reflections         |
|-----------------------------------------------|--------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube      | 2890 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator                        | $R_{\rm int} = 0.040$                                              |
| $\varphi$ and $\omega$ scans                  | $\theta_{\rm max} = 27.5^{\circ},  \theta_{\rm min} = 1.6^{\circ}$ |
| Absorption correction: multi-scan             | $h = -11 \rightarrow 11$                                           |
| (SADABS; Bruker, 2009)                        | $k = -13 \rightarrow 12$                                           |
| $T_{\min} = 0.954, \ T_{\max} = 0.987$        | $l = -17 \rightarrow 17$                                           |
| Refinement                                    |                                                                    |
| Refinement on $F^2$                           | Secondary atom site location: difference Fourier                   |
| Least-squares matrix: full                    | map                                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.061$               | Hydrogen site location: inferred from                              |

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.1328P)^2 + 0.121P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.37$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.28$  e Å<sup>-3</sup>

 $0.44 \times 0.20 \times 0.13 \text{ mm}$ 

#### Special details

direct methods

 $wR(F^2) = 0.231$ 

4831 reflections

290 parameters 0 restraints

Primary atom site location: structure-invariant

S = 1.04

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x          | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|--------------|---------------|-----------------------------|--|
| F1  | 0.5226 (3) | -0.6774 (2)  | -0.27438 (12) | 0.0963 (6)                  |  |
| F2  | 0.5484 (3) | -0.7593 (2)  | -0.14756 (14) | 0.1015 (6)                  |  |
| F3  | 0.7645 (3) | -0.6755 (2)  | -0.20656 (17) | 0.1229 (9)                  |  |
| 01  | 0.7623 (2) | 0.17853 (16) | 0.22070 (11)  | 0.0530 (4)                  |  |
| N1  | 0.6121 (3) | -0.1679 (2)  | -0.10374 (15) | 0.0627 (6)                  |  |
| N2  | 0.9415 (2) | -0.0424 (2)  | 0.19566 (13)  | 0.0506 (5)                  |  |
| N3  | 1.1662 (3) | 0.0381 (2)   | 0.39233 (14)  | 0.0602 (5)                  |  |
| N4  | 0.8354 (3) | 0.2779 (3)   | 0.10041 (17)  | 0.0738 (7)                  |  |
| N5  | 0.8316 (3) | 0.3860 (2)   | 0.18536 (18)  | 0.0745 (7)                  |  |
| C1  | 0.8270 (3) | -0.0818 (3)  | 0.09901 (16)  | 0.0487 (5)                  |  |
| C2  | 0.7750 (3) | -0.2268 (3)  | 0.03114 (15)  | 0.0493 (5)                  |  |
| C3  | 0.8327 (3) | -0.3329 (3)  | 0.05590 (17)  | 0.0580 (6)                  |  |
| H3A | 0.9059     | -0.3092      | 0.1204        | 0.070*                      |  |
| C4  | 0.7844 (3) | -0.4679 (3)  | -0.01160 (18) | 0.0606 (6)                  |  |
|     |            |              |               |                             |  |

| H4A  | 0.8240     | -0.5357     | 0.0066        | 0.073*      |
|------|------------|-------------|---------------|-------------|
| C5   | 0.6736 (3) | -0.5050 (3) | -0.10978 (17) | 0.0555 (6)  |
| C6   | 0.6166 (3) | -0.4057 (3) | -0.13745 (17) | 0.0585 (6)  |
| H6A  | 0.5446     | -0.4314     | -0.2027       | 0.070*      |
| C7   | 0.6652 (3) | -0.2655 (3) | -0.06883 (16) | 0.0534 (6)  |
| C8   | 0.6647 (3) | -0.0358 (3) | -0.04098 (17) | 0.0611 (6)  |
| H8A  | 0.6318     | 0.0313      | -0.0652       | 0.073*      |
| C9   | 0.7691 (3) | 0.0135 (3)  | 0.06230 (16)  | 0.0538 (6)  |
| C10  | 0.7947 (3) | 0.1592 (3)  | 0.12490 (17)  | 0.0563 (6)  |
| C11  | 0.7883 (3) | 0.3219 (3)  | 0.25302 (18)  | 0.0557 (6)  |
| C12  | 0.7691 (3) | 0.3857 (3)  | 0.35531 (18)  | 0.0545 (6)  |
| C13  | 0.7751 (4) | 0.5264 (3)  | 0.3839 (2)    | 0.0778 (8)  |
| H13A | 0.7875     | 0.5794      | 0.3371        | 0.093*      |
| C14  | 0.7628 (5) | 0.5883 (4)  | 0.4819 (3)    | 0.0946 (10) |
| H14A | 0.7675     | 0.6835      | 0.5011        | 0.113*      |
| C15  | 0.7436 (4) | 0.5113 (3)  | 0.5516 (2)    | 0.0852 (9)  |
| H15A | 0.7351     | 0.5539      | 0.6176        | 0.102*      |
| C16  | 0.7371 (5) | 0.3730 (4)  | 0.5239 (2)    | 0.0907 (10) |
| H16A | 0.7241     | 0.3206      | 0.5710        | 0.109*      |
| C17  | 0.7497 (5) | 0.3091 (3)  | 0.4258 (2)    | 0.0798 (8)  |
| H17A | 0.7449     | 0.2139      | 0.4074        | 0.096*      |
| C18  | 0.6293 (4) | -0.6518 (3) | -0.1835 (2)   | 0.0661 (7)  |
| C19  | 1.0295 (3) | -0.1042 (3) | 0.35015 (17)  | 0.0603 (6)  |
| H19A | 0.9899     | -0.1365     | 0.4063        | 0.072*      |
| H19B | 1.0730     | -0.1733     | 0.3137        | 0.072*      |
| C20  | 0.8802 (3) | -0.1007 (3) | 0.27605 (16)  | 0.0568 (6)  |
| H20A | 0.7941     | -0.1983     | 0.2446        | 0.068*      |
| H20B | 0.8279     | -0.0404     | 0.3138        | 0.068*      |
| C21  | 1.0767 (3) | 0.1013 (3)  | 0.23898 (18)  | 0.0585 (6)  |
| H21A | 1.0344     | 0.1686      | 0.2788        | 0.070*      |
| H21B | 1.1149     | 0.1372      | 0.1838        | 0.070*      |
| C22  | 1.2244 (3) | 0.0892 (3)  | 0.30838 (18)  | 0.0599 (6)  |
| H22A | 1.2661     | 0.0216      | 0.2682        | 0.072*      |
| H22B | 1.3180     | 0.1834      | 0.3369        | 0.072*      |
| C23  | 1.3087 (4) | 0.0320 (4)  | 0.4630 (2)    | 0.0857 (9)  |
| H23A | 1.2690     | 0.0001      | 0.5184        | 0.129*      |
| H23B | 1.3982     | 0.1269      | 0.4909        | 0.129*      |
| H23C | 1.3524     | -0.0351     | 0.4258        | 0.129*      |
| . –  |            |             | -             | -           |

Atomic displacement parameters  $(\AA^2)$ 

| $U^{11}$    | $U^{22}$                                                                                                                                  | $U^{33}$                                                                                                                                                                                  | $U^{12}$                                                                                                                                                                                                                                                                            | $U^{13}$                                                                                                                                                                                                                                                                                                | $U^{23}$                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1233 (15) | 0.0904 (13)                                                                                                                               | 0.0601 (9)                                                                                                                                                                                | 0.0372 (11)                                                                                                                                                                                                                                                                         | 0.0038 (9)                                                                                                                                                                                                                                                                                              | 0.0121 (9)                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1358 (17) | 0.0692 (11)                                                                                                                               | 0.0916 (12)                                                                                                                                                                               | 0.0266 (10)                                                                                                                                                                                                                                                                         | 0.0267 (11)                                                                                                                                                                                                                                                                                             | 0.0283 (9)                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0936 (14) | 0.1201 (17)                                                                                                                               | 0.1324 (17)                                                                                                                                                                               | 0.0514 (12)                                                                                                                                                                                                                                                                         | 0.0326 (12)                                                                                                                                                                                                                                                                                             | -0.0196 (13)                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0703 (10) | 0.0585 (10)                                                                                                                               | 0.0514 (8)                                                                                                                                                                                | 0.0397 (8)                                                                                                                                                                                                                                                                          | 0.0224 (7)                                                                                                                                                                                                                                                                                              | 0.0284 (7)                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0840 (14) | 0.0819 (15)                                                                                                                               | 0.0464 (10)                                                                                                                                                                               | 0.0542 (12)                                                                                                                                                                                                                                                                         | 0.0177 (9)                                                                                                                                                                                                                                                                                              | 0.0291 (10)                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0607 (11) | 0.0572 (11)                                                                                                                               | 0.0437 (9)                                                                                                                                                                                | 0.0274 (9)                                                                                                                                                                                                                                                                          | 0.0124 (8)                                                                                                                                                                                                                                                                                              | 0.0261 (8)                                                                                                                                                                                                                                                                                                                                                                     |
|             | J <sup>11</sup> 0.1233 (15)           0.1358 (17)           0.0936 (14)           0.0703 (10)           0.0840 (14)           0.0607 (11) | $J^{11}$ $U^{22}$ $0.1233 (15)$ $0.0904 (13)$ $0.1358 (17)$ $0.0692 (11)$ $0.0936 (14)$ $0.1201 (17)$ $0.0703 (10)$ $0.0585 (10)$ $0.0840 (14)$ $0.0819 (15)$ $0.0607 (11)$ $0.0572 (11)$ | $J^{11}$ $U^{22}$ $U^{33}$ $0.1233 (15)$ $0.0904 (13)$ $0.0601 (9)$ $0.1358 (17)$ $0.0692 (11)$ $0.0916 (12)$ $0.0936 (14)$ $0.1201 (17)$ $0.1324 (17)$ $0.0703 (10)$ $0.0585 (10)$ $0.0514 (8)$ $0.0840 (14)$ $0.0819 (15)$ $0.0464 (10)$ $0.0607 (11)$ $0.0572 (11)$ $0.0437 (9)$ | $J^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ 0.1233 (15)0.0904 (13)0.0601 (9)0.0372 (11)0.1358 (17)0.0692 (11)0.0916 (12)0.0266 (10)0.0936 (14)0.1201 (17)0.1324 (17)0.0514 (12)0.0703 (10)0.0585 (10)0.0514 (8)0.0397 (8)0.0840 (14)0.0819 (15)0.0464 (10)0.0542 (12)0.0607 (11)0.0572 (11)0.0437 (9)0.0274 (9) | $J^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ $U^{13}$ 0.1233 (15)0.0904 (13)0.0601 (9)0.0372 (11)0.0038 (9)0.1358 (17)0.0692 (11)0.0916 (12)0.0266 (10)0.0267 (11)0.0936 (14)0.1201 (17)0.1324 (17)0.0514 (12)0.0326 (12)0.0703 (10)0.0585 (10)0.0514 (8)0.0397 (8)0.0224 (7)0.0840 (14)0.0819 (15)0.0464 (10)0.0542 (12)0.0177 (9)0.0607 (11)0.0572 (11)0.0437 (9)0.0274 (9)0.0124 (8) |

| N3  | 0.0700 (12) | 0.0684 (13) | 0.0479 (10) | 0.0342 (11) | 0.0073 (9)   | 0.0208 (9)  |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| N4  | 0.1127 (19) | 0.0686 (14) | 0.0645 (13) | 0.0471 (13) | 0.0351 (12)  | 0.0373 (11) |
| N5  | 0.1079 (18) | 0.0646 (14) | 0.0703 (13) | 0.0425 (13) | 0.0323 (12)  | 0.0344 (12) |
| C1  | 0.0581 (12) | 0.0623 (13) | 0.0425 (10) | 0.0336 (10) | 0.0192 (9)   | 0.0266 (10) |
| C2  | 0.0592 (12) | 0.0613 (14) | 0.0431 (10) | 0.0338 (11) | 0.0173 (9)   | 0.0254 (10) |
| C3  | 0.0731 (15) | 0.0656 (15) | 0.0484 (11) | 0.0387 (12) | 0.0117 (10)  | 0.0252 (11) |
| C4  | 0.0770 (16) | 0.0645 (15) | 0.0567 (13) | 0.0402 (13) | 0.0194 (11)  | 0.0269 (12) |
| C5  | 0.0629 (13) | 0.0649 (15) | 0.0481 (11) | 0.0301 (11) | 0.0199 (10)  | 0.0217 (11) |
| C6  | 0.0650 (14) | 0.0768 (17) | 0.0448 (11) | 0.0372 (12) | 0.0144 (10)  | 0.0230 (11) |
| C7  | 0.0607 (13) | 0.0724 (16) | 0.0445 (11) | 0.0381 (12) | 0.0190 (9)   | 0.0267 (11) |
| C8  | 0.0831 (16) | 0.0787 (18) | 0.0496 (12) | 0.0528 (14) | 0.0231 (11)  | 0.0343 (12) |
| C9  | 0.0706 (14) | 0.0669 (15) | 0.0485 (11) | 0.0436 (12) | 0.0246 (10)  | 0.0305 (11) |
| C10 | 0.0721 (14) | 0.0682 (15) | 0.0508 (12) | 0.0422 (12) | 0.0233 (10)  | 0.0308 (11) |
| C11 | 0.0660 (13) | 0.0553 (14) | 0.0595 (13) | 0.0337 (11) | 0.0161 (10)  | 0.0263 (11) |
| C12 | 0.0576 (12) | 0.0557 (13) | 0.0597 (13) | 0.0303 (11) | 0.0139 (10)  | 0.0221 (11) |
| C13 | 0.104 (2)   | 0.0628 (17) | 0.0746 (17) | 0.0387 (15) | 0.0225 (15)  | 0.0236 (14) |
| C14 | 0.133 (3)   | 0.0618 (18) | 0.083 (2)   | 0.0410 (19) | 0.0281 (19)  | 0.0046 (16) |
| C15 | 0.099 (2)   | 0.074 (2)   | 0.0714 (18) | 0.0261 (16) | 0.0282 (16)  | 0.0061 (15) |
| C16 | 0.138 (3)   | 0.080 (2)   | 0.0680 (17) | 0.046 (2)   | 0.0438 (18)  | 0.0297 (15) |
| C17 | 0.123 (3)   | 0.0650 (18) | 0.0700 (17) | 0.0477 (17) | 0.0387 (16)  | 0.0282 (14) |
| C18 | 0.0738 (16) | 0.0691 (17) | 0.0597 (14) | 0.0324 (13) | 0.0179 (12)  | 0.0188 (12) |
| C19 | 0.0815 (16) | 0.0666 (16) | 0.0456 (11) | 0.0380 (13) | 0.0145 (11)  | 0.0265 (11) |
| C20 | 0.0658 (14) | 0.0656 (15) | 0.0458 (11) | 0.0251 (11) | 0.0158 (10)  | 0.0273 (11) |
| C21 | 0.0611 (13) | 0.0645 (15) | 0.0606 (13) | 0.0285 (11) | 0.0154 (11)  | 0.0313 (12) |
| C22 | 0.0593 (13) | 0.0658 (15) | 0.0627 (14) | 0.0310 (12) | 0.0140 (11)  | 0.0242 (12) |
| C23 | 0.088 (2)   | 0.099 (2)   | 0.0671 (16) | 0.0432 (17) | -0.0064 (14) | 0.0253 (16) |
|     |             |             |             |             |              |             |

#### Geometric parameters (Å, °)

| F1-C18 | 1.342 (3) | C8—C9    | 1.429 (3) |
|--------|-----------|----------|-----------|
| F2—C18 | 1.338 (3) | C8—H8A   | 0.9300    |
| F3—C18 | 1.316 (3) | C9—C10   | 1.457 (3) |
| 01—C11 | 1.356 (3) | C11—C12  | 1.456 (3) |
| O1—C10 | 1.363 (3) | C12—C13  | 1.378 (4) |
| N1—C8  | 1.303 (3) | C12—C17  | 1.379 (4) |
| N1—C7  | 1.374 (3) | C13—C14  | 1.376 (4) |
| N2—C1  | 1.404 (3) | C13—H13A | 0.9300    |
| N2-C21 | 1.452 (3) | C14—C15  | 1.372 (4) |
| N2-C20 | 1.457 (3) | C14—H14A | 0.9300    |
| N3—C19 | 1.448 (3) | C15—C16  | 1.353 (5) |
| N3—C22 | 1.459 (3) | C15—H15A | 0.9300    |
| N3—C23 | 1.464 (3) | C16—C17  | 1.383 (4) |
| N4—C10 | 1.288 (3) | C16—H16A | 0.9300    |
| N4—N5  | 1.413 (3) | C17—H17A | 0.9300    |
| N5-C11 | 1.288 (3) | C19—C20  | 1.520 (3) |
| С1—С9  | 1.385 (3) | C19—H19A | 0.9700    |
| C1—C2  | 1.430 (3) | C19—H19B | 0.9700    |
| C2—C3  | 1.416 (3) | C20—H20A | 0.9700    |
|        |           |          |           |

| C2—C7                                                         | 1.424 (3)            | C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9700      |
|---------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| C3—C4                                                         | 1.355 (3)            | C21—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.518 (3)   |
| С3—НЗА                                                        | 0.9300               | C21—H21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9700      |
| C4—C5                                                         | 1.411 (3)            | C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9700      |
| C4—H4A                                                        | 0.9300               | C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9700      |
| C5—C6                                                         | 1.363 (3)            | C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9700      |
| C5—C18                                                        | 1.486 (4)            | C23—H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600      |
| C6—C7                                                         | 1.401 (4)            | С23—Н23В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600      |
| С6—Н6А                                                        | 0.9300               | С23—Н23С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600      |
| 011 01 010                                                    | 102 10 (17)          | C15 C14 C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120 7 (2)   |
| CII = OI = CI0                                                | 103.18 (17)          | C15 - C14 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.7 (3)   |
|                                                               | 117.4 (2)            | C15—C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.6       |
| C1—N2—C21                                                     | 120.91 (17)          | C13—C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.6       |
| C1—N2—C20                                                     | 119.14 (18)          | C16—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7 (3)   |
| C21—N2—C20                                                    | 111.94 (17)          | С16—С15—Н15А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.2       |
| C19—N3—C22                                                    | 109.93 (18)          | C14—C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.2       |
| C19—N3—C23                                                    | 110.1 (2)            | C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.4 (3)   |
| C22—N3—C23                                                    | 110.4 (2)            | C15—C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.8       |
| C10—N4—N5                                                     | 106.5 (2)            | C17—C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.8       |
| C11—N5—N4                                                     | 105.9 (2)            | C12—C17—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3 (3)   |
| C9—C1—N2                                                      | 124.0 (2)            | C12—C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.8       |
| C9—C1—C2                                                      | 117.54 (19)          | C16—C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.8       |
| N2—C1—C2                                                      | 118.30 (19)          | F3—C18—F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106.3 (3)   |
| C3—C2—C7                                                      | 117.7 (2)            | F3—C18—F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105.9 (2)   |
| C3—C2—C1                                                      | 123.64 (19)          | F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.3 (2)   |
| C7—C2—C1                                                      | 118.6 (2)            | F3—C18—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.0 (2)   |
| C4—C3—C2                                                      | 122.0 (2)            | F2—C18—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.9 (2)   |
| С4—С3—НЗА                                                     | 119.0                | F1—C18—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.7 (2)   |
| С2—С3—НЗА                                                     | 119.0                | N3—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.1 (2)   |
| C3—C4—C5                                                      | 119.5 (2)            | N3—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.4       |
| C3—C4—H4A                                                     | 120.3                | С20—С19—Н19А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.4       |
| C5—C4—H4A                                                     | 120.3                | N3—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.4       |
| C6—C5—C4                                                      | 120.6 (2)            | С20—С19—Н19В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.4       |
| C6—C5—C18                                                     | 121.3 (2)            | H19A—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.0       |
| C4—C5—C18                                                     | 118.0 (2)            | N2-C20-C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.67 (19) |
| C5—C6—C7                                                      | 120.8 (2)            | N2-C20-H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.7       |
| C5—C6—H6A                                                     | 119.6                | C19—C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.7       |
| C7—C6—H6A                                                     | 119.6                | $N_2 - C_2 - H_2 OB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.7       |
| N1-C7-C6                                                      | 117.0<br>117.9(2)    | C19 - C20 - H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.7       |
| N1 - C7 - C2                                                  | 122 6 (2)            | $H_{20}^{-}$ $H_{$ | 109.7       |
| C6 C7 C2                                                      | 122.0(2)<br>1104(2)  | $N_2 C_{21} C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.10 (19) |
| $C_0 - C_7 - C_2$                                             | 119.4(2)<br>124.8(2) | $N_2 = C_{21} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.1       |
| N1 C8 H8A                                                     | 124.8 (2)            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.1       |
|                                                               | 117.0                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.1       |
| $C_{7}$ $C_{0}$ $C_{0}$ $C_{0}$                               | 11/.0                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.1       |
| $C_1 = C_2 = C_1 C_2$                                         | 119.0(2)             | $U_{22} = U_{21} = \Pi_{21} B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.1       |
| $C_1 = C_2 = C_1 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$ | 124.4(2)             | $H_{1}^{2}H_{-}^{2}U_{1}^{-}H_{1}^{2}H_{1}^{2}H_{1}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H_{2}^{2}H$ | 108.4       |
|                                                               | 110.4 (2)            | $N_{2} = C_{22} = U_{22} + U_$ | 109.5 (2)   |
| N4—C10—O1                                                     | 111.9 (2)            | N3—C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.8       |

|                                  | 100 0 (0)             |                                       | 100.0      |
|----------------------------------|-----------------------|---------------------------------------|------------|
| N4—C10—C9                        | 128.8 (2)             | C21—C22—H22A                          | 109.8      |
| O1—C10—C9                        | 119.1 (2)             | N3—C22—H22B                           | 109.8      |
| N5-C11-O1                        | 112.5 (2)             | C21—C22—H22B                          | 109.8      |
| N5-C11-C12                       | 127.8 (2)             | H22A—C22—H22B                         | 108.2      |
| O1—C11—C12                       | 119.6 (2)             | N3—C23—H23A                           | 109.5      |
| C13—C12—C17                      | 119.0 (2)             | N3—C23—H23B                           | 109.5      |
| $C_{13}$ $C_{12}$ $C_{11}$       | 119.0(2)              | H23A_C23_H23B                         | 109.5      |
| $C_{12}$ $C_{12}$ $C_{11}$       | 119.9(2)<br>121.0(2)  | N3 C23 H23C                           | 109.5      |
| $C_{14} = C_{12} = C_{12}$       | 121.0(2)              |                                       | 109.5      |
| C14 - C13 - C12                  | 119.9 (5)             | $H_{23}A = C_{23} = H_{23}C$          | 109.5      |
| C14—C13—H13A                     | 120.1                 | H23B—C23—H23C                         | 109.5      |
| С12—С13—Н13А                     | 120.1                 |                                       |            |
|                                  |                       |                                       |            |
| C10—N4—N5—C11                    | -0.2 (3)              | C8—C9—C10—N4                          | -47.0 (4)  |
| C21—N2—C1—C9                     | -34.4 (3)             | C1—C9—C10—O1                          | -46.5 (3)  |
| C20—N2—C1—C9                     | 112.0 (3)             | C8—C9—C10—O1                          | 128.1 (2)  |
| C21—N2—C1—C2                     | 141.4 (2)             | N4—N5—C11—O1                          | -0.1(3)    |
| $C_{20} - N_{2} - C_{1} - C_{2}$ | -72.2(3)              | N4—N5—C11—C12                         | 178.8 (2)  |
| C9-C1-C2-C3                      | 176.0(2)              | C10-01-C11-N5                         | 0.3(3)     |
| $N_{2}$ $C_{1}$ $C_{2}$ $C_{3}$  | -0.1(3)               | C10-01-C11-C12                        | -1787(2)   |
| $C_{1}$ $C_{1}$ $C_{2}$ $C_{3}$  | -1.1(3)               | N5 C11 C12 C13                        | 1/0.7(2)   |
| $C_{2} = C_{1} = C_{2} = C_{7}$  | 1.1(3)<br>-17717(18)  | $N_{3}$ $-C_{11}$ $-C_{12}$ $-C_{13}$ | -172.2(2)  |
| $N_2 = C_1 = C_2 = C_1$          | -1//.1/(10)           | 01-011-012-013                        | -1/2.3(2)  |
| $C/-C_2-C_3-C_4$                 | -1.0(3)               |                                       | -169.2 (3) |
| C1—C2—C3—C4                      | -178.1 (2)            | O1—C11—C12—C17                        | 9.6 (4)    |
| C2—C3—C4—C5                      | 0.1 (4)               | C17—C12—C13—C14                       | 0.4 (5)    |
| C3—C4—C5—C6                      | 0.7 (4)               | C11—C12—C13—C14                       | -177.8 (3) |
| C3—C4—C5—C18                     | 177.4 (2)             | C12—C13—C14—C15                       | -0.4 (5)   |
| C4—C5—C6—C7                      | -0.6 (4)              | C13—C14—C15—C16                       | 0.2 (6)    |
| C18—C5—C6—C7                     | -177.2 (2)            | C14—C15—C16—C17                       | 0.0 (6)    |
| C8—N1—C7—C6                      | -176.9(2)             | C13—C12—C17—C16                       | -0.3(5)    |
| C8—N1—C7—C2                      | -0.7(3)               | C11—C12—C17—C16                       | 177.9 (3)  |
| $C_{5}-C_{6}-C_{7}-N_{1}$        | 1761(2)               | $C_{15}$ $C_{16}$ $C_{17}$ $C_{12}$   | 01(6)      |
| $C_{5} - C_{6} - C_{7} - C_{2}$  | -0.2(4)               | C6-C5-C18-F3                          | 1170(3)    |
| $C_3 C_2 C_7 N_1$                | -175 1 (2)            | C4 $C5$ $C18$ $F3$                    | -50.7(3)   |
| $C_{3} - C_{2} - C_{7} - N_{1}$  | 175.1(2)              | $C_{4} = C_{5} = C_{18} = C_{5}$      | 39.7(3)    |
| C1 = C2 = C7 = N1                | 2.2 (3)               | $C_0 - C_3 - C_{10} - F_2$            | -122.3(3)  |
| $C_3 - C_2 - C_7 - C_6$          | 1.0 (3)               | C4-C5-C18-F2                          | 61.0 (3)   |
| C1_C2_C/_C6                      | 178.3 (2)             | C6—C5—C18—F1                          | -3.8 (4)   |
| C7—N1—C8—C9                      | -2.0 (4)              | C4—C5—C18—F1                          | 179.6 (2)  |
| N2—C1—C9—C8                      | 174.6 (2)             | C22—N3—C19—C20                        | -57.9 (3)  |
| C2—C1—C9—C8                      | -1.3 (3)              | C23—N3—C19—C20                        | -179.7 (2) |
| N2-C1-C9-C10                     | -11.0 (4)             | C1—N2—C20—C19                         | 154.1 (2)  |
| C2-C1-C9-C10                     | 173.1 (2)             | C21—N2—C20—C19                        | -56.7 (3)  |
| N1-C8-C9-C1                      | 3.0 (4)               | N3—C19—C20—N2                         | 55.0 (3)   |
| N1-C8-C9-C10                     | -171.8 (2)            | C1—N2—C21—C22                         | -151.8 (2) |
| N5—N4—C10—O1                     | 0.4 (3)               | C20—N2—C21—C22                        | 59.7 (2)   |
| N5—N4—C10—C9                     | 175.7 (2)             | C19—N3—C22—C21                        | 60.9(3)    |
| $C_{11} = 01 = C_{10} = N_4$     | -0.4(3)               | $C_{23}$ N3 $C_{22}$ $C_{21}$         | -177 4 (2) |
| $C_{11} = C_{10} = C_{10}$       | -1762(2)              | $N_2 - C_{21} - C_{22} - N_3$         | -610(3)    |
| C1  C0  C10  N4                  | 170.2(2)<br>128 5 (2) | 112 021 022 -113                      | 01.0(3)    |
| UI-UV-UIV-IN4                    | 130.3 (3)             |                                       |            |

#### Hydrogen-bond geometry (Å, °)

| D—H···A                      | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|------------------------------|------|-------|-----------|-------------------------|
| C21—H21A…O1                  | 0.97 | 2.38  | 3.018 (3) | 123                     |
| C4—H4 $A$ ···N4 <sup>i</sup> | 0.93 | 2.56  | 3.426 (4) | 155                     |

Symmetry code: (i) x, y-1, z.