organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-3-[3-(4-Bromophenyl)-1-phenyl-1Hpyrazol-4-yl]-1-(2,4-dichlorophenyl)prop-2-en-1-one

Hoong-Kun Fun,^a* + Ching Kheng Quah,^a§ Shridhar Malladi,^b Arun M. Isloor^b and Kammasandra N. Shivananda^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and ^cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel Correspondence e-mail: hkfun@usm.my

Received 19 October 2011: accepted 25 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.140; data-to-parameter ratio = 23.9.

In the title molecule, C₂₄H₁₅BrCl₂N₂O, the dihedral angles betwen the pyrazole ring and its N-bonded phenyl (A) and Cbonded bromobenzene (B) rings are 10.34 (16) and 40.95 (15)°, respectively. The dihedral angle between rings A and B is 56.89 $(17)^{\circ}$. The title molecule exists in a *trans* conformation with respect to the acyclic C=C bond. In the crystal, molecules are linked into inversion dimers by pairs of C-H···O hydrogen bonds, generating $R_2^2(14)$ loops. The crystal structure is further consolidated by $C-H\cdots\pi$ interactions.

Related literature

For a related structure and background references to pyrazoles, see: Fun et al. (2011). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

§ Thomson Reuters ResearcherID: A-5525-2009.

Experimental

Crystal data

C24H15BrCl2N2O V = 2222.9 (5) Å³ $M_r = 498.19$ *Z* = 4 Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 11.4203 (14) Å $\mu = 2.11 \text{ mm}^$ b = 9.9357 (13) Å T = 296 Kc = 19.656 (3) Å $0.38 \times 0.21 \times 0.11 \text{ mm}$ $\beta = 94.653 \ (3)^{\circ}$

Data collection

Bruker SMART APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.504, \ T_{\max} = 0.803$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	271 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
6480 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

23842 measured reflections

 $R_{\rm int} = 0.056$

6480 independent reflections

2743 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of C1-C6 phenyl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11 - H11A \cdots O1^{i}$ $C15 - H15A \cdots Cg1^{ii}$	0.93 0.93	2.41 2.82	3.329 (4) 3.666 (3)	170 152
eis-misaegi	0.95	2.02	5.000 (5)	152

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6462).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o3102-o3103.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o3104 [doi:10.1107/S1600536811044424]

(*E*)-3-[3-(4-Bromophenyl)-1-phenyl-1*H*-pyrazol-4-yl]-1-(2,4-dichlorophenyl)-prop-2-en-1-one

Hoong-Kun Fun, Ching Kheng Quah, Shridhar Malladi, Arun M. Isloor and Kammasandra N. Shivananda

S1. Comment

As part of our ongoing studies of pyrazole derivatives with potential biological activities (Fun *et al.*, 2011), we have synthesized the title compound, (I), to study its crystal structure.

In the title molecule (Fig. 1), the benzene (C19-C24) ring and the two phenyl (C1-C6 and C13-C18) rings form dihedral angles of 10.34 (16), 50.23 (16) and 40.95 (15)°, respectively, with the pyrazole ring (N1/N2/C10-C12). The benzene ring also forms dihedral angles of 56.89 (17) and 38.81 (16)° with dichloro-bound phenyl (C1-C6) and bromo-bound phenyl (C13-C18) rings, respectively. The phenyl rings form a dihedral angle of 89.57 (17)°. The title molecule exists in *trans* configuration with respect to the acyclic C8=C9 bond [bond length = 1.336 (4) Å]. Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to a related structure (Fun *et al.*, 2011).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C11–H11A···O1 hydrogen bonds (Table 1), generating fourteen-membered $D_2^2(14)$ ring motifs (Bernstein *et al.*, 1995). The crystal structure is further consolidated by C15–H15A···Cg1 (Table 1) interactions, where Cg1 is the centroid of C1-C6 phenyl ring.

S2. Experimental

To a cold, stirred mixture of methanol (20 ml) and sodium hydroxide (12.09 mmol), 2,4-dichloroacetophenone (4.03 mmol) was added. The reaction mixture was stirred for 10 min. 3-(4-Bromophenyl)-1-phenyl-1H-pyrazole-4- carbaldehyde (4.03 mmol) was added to this solution followed by tetrahydrofuran (30 ml). The solution was further stirred for 2 h at 273 K and then at room temperature for 5 h. It was then poured into ice cold water. The resulting solution was neutralized with dil. HC1. The solid that separated out was filtered, washed with water, dried and crystallized from ethanol to yield colourless blocks. Yield: 1.6 g, 80 %. *M.p.*: 457-458 K.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.

Figure 2

The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

(E)-3-[3-(4-Bromophenyl)-1-phenyl-1H-pyrazol-4-yl]-1- (2,4-dichlorophenyl)prop-2-en-1-one

F(000) = 1000

 $\theta = 2.9 - 22.2^{\circ}$

 $\mu = 2.11 \text{ mm}^{-1}$ T = 296 K

Block. colourless

 $0.38 \times 0.21 \times 0.11 \text{ mm}$

 $D_{\rm x} = 1.489 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2554 reflections

Crystal data

 $C_{24}H_{15}BrCl_2N_2O$ $M_r = 498.19$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.4203 (14) Å b = 9.9357 (13) Å c = 19.656 (3) Å $\beta = 94.653 (3)^\circ$ $V = 2222.9 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEXII DUO CCD	23842 measured reflections
diffractometer	6480 independent reflections
Radiation source: fine-focus sealed tube	2743 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.056$
φ and ω scans	$\theta_{\max} = 30.1^\circ, \theta_{\min} = 1.8^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 16$
(SADABS; Bruker, 2009)	$k = -13 \rightarrow 13$
$T_{\min} = 0.504, \ T_{\max} = 0.803$	$l = -27 \rightarrow 22$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
S = 0.98	H-atom parameters constrained
6480 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0493P)^2 + 0.6604P]$
271 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.44 \ m e \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.52$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.29004 (5)	-0.10153 (6)	0.11448 (2)	0.1353 (3)	
01	0.12637 (19)	0.64502 (19)	0.42799 (11)	0.0738 (6)	
N1	-0.10263 (19)	0.0347 (2)	0.43425 (11)	0.0521 (5)	
N2	-0.05301 (19)	-0.0315 (2)	0.38311 (10)	0.0532 (6)	

C1	0.2092 (3)	0.4905 (3)	0.28237 (14)	0.0621 (7)
H1A	0.1332	0.4616	0.2693	0.075*
C2	0.2907 (3)	0.4908 (4)	0.23478 (16)	0.0844 (10)
H2A	0.2701	0.4629	0.1903	0.101*
C3	0.4027 (3)	0.5329 (5)	0.2538 (2)	0.0960 (12)
C4	0.4336 (3)	0.5741 (4)	0.31980 (19)	0.0865 (11)
H4A	0.5097	0.6028	0.3325	0.104*
C5	0.3506 (3)	0.5722 (3)	0.36638 (15)	0.0624 (8)
C6	0.2362 (2)	0.5316 (3)	0.34922 (13)	0.0509 (6)
C7	0.1426 (2)	0.5391 (3)	0.39854 (14)	0.0535 (7)
C8	0.0702 (2)	0.4217 (3)	0.40921 (15)	0.0562 (7)
H8A	0.0056	0.4330	0.4346	0.067*
C9	0.0901 (2)	0.2988 (3)	0.38512 (14)	0.0528 (7)
H9A	0.1547	0.2885	0.3597	0.063*
C10	0.0198 (2)	0.1802 (3)	0.39515 (14)	0.0510 (6)
C11	-0.0605 (2)	0.1606 (3)	0.44253 (14)	0.0546 (7)
H11A	-0.0818	0.2231	0.4745	0.065*
C12	0.0218 (2)	0.0567 (3)	0.35954 (13)	0.0499 (6)
C13	0.0901 (2)	0.0206 (3)	0.30199 (13)	0.0513 (6)
C14	0.1383 (3)	-0.1062 (3)	0.29778 (16)	0.0647 (8)
H14A	0.1302	-0.1678	0.3327	0.078*
C15	0.1984 (3)	-0.1429 (3)	0.24257 (18)	0.0773 (9)
H15A	0.2302	-0.2288	0.2401	0.093*
C16	0.2106 (3)	-0.0517 (4)	0.19150 (16)	0.0771 (10)
C17	0.1647 (3)	0.0740 (4)	0.19476 (17)	0.0854 (11)
H17A	0.1741	0.1356	0.1600	0.102*
C18	0.1042 (3)	0.1099 (3)	0.24994 (15)	0.0700 (8)
H18A	0.0724	0.1959	0.2519	0.084*
C19	-0.1936 (2)	-0.0283 (3)	0.46832 (13)	0.0538 (7)
C20	-0.2579 (3)	0.0449 (3)	0.51087 (17)	0.0778 (9)
H20A	-0.2423	0.1359	0.5180	0.093*
C21	-0.3459 (3)	-0.0174 (4)	0.54300 (19)	0.0943 (12)
H21A	-0.3899	0.0325	0.5718	0.113*
C22	-0.3699 (3)	-0.1507 (4)	0.53335 (19)	0.0871 (10)
H22A	-0.4294	-0.1918	0.5554	0.105*
C23	-0.3047 (3)	-0.2235 (4)	0.49049 (19)	0.0845 (10)
H23A	-0.3209	-0.3142	0.4830	0.101*
C24	-0.2153 (3)	-0.1630 (3)	0.45838 (16)	0.0695 (8)
H24A	-0.1702	-0.2131	0.4302	0.083*
C11	0.50704 (12)	0.5349 (2)	0.19526 (7)	0.1885 (8)
C12	0.39593 (8)	0.61893 (11)	0.44937 (5)	0.0945 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.1461 (4)	0.1639 (5)	0.1070 (4)	-0.0726 (3)	0.0781 (3)	-0.0677 (3)
01	0.0941 (15)	0.0484 (12)	0.0836 (15)	-0.0100 (11)	0.0363 (12)	-0.0172 (11)
N1	0.0620 (14)	0.0463 (13)	0.0487 (13)	-0.0033 (11)	0.0081 (11)	-0.0024 (10)

N2	0.0659 (14)	0.0474 (13)	0.0470 (12)	-0.0023 (11)	0.0095 (11)	-0.0052 (10)
C1	0.0677 (18)	0.0636 (19)	0.0544 (17)	0.0069 (15)	0.0012 (15)	-0.0050 (14)
C2	0.094 (3)	0.111 (3)	0.0498 (18)	0.027 (2)	0.0131 (18)	-0.0086 (18)
C3	0.077 (3)	0.145 (4)	0.070 (2)	0.030 (2)	0.029 (2)	0.007 (2)
C4	0.061 (2)	0.122 (3)	0.078 (2)	0.0072 (19)	0.0142 (18)	0.008 (2)
C5	0.0647 (19)	0.069 (2)	0.0535 (17)	0.0039 (15)	0.0037 (15)	0.0011 (14)
C6	0.0591 (17)	0.0442 (15)	0.0496 (15)	0.0033 (13)	0.0059 (13)	-0.0035 (12)
C7	0.0624 (17)	0.0453 (16)	0.0533 (16)	-0.0009 (13)	0.0083 (13)	-0.0038 (13)
C8	0.0584 (17)	0.0479 (17)	0.0641 (18)	-0.0018 (13)	0.0156 (14)	-0.0037 (13)
C9	0.0557 (16)	0.0499 (17)	0.0529 (16)	-0.0017 (13)	0.0058 (13)	-0.0014 (13)
C10	0.0548 (16)	0.0441 (16)	0.0539 (16)	-0.0021 (12)	0.0032 (13)	-0.0049 (12)
C11	0.0648 (17)	0.0405 (16)	0.0590 (17)	-0.0009 (13)	0.0086 (14)	-0.0088 (12)
C12	0.0584 (16)	0.0434 (16)	0.0476 (15)	0.0007 (13)	0.0028 (13)	0.0002 (12)
C13	0.0616 (16)	0.0436 (16)	0.0487 (15)	-0.0071 (13)	0.0037 (13)	-0.0040 (12)
C14	0.077 (2)	0.0516 (19)	0.0670 (19)	-0.0017 (15)	0.0178 (16)	0.0001 (14)
C15	0.089 (2)	0.060(2)	0.087 (2)	-0.0033 (17)	0.034 (2)	-0.0154 (18)
C16	0.083 (2)	0.086 (3)	0.065 (2)	-0.0349 (19)	0.0275 (17)	-0.0257 (18)
C17	0.126 (3)	0.079 (3)	0.0539 (19)	-0.032 (2)	0.021 (2)	0.0017 (17)
C18	0.099 (2)	0.0571 (19)	0.0543 (18)	-0.0068 (17)	0.0096 (17)	0.0015 (14)
C19	0.0604 (17)	0.0539 (17)	0.0463 (15)	-0.0079 (14)	-0.0007 (13)	0.0022 (13)
C20	0.089 (2)	0.065 (2)	0.084 (2)	-0.0081 (17)	0.0355 (19)	-0.0082 (17)
C21	0.093 (3)	0.096 (3)	0.100 (3)	-0.016 (2)	0.045 (2)	-0.012 (2)
C22	0.084 (2)	0.098 (3)	0.082 (2)	-0.030 (2)	0.020 (2)	0.003 (2)
C23	0.093 (2)	0.076 (2)	0.084 (2)	-0.032 (2)	0.006 (2)	-0.0035 (19)
C24	0.084 (2)	0.061 (2)	0.0650 (19)	-0.0174 (17)	0.0129 (17)	-0.0086 (15)
Cl1	0.1164 (9)	0.351 (2)	0.1079 (9)	0.0464 (13)	0.0678 (8)	0.0086 (13)
Cl2	0.0853 (6)	0.1270 (8)	0.0694 (6)	-0.0180 (5)	-0.0044 (5)	-0.0168 (5)

Geometric parameters (Å, °)

Br1—C16	1.893 (3)	C10—C12	1.414 (4)
O1—C7	1.222 (3)	C11—H11A	0.9300
N1-C11	1.346 (3)	C12—C13	1.469 (4)
N1—N2	1.363 (3)	C13—C18	1.374 (4)
N1—C19	1.425 (3)	C13—C14	1.380 (4)
N2—C12	1.333 (3)	C14—C15	1.379 (4)
C1—C2	1.372 (4)	C14—H14A	0.9300
C1—C6	1.387 (4)	C15—C16	1.368 (5)
C1—H1A	0.9300	C15—H15A	0.9300
C2—C3	1.369 (5)	C16—C17	1.358 (5)
C2—H2A	0.9300	C17—C18	1.380 (4)
C3—C4	1.378 (5)	C17—H17A	0.9300
C3—Cl1	1.723 (3)	C18—H18A	0.9300
C4—C5	1.370 (4)	C19—C20	1.367 (4)
C4—H4A	0.9300	C19—C24	1.373 (4)
С5—С6	1.384 (4)	C20—C21	1.377 (4)
C5—Cl2	1.734 (3)	C20—H20A	0.9300
C6—C7	1.502 (4)	C21—C22	1.363 (5)

С7—С8	1.455 (4)	C21—H21A	0.9300
C8—C9	1.336 (4)	C22—C23	1.374 (5)
C8—H8A	0.9300	C22—H22A	0.9300
C9—C10	1.448 (4)	C23—C24	1.380 (4)
С9—Н9А	0.9300	C23—H23A	0.9300
C10—C11	1.373 (4)	C24—H24A	0.9300
C11—N1—N2	111.8 (2)	N2-C12-C13	120.2 (2)
C11—N1—C19	128.2 (2)	C10-C12-C13	128.6 (2)
N2—N1—C19	119.8 (2)	C18—C13—C14	118.3 (3)
C12—N2—N1	104.8 (2)	C18—C13—C12	121.1 (3)
C2—C1—C6	122.3 (3)	C14—C13—C12	120.5 (2)
C2—C1—H1A	118.8	C15—C14—C13	121.0 (3)
C6—C1—H1A	118.8	C15—C14—H14A	119.5
C3—C2—C1	119.0 (3)	C13—C14—H14A	119.5
C3—C2—H2A	120.5	C16—C15—C14	119.3 (3)
C1—C2—H2A	120.5	С16—С15—Н15А	120.4
C2—C3—C4	120.7 (3)	С14—С15—Н15А	120.4
C2—C3—Cl1	120.2 (3)	C17—C16—C15	120.8 (3)
C4—C3—Cl1	119.2 (3)	C17—C16—Br1	119.4 (3)
C5—C4—C3	119.1 (3)	C15—C16—Br1	119.8 (3)
C5—C4—H4A	120.4	C16—C17—C18	119.7 (3)
C3—C4—H4A	120.4	С16—С17—Н17А	120.2
C4—C5—C6	122.1 (3)	С18—С17—Н17А	120.2
C4—C5—Cl2	117.1 (3)	C13—C18—C17	121.0 (3)
C6—C5—Cl2	120.7 (2)	C13—C18—H18A	119.5
C5—C6—C1	116.7 (3)	C17—C18—H18A	119.5
C5—C6—C7	122.4 (2)	C20—C19—C24	120.4 (3)
C1—C6—C7	120.8 (2)	C20-C19-N1	120.1 (3)
O1—C7—C8	120.8 (3)	C24—C19—N1	119.5 (3)
O1—C7—C6	119.4 (2)	C19—C20—C21	119.3 (3)
C8—C7—C6	119.7 (2)	C19—C20—H20A	120.3
C9—C8—C7	124.5 (3)	C21—C20—H20A	120.3
С9—С8—Н8А	117.7	C22—C21—C20	121.3 (3)
С7—С8—Н8А	117.7	C22—C21—H21A	119.4
C8—C9—C10	125.7 (3)	C20—C21—H21A	119.4
С8—С9—Н9А	117.2	C21—C22—C23	119.0 (3)
С10—С9—Н9А	117.2	C21—C22—H22A	120.5
C11—C10—C12	104.6 (2)	C23—C22—H22A	120.5
C11—C10—C9	128.0 (2)	C22—C23—C24	120.6 (3)
C12—C10—C9	127.4 (2)	C22—C23—H23A	119.7
N1—C11—C10	107.6 (2)	C24—C23—H23A	119.7
N1—C11—H11A	126.2	C19—C24—C23	119.4 (3)
C10-C11-H11A	126.2	C19—C24—H24A	120.3
N2-C12-C10	111.2 (2)	C23—C24—H24A	120.3
C11—N1—N2—C12	0.1 (3)	C11—C10—C12—N2	0.7 (3)
C19—N1—N2—C12	176.1 (2)	C9—C10—C12—N2	178.7 (2)

C6-C1-C2-C3	0.1 (5)	C11—C10—C12—C13	178.5 (3)
C1—C2—C3—C4	0.1 (6)	C9-C10-C12-C13	-3.5 (4)
C1—C2—C3—Cl1	-179.9 (3)	N2-C12-C13-C18	136.9 (3)
C2—C3—C4—C5	0.1 (6)	C10-C12-C13-C18	-40.7 (4)
Cl1—C3—C4—C5	-179.8 (3)	N2-C12-C13-C14	-40.7 (4)
C3—C4—C5—C6	-0.7 (5)	C10-C12-C13-C14	141.6 (3)
C3—C4—C5—Cl2	177.6 (3)	C18—C13—C14—C15	-0.5 (5)
C4—C5—C6—C1	1.0 (4)	C12—C13—C14—C15	177.3 (3)
Cl2—C5—C6—C1	-177.2 (2)	C13—C14—C15—C16	0.3 (5)
C4—C5—C6—C7	-175.3 (3)	C14—C15—C16—C17	0.2 (5)
Cl2—C5—C6—C7	6.5 (4)	C14—C15—C16—Br1	-178.7 (2)
C2-C1-C6-C5	-0.7 (4)	C15—C16—C17—C18	-0.6 (5)
C2-C1-C6-C7	175.6 (3)	Br1-C16-C17-C18	178.4 (2)
C5—C6—C7—O1	51.9 (4)	C14—C13—C18—C17	0.1 (5)
C1—C6—C7—O1	-124.2 (3)	C12-C13-C18-C17	-177.6 (3)
C5—C6—C7—C8	-129.9 (3)	C16—C17—C18—C13	0.4 (5)
C1—C6—C7—C8	54.0 (4)	C11—N1—C19—C20	6.9 (4)
O1—C7—C8—C9	-172.3 (3)	N2-N1-C19-C20	-168.4 (3)
C6—C7—C8—C9	9.5 (4)	C11—N1—C19—C24	-172.7 (3)
C7—C8—C9—C10	179.8 (3)	N2-N1-C19-C24	12.0 (4)
C8—C9—C10—C11	-16.9 (5)	C24—C19—C20—C21	-0.9 (5)
C8—C9—C10—C12	165.5 (3)	N1-C19-C20-C21	179.6 (3)
N2—N1—C11—C10	0.3 (3)	C19—C20—C21—C22	0.2 (6)
C19—N1—C11—C10	-175.3 (2)	C20—C21—C22—C23	-0.2 (6)
C12-C10-C11-N1	-0.6 (3)	C21—C22—C23—C24	0.8 (6)
C9-C10-C11-N1	-178.6 (2)	C20—C19—C24—C23	1.5 (5)
N1-N2-C12-C10	-0.5 (3)	N1-C19-C24-C23	-178.9 (3)
N1—N2—C12—C13	-178.5 (2)	C22—C23—C24—C19	-1.5 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 phenyl ring.

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
C11—H11A…O1 ⁱ	0.93	2.41	3.329 (4)	170
C15—H15 A ···· $Cg1^{ii}$	0.93	2.82	3.666 (3)	152

Symmetry codes: (i) –*x*, –*y*+1, –*z*+1; (ii) *x*, *y*–1, *z*.