

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-4-Hydroxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide

Jirapa Horkaew,^a Suchada Chantrapromma^{b*}‡and Hoong-Kun Fun^c§

^aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and CX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang Malaysia

Correspondence e-mail: suchada.c@psu.ac.th

Received 8 October 2011; accepted 9 October 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.109; data-to-parameter ratio = 19.7.

The title benzohydrazide derivative, $C_{17}H_{18}N_2O_5$, exists in a trans conformation with respect to the C=N double bond. The dihedral angle between the benzene rings is $19.41 (5)^{\circ}$. The two methoxy groups at the meta positions of the trimethoxybenzene group are almost coplanar with the ring $[C-O-C-C = 1.62 (16) \text{ and } 178.33 (10)^{\circ}]$, whereas the third methoxy group, at the para position, is (+)-synclinal with the ring. In the crystal, molecules are linked by $N-H \cdots O$ and bifurcated $O-H \cdots (N,O)$ hydrogen bonds, as well as weak $C-H\cdots O$ interactions, into sheets lying parallel to the ac plane. A C-H··· π interaction also occurs.

Related literature

For a related structure and background references to benzohydrazide derivatives, see: Fun et al. (2011). For related structures, see: Li & Ban (2009); Zhang (2011). For reference bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$$C_{17}H_{18}N_2O_5$$
 $M_r = 330.33$

‡ Thomson Reuters ResearcherID: A-5085-2009.

§ Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Orthorhombic, Pbca a = 14.4623 (8) Å b = 10.9202 (6) Å c = 19.5592 (10) Å V = 3089.0 (3) Å³

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.960, \ T_{\max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.109$	independent and constrained
S = 1.03	refinement
4500 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
228 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} D2 - H1 O2 \cdots O1^{i} \\ D2 - H1 O2 \cdots N2^{i} \\ N1 - H1 N1 \cdots O4^{ii} \\ C6 - H6 A \cdots O4^{ii} \\ C16 - H16 B \cdots Cg1^{iii} \end{array}$	0.87 (2) 0.87 (2) 0.874 (17) 0.93 0.96	1.87 (2) 2.56 (2) 2.088 (17) 2.51 2.63	2.6646 (11) 3.2381 (13) 2.8891 (12) 3.4116 (14) 3.4572 (17)	152 (2) 136.2 (18) 152.0 (16) 165 145
Symmetry codes: -x, -y + 2, -z + 2.	(i) $x - \frac{1}{2}, y, -$	$-z + \frac{3}{2};$ (ii)	$x - \frac{1}{2}, -y + \frac{3}{2}, -$	-z + 2; (iii)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

JH thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University through the Crystal Materials Research Unit and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6444).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-02645.

Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, 0876.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Zhang, Z. (2011). Acta Cryst. E67, o300.

Z = 8

Mo $K\alpha$ radiation

 $0.39 \times 0.21 \times 0.20 \text{ mm}$

20210 measured reflections

4500 independent reflections

3777 reflections with $I > 2\sigma(I)$

 $\mu = 0.11 \text{ mm}^-$

T = 297 K

 $R_{\rm int} = 0.028$

supporting information

Acta Cryst. (2011). E67, o2985 [doi:10.1107/S1600536811041535]

(E)-4-Hydroxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide

Jirapa Horkaew, Suchada Chantrapromma and Hoong-Kun Fun

S1. Comment

As part of our ongoing studies of benzohydrazide derivatives with possible antibacterial activities (Fun *et al.*, 2011), we now report the synthesis and structure of the title compound, (I). The antibacterial activity of (I) will be reported elsewhere with other related benzohydrazide derivatives.

The molecule of the title benzohydrazide derivative (Fig. 1), $C_{17}H_{18}N_2O_5$, exists in a *trans*-configuration with respect to the C8=N2 bond [1.2821 (15) Å] and the torsion angle N1–N2–C8–C9 = 178.33 (10)°. The molecule is twisted with the dihedral angle between the two benzene rings being 19.41 (5)°. The middle fragment is slightly twisted which can be indicated by the torsion angle O1–C7–N1–N2 = -6.63 (15)°. The mean plane through this middle bridge (O1/C7/N1/N2/C8) makes the dihedral angles of 12.06 (6) and 8.39 (6)° with the planes of 4-hydroxyphenyl and 3,4,5-trimethoxyphenyl rings, respectively. The three methoxy groups of the 3,4,5-trimethoxyphenyl unit have two different orientations: the two *meta* methoxy groups (at atoms C11 and C13 positions) are co-planar with their attached benzene ring with torsion angles C15–O3–C11–C10 = 1.62 (16)° and C17–O5–C13–C12 = 178.33 (10)° whereas the *para* methoxy is (+)-syn-clinally attached at atom C12 with the torsion angle C16–O4–C12–C11 = 71.28 (15)°. Bond distances are of normal values (Allen *et al.*, 1987) and are comparable with the related structures (Fun *et al.*, 2011; Li & Ban, 2009; Zhang, 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O, O—H···N and O—H···O hydrogen bonds as well as with weak C—H···O interactions (Table 1) into sheets parallel to the *ac* plane. The crystal structure is stabilized by N —H···O, O—H···N, O—H···O hydrogen bonds, weak C—H···O and C—H··· π interactions (Table 1).

S2. Experimental

The title compound (I) was prepared by dissolving 4-hydroxybenzohydrazide (0.1 mmol, 0.15 g) in ethanol (15 ml) and a solution of 3,4,5-trimethoxybenzaldehyde (0.1 mmol, 0.19 g) in ethanol (15 ml) was then added to it0. The mixture was refluxed for around 3 hr and the white solid of the product that appeared was collected by filtration, washed with ethanol and dried in air. Colorless blocks of (I) were obtained after recrystalization from methanol by slow evaporation of the solvent at room temperature after several days, Mp. 532-533 K.

S3. Refinement

Amide and hydroxy H atoms were located from the difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound viewed along the *b* axis, Hydrogen bonds were shown as dashed lines.

(E)-4-Hydroxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide

Crystal data

 $C_{17}H_{18}N_2O_5$ $M_r = 330.33$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 14.4623 (8) Å b = 10.9202 (6) Å c = 19.5592 (10) Å V = 3089.0 (3) Å³ Z = 8F(000) = 1392

Data collection

Bruker SMART APEXII CCD	20210 measured reflections
diffractometer	4500 independent reflections
Radiation source: fine-focus sealed tube	3777 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 2.1^\circ$
ω scans	$h = -18 \rightarrow 20$
Absorption correction: multi-scan	$k = -15 \rightarrow 14$
(SADABS; Bruker, 2009)	$l = -27 \rightarrow 27$
$T_{\min} = 0.960, \ T_{\max} = 0.979$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
4500 reflections	and constrained refinement
228 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0512P)^2 + 1.5827P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$

 $D_{\rm x} = 1.421 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.1 - 30.0^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 297 K

Block, colorless

 $0.39 \times 0.21 \times 0.20 \text{ mm}$

Melting point = 533-532 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 4500 reflections

Special details

direct methods

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\text{max}} = 0.37 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

F 1		1	1	• , •			• • •	1. 1		,	18:	2.
Fractional	atomic	coordinates	and	isofronic (ər ea	uivalent	isofronic	displ	acement	narameters	IA^{4}	·)
1 i actionat	aronne	coordinates	curren	ison opie e	n cq	<i>m m m m</i>	isonopie	cuspu	accincin	parameters	(**	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.02505 (5)	1.10904 (8)	0.80535 (4)	0.01825 (17)	
O2	-0.32653 (6)	1.14816 (8)	0.61694 (4)	0.01926 (18)	
H1O2	-0.3790 (16)	1.119 (2)	0.6311 (11)	0.051 (6)*	

O3	0.32914 (5)	0.88335 (8)	1.01826 (4)	0.01920 (18)
O4	0.29967 (5)	0.71610 (8)	1.11552 (4)	0.01747 (17)
O5	0.13085 (6)	0.63448 (8)	1.14433 (4)	0.01937 (18)
N1	-0.06135 (6)	0.96981 (9)	0.86248 (5)	0.01526 (18)
H1N1	-0.1150 (12)	0.9362 (16)	0.8709 (9)	0.029 (4)*
N2	0.01401 (6)	0.94312 (9)	0.90309 (5)	0.01538 (18)
C1	-0.12442 (7)	1.07047 (10)	0.76129 (5)	0.0147 (2)
C2	-0.11500 (7)	1.16838 (11)	0.71558 (6)	0.0165 (2)
H2A	-0.0627	1.2178	0.7178	0.020*
C3	-0.18213 (8)	1.19281 (11)	0.66718 (6)	0.0167 (2)
H3A	-0.1747	1.2578	0.6369	0.020*
C4	-0.26122 (7)	1.11954 (10)	0.66390 (5)	0.0155 (2)
C5	-0.26994 (7)	1.01888 (11)	0.70742 (6)	0.0163 (2)
H5A	-0.3212	0.9678	0.7039	0.020*
C6	-0.20211 (7)	0.99504 (10)	0.75593 (6)	0.0162 (2)
H6A	-0.2085	0.9283	0.7851	0.019*
C7	-0.04843 (7)	1.05222 (10)	0.81117 (5)	0.0142 (2)
C8	-0.00007 (7)	0.87131 (10)	0.95390 (6)	0.0155 (2)
H8A	-0.0592	0.8419	0.9630	0.019*
С9	0.07833 (7)	0.83586 (10)	0.99769 (5)	0.0144 (2)
C10	0.16646 (7)	0.88419 (10)	0.98592 (5)	0.0154 (2)
H10A	0.1756	0.9421	0.9517	0.019*
C11	0.24005 (7)	0.84492 (10)	1.02576 (5)	0.0153 (2)
C12	0.22580 (7)	0.75942 (10)	1.07816 (5)	0.0152 (2)
C13	0.13721 (7)	0.71439 (10)	1.09113 (5)	0.0153 (2)
C14	0.06307 (7)	0.75202 (10)	1.05023 (5)	0.0155 (2)
H14A	0.0040	0.7213	1.0580	0.019*
C15	0.34575 (8)	0.97270 (12)	0.96645 (6)	0.0208 (2)
H15A	0.4092	0.9982	0.9682	0.031*
H15B	0.3064	1.0422	0.9739	0.031*
H15C	0.3328	0.9379	0.9224	0.031*
C16	0.33986 (12)	0.80230 (13)	1.16153 (8)	0.0366 (4)
H16A	0.4044	0.7842	1.1672	0.055*
H16B	0.3093	0.7973	1.2050	0.055*
H16C	0.3330	0.8834	1.1433	0.055*
C17	0.04118 (8)	0.58866 (12)	1.16066 (6)	0.0221 (2)
H17A	0.0450	0.5378	1.2006	0.033*
H17B	0.0181	0.5414	1.1230	0.033*
H17C	0.0001	0.6560	1.1694	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0125 (3)	0.0233 (4)	0.0190 (4)	-0.0017 (3)	0.0000 (3)	0.0030 (3)
02	0.0142 (4)	0.0264 (4)	0.0172 (4)	-0.0013 (3)	-0.0031 (3)	0.0046 (3)
03	0.0124 (4)	0.0266 (4)	0.0186 (4)	-0.0017 (3)	-0.0006 (3)	0.0051 (3)
O4	0.0140 (3)	0.0186 (4)	0.0197 (4)	0.0021 (3)	-0.0051 (3)	0.0012 (3)
05	0.0163 (4)	0.0222 (4)	0.0197 (4)	-0.0015 (3)	-0.0027 (3)	0.0078 (3)

supporting information

N1	0.0108 (4)	0.0191 (4)	0.0158 (4)	-0.0002 (3)	-0.0020 (3)	0.0032 (3)
N2	0.0124 (4)	0.0185 (4)	0.0152 (4)	0.0024 (3)	-0.0027 (3)	-0.0001 (3)
C1	0.0121 (4)	0.0184 (5)	0.0135 (4)	0.0012 (4)	0.0003 (3)	0.0009 (4)
C2	0.0139 (5)	0.0193 (5)	0.0164 (5)	-0.0026 (4)	0.0002 (4)	0.0015 (4)
C3	0.0164 (5)	0.0187 (5)	0.0150 (5)	-0.0016 (4)	0.0001 (4)	0.0033 (4)
C4	0.0134 (4)	0.0197 (5)	0.0134 (4)	0.0016 (4)	0.0004 (4)	0.0000 (4)
C5	0.0132 (4)	0.0180 (5)	0.0176 (5)	-0.0014 (4)	-0.0002 (4)	0.0012 (4)
C6	0.0147 (5)	0.0170 (5)	0.0167 (5)	0.0003 (4)	0.0003 (4)	0.0031 (4)
C7	0.0124 (4)	0.0167 (5)	0.0134 (4)	0.0021 (4)	0.0011 (3)	-0.0001 (4)
C8	0.0132 (4)	0.0177 (5)	0.0157 (5)	0.0007 (4)	-0.0011 (4)	-0.0008 (4)
C9	0.0135 (4)	0.0157 (5)	0.0138 (4)	0.0017 (4)	-0.0009 (3)	-0.0015 (4)
C10	0.0142 (5)	0.0182 (5)	0.0139 (4)	0.0002 (4)	0.0003 (4)	0.0008 (4)
C11	0.0124 (4)	0.0184 (5)	0.0152 (4)	0.0002 (4)	0.0008 (4)	-0.0010 (4)
C12	0.0132 (4)	0.0173 (5)	0.0151 (4)	0.0028 (4)	-0.0016 (3)	0.0001 (4)
C13	0.0160 (5)	0.0163 (5)	0.0136 (4)	0.0010 (4)	-0.0010 (4)	0.0005 (4)
C14	0.0132 (4)	0.0172 (5)	0.0160 (5)	0.0000 (4)	-0.0006 (4)	0.0002 (4)
C15	0.0168 (5)	0.0258 (6)	0.0199 (5)	-0.0023 (4)	0.0012 (4)	0.0046 (4)
C16	0.0504 (9)	0.0268 (7)	0.0326 (7)	0.0135 (6)	-0.0256 (7)	-0.0118 (6)
C17	0.0182 (5)	0.0249 (6)	0.0233 (6)	-0.0036 (4)	-0.0010 (4)	0.0079 (5)

Geometric parameters (Å, °)

01—C7	1.2358 (13)	С5—Н5А	0.9300
O2—C4	1.3542 (13)	С6—Н6А	0.9300
O2—H1O2	0.87 (2)	C8—C9	1.4727 (14)
O3—C11	1.3630 (13)	C8—H8A	0.9300
O3—C15	1.4270 (14)	C9—C14	1.3939 (15)
O4—C12	1.3780 (12)	C9—C10	1.3986 (15)
O4—C16	1.4262 (15)	C10—C11	1.3871 (15)
O5—C13	1.3611 (13)	C10—H10A	0.9300
O5—C17	1.4262 (14)	C11—C12	1.4016 (15)
N1—C7	1.3608 (14)	C12—C13	1.3957 (15)
N1—N2	1.3797 (12)	C13—C14	1.3995 (15)
N1—H1N1	0.874 (18)	C14—H14A	0.9300
N2—C8	1.2821 (15)	C15—H15A	0.9600
C1—C6	1.3971 (15)	C15—H15B	0.9600
C1—C2	1.4004 (15)	C15—H15C	0.9600
C1—C7	1.4831 (14)	C16—H16A	0.9600
C2—C3	1.3820 (15)	C16—H16B	0.9600
C2—H2A	0.9300	C16—H16C	0.9600
C3—C4	1.3974 (15)	C17—H17A	0.9600
С3—НЗА	0.9300	C17—H17B	0.9600
C4—C5	1.3959 (15)	C17—H17C	0.9600
C5—C6	1.3894 (15)		
C4 - 02 - H102	108.0 (14)	C10C9C8	120 44 (10)
$C_1 = 02 = 1102$	116 49 (9)	$C_{10} - C_{9} - C_{8}$	119 34 (10)
C12 04 C16	115.00(0)	$C_{11} = C_{10} = C_{22}$	120.3
012-04-010	115.09 (9)		120.3

C13—O5—C17	117.23 (9)	C9—C10—H10A	120.3
C7—N1—N2	117.12 (9)	O3—C11—C10	124.72 (10)
C7—N1—H1N1	122.6 (11)	O3—C11—C12	115.01 (9)
N2—N1—H1N1	120.2 (11)	C10—C11—C12	120.26 (10)
C8—N2—N1	116.75 (9)	O4—C12—C13	119.62 (10)
C6—C1—C2	118.72 (10)	O4—C12—C11	120.16 (9)
C6—C1—C7	124.48 (10)	C13—C12—C11	120.17 (10)
C2—C1—C7	116.77 (10)	O5—C13—C12	115.27 (9)
C3—C2—C1	121.09 (10)	O5-C13-C14	125.00 (10)
C3—C2—H2A	119.5	C12—C13—C14	119.73 (10)
C1—C2—H2A	119.5	C9-C14-C13	119.54 (10)
C2—C3—C4	119.73 (10)	C9—C14—H14A	120.2
C2—C3—H3A	120.1	C13—C14—H14A	120.2
C4—C3—H3A	120.1	03—C15—H15A	109.5
02	122.16 (10)	03—C15—H15B	109.5
02-C4-C3	118.03 (10)	H15A—C15—H15B	109.5
$C_{5} - C_{4} - C_{3}$	119 79 (10)	03-C15-H15C	109.5
C6-C5-C4	120.01 (10)	H_{15A} $-C_{15}$ $-H_{15C}$	109.5
C6-C5-H5A	120.01 (10)	H15B-C15-H15C	109.5
C4 - C5 - H5A	120.0	Ω_{4} Γ_{16} H_{16A}	109.5
C_{5} C_{6} C_{1}	120.0 120.57(10)	04—C16—H16B	109.5
C5-C6-H6A	110 7	H_{164} C_{16} H_{16B}	109.5
$C_1 = C_6 = H_{6A}$	110.7	Ω_{4} C16 H16C	109.5
O1 C7 N1	121 20 (10)		109.5
O1 C7 C1	121.20(10) 120.61(10)	$H_{16R} = C_{16} = H_{16C}$	109.5
$V_1 = C_7 = C_1$	120.01(10) 118 18 (0)	05 C17 H17A	109.5
$N_1 = C_1 = C_1$	110.10(9) 110.20(10)	05 C17 H17R	109.5
$N_2 = C_8 = U_8 \Lambda$	119.29 (10)	H17A C17 H17B	109.5
$N_2 - C_0 - H_0 A$	120.4	$n_1/A = C_1/= n_1/B$	109.5
$C_{2} = C_{3} = H_{0} A$	120.4		109.5
C14 - C9 - C10	120.90(10)	H1/A - C1/-H1/C	109.5
014-09-08	118.03 (10)	HI/B—CI/—HI/C	109.3
C7—N1—N2—C8	175.78 (10)	C8—C9—C10—C11	-176.91 (10)
C6—C1—C2—C3	1.83 (17)	C15—O3—C11—C10	1.62 (16)
C7—C1—C2—C3	179.98 (10)	C15—O3—C11—C12	-178.52 (10)
C1—C2—C3—C4	0.52 (17)	C9—C10—C11—O3	178.62 (10)
C2—C3—C4—O2	178.38 (10)	C9-C10-C11-C12	-1.23 (16)
C2-C3-C4-C5	-2.91(17)	C16—O4—C12—C13	-111.02(14)
02-C4-C5-C6	-178.41(10)	C16 - O4 - C12 - C11	71.28 (15)
C3—C4—C5—C6	2.94 (16)	03-C11-C12-O4	-2.99(15)
C4—C5—C6—C1	-0.57(17)	C10-C11-C12-O4	176.88 (10)
$C_{2}-C_{1}-C_{6}-C_{5}$	-1.80(16)	03-C11-C12-C13	179.33 (10)
C7—C1—C6—C5	-179.80(10)	C10-C11-C12-C13	-0.80(17)
N2-N1-C7-01	-6.63 (15)	C17—O5—C13—C12	178.33 (10)
N2—N1—C7—C1	172.15 (9)	C17-O5-C13-C14	-1.93 (16)
C6-C1-C7-O1	167.40 (11)	04	4.06 (15)
$C_2 - C_1 - C_7 - O_1$	-10.63 (15)	$C_{11} - C_{12} - C_{13} - O_{5}$	-178.24(10)
C6-C1-C7-N1	-11 39 (16)	04-C12-C13-C14	-175.69(10)
		5. 012 013 01T	1,2.07 (10)

supporting information

C2-C1-C7-N1	170.58 (10)	C11—C12—C13—C14	2.00 (16)
N1—N2—C8—C9	177.83 (9)	C10-C9-C14-C13	-0.90 (16)
N2-C8-C9-C14	-176.20 (10)	C8—C9—C14—C13	178.12 (10)
N2-C8-C9-C10	2.83 (16)	O5—C13—C14—C9	179.12 (10)
C14—C9—C10—C11	2.10 (16)	C12—C13—C14—C9	-1.15 (16)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
02—H1 <i>0</i> 2…O1 ⁱ	0.87 (2)	1.87 (2)	2.6646 (11)	152 (2)
O2—H1 $O2$ ···N2 ⁱ	0.87 (2)	2.56 (2)	3.2381 (13)	136.2 (18)
N1—H1 <i>N</i> 1····O4 ⁱⁱ	0.874 (17)	2.088 (17)	2.8891 (12)	152.0 (16)
C6—H6A···O4 ⁱⁱ	0.93	2.51	3.4116 (14)	165
C16—H16 B ···Cg1 ⁱⁱⁱ	0.96	2.63	3.4572 (17)	145

Symmetry codes: (i) *x*-1/2, *y*, -*z*+3/2; (ii) *x*-1/2, -*y*+3/2, -*z*+2; (iii) -*x*, -*y*+2, -*z*+2.