

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6*β*,8*β*-Dihydroxyeremophil-7(11)-en-8*α*,12-olide

Zhan-Xin Zhang* and Dong-Qing Fei

School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: zhangzhx@lzu.edu.cn

Received 28 September 2011; accepted 8 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.087; data-to-parameter ratio = 15.1.

The title compound, $C_{15}H_{22}O_4$, an eremophilane sesquiternoid, was isolated from the roots of *Ligularia virgaurea*. Both six-membered rings (*A* and *B*) adopt chair conformations and the five-membered ring is almost planar (r.m.s. deviation = 0.016 Å). The two methyl and two hydroxy groups adopt a *syn* conformation and the *A/B* ring junction is *cis*-fused. An intramolecular $O-H\cdots O$ hydrogen bond generates an *S*(6) ring. In the crystal, $O-H\cdots O$ hydrogen bonds link the molecules into [100] chains.

Related literature

For further information on the isolation of the title compound, see Moriyama & Takahashi (1976); Zhang *et al.* (2008).

Experimental

Crystal data C₁₅H₂₂O₄

 $M_r = 266.33$

organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.38 \times 0.33 \times 0.29 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 296 K

Orthorhombic, $P2_12_12_1$ a = 9.8627 (7) Å b = 10.5674 (7) Å c = 13.1565 (9) Å V = 1371.21 (16) Å³

Data collection

7478 measured reflections
2680 independent reflections
2306 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	178 parameters
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$
2680 reflections	$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O4−H4A···O3	0.82	2.11	2.8061 (19)	142
$O3-H3\cdots O1^{i}$	0.82	1.93	2.7502 (18)	174
Summer at my and as (i) a	. 1 . 1	_		

Symmetry code: (i) $x + \frac{1}{2}, -y - \frac{1}{2}, -z$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was kindly supported by the National Natural Science Foundation of China (No. 21102065) and the Fundational Research Funds for the Central Universities (No. lzujbky-2009–144).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6428).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Moriyama, Y. & Takahashi, T. (1976). Chem. Pharm. Bull. 24, 360-362.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, Z.-X., Fei, D.-Q. & Jia, Z.-J. (2008). Helv. Chim. Acta, 91, 1045–1052.

supporting information

Acta Cryst. (2011). E67, o2957 [doi:10.1107/S160053681104150X]

6β,8β-Dihydroxyeremophil-7(11)-en-8α,12-olide

Zhan-Xin Zhang and Dong-Qing Fei

S1. Comment

The title compound, 6β , 8β -dihydroxyeremophil-7(11)-en- 8α ,12-olide (Fig. 1), was originally isolated from the *Ligularia fauriei* (Moriyama *et al.*, 1976). With the present compound, which was isolated from the roots of *L. virgaurea* (Zhang *et al.*, 2008). The title compound is composed of three rings, two six-membered and one five-membered. The two sixmembered rings *A* and *B* adopt chair conformations with pucking parameters Q = 0.559 (2) Å, θ = 176.0 (2)°, φ = 101 (3)° and Q = 0.5527 (18) Å, θ = 1.20 (19)°, φ = 127 (9)°, respectively. The five-membered ring *C* is almost planar with a mean torsion angle of 1.65 (8)°. The *A/B* ring junction is *cis*- fused. In the crystal, O—H…O hydrogen bonds occur.

S2. Experimental

The air-dried roots of *L. virgaurea* (3.8 kg) were pulverized and extracted with petroleum ether (60–90°C)—Et₂O-MeOH (1: 1: 1) (6 days \times 3 times) at room temperature. The extract was concentrated under reduced pressure giving a residue (256 g), which was chromatographed on a silica gel column (200–300 mesh) with a gradient of PE-acetone (AC) (30: 1; 15: 1; 8: 1; 5: 1; 3: 1; 1: 1 and 0: 1). According to TLC analysis, seven crude fractions (Fr. A—Fr. G) were collected. Fr. F was further fractionated on a silica gel column to obtain a mixture of the title compound and other compounds, which were purified by preparative TLC using PE—AC (2: 1) to give pure the title compound. Colourless blocks of the title compound were obtained after slow evaporation of a methanolic solution at room temperature.

S3. Refinement

The absolute structure was indeterminate in the present experiment. All H atoms were placed in geometrically calculated positions, and allowed to ride on their parent atoms with O—H = 0.82 Å and C—H = 0.96 - 0.98 Å, and with $U_{iso}(H) = 1.2Ueq(C)$ for methylene- and methine-H, and 1.5Ueq for other H atoms.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids.

6β , 8β -Dihydroxyeremophil-7(11)-en- 8α , 12-olide

Crystal data

 $C_{15}H_{22}O_4$ $M_r = 266.33$ Orthorhombic, $P2_12_12_1$ a = 9.8627 (7) Å b = 10.5674 (7) Å c = 13.1565 (9) Å $V = 1371.21 (16) \text{ Å}^3$ Z = 4 F(000) = 576

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.966, T_{\max} = 0.974$ $D_{\rm x} = 1.290 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2527 reflections $\theta = 2.5-24.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.38 \times 0.33 \times 0.29 \text{ mm}$

7478 measured reflections 2680 independent reflections 2306 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -12 \rightarrow 6$ $k = -13 \rightarrow 12$ $l = -16 \rightarrow 15$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.087$	$w = 1/[\sigma^2(F_o^2) + (0.043P)^2 + 0.0843P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
2680 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
178 parameters	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.043 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.52336 (19)	0.0280 (2)	0.02370 (15)	0.0528 (5)
H1A	0.6033	0.0428	0.0650	0.063*
H1B	0.5488	-0.0277	-0.0317	0.063*
C2	0.4742 (2)	0.1530 (2)	-0.01946 (17)	0.0589 (6)
H2A	0.4024	0.1371	-0.0682	0.071*
H2B	0.5482	0.1941	-0.0550	0.071*
C3	0.4214 (2)	0.24061 (19)	0.06327 (16)	0.0573 (5)
H3A	0.3821	0.3150	0.0318	0.069*
H3B	0.4970	0.2682	0.1049	0.069*
C4	0.31514 (18)	0.17838 (17)	0.13139 (14)	0.0432 (4)
H4	0.2371	0.1584	0.0881	0.052*
C5	0.36613 (16)	0.05137 (17)	0.17644 (13)	0.0380 (4)
C6	0.24978 (17)	-0.01496 (17)	0.23600 (12)	0.0401 (4)
H6	0.2093	0.0468	0.2825	0.048*
C7	0.14293 (16)	-0.05820 (15)	0.16381 (12)	0.0335 (4)
C8	0.01487 (16)	-0.02563 (16)	0.14955 (12)	0.0360 (4)
C9	-0.03401 (18)	-0.09426 (16)	0.05925 (13)	0.0405 (4)
C10	0.18821 (16)	-0.14622 (15)	0.08141 (13)	0.0349 (4)
C11	0.29893 (16)	-0.08367 (15)	0.01959 (12)	0.0359 (4)
H11A	0.2612	-0.0128	-0.0178	0.043*
H11B	0.3347	-0.1438	-0.0292	0.043*
C12	0.41454 (16)	-0.03650 (17)	0.08853 (13)	0.0373 (4)
H12	0.4563	-0.1111	0.1197	0.045*

C130.2660 (3)0.2734 (2)0.21109 (18)0.0673 (6)H13A0.18570.24150.24340.101*H13B0.24590.35270.17870.101*H13C0.33550.28580.26120.101*C140.4830 (2)0.0732 (2)0.25188 (15)0.0559 (5)H14A0.55260.12260.21980.084*H14B0.5198-0.00690.27250.084*H14C0.44950.11750.31040.084*C15-0.07474 (19)0.06430 (19)0.20584 (15)0.0498 (5)H15A-0.03670.08110.27160.075*H15B-0.16320.02760.21370.075*H15C-0.08190.14200.16840.075*O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.1172 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.555 (4)H4A0.3033-0.18240.25800.083*					
H13A0.18570.24150.24340.101*H13B0.24590.35270.17870.101*H13C0.33550.28580.26120.101*C140.4830 (2)0.0732 (2)0.25188 (15)0.0559 (5)H14A0.55260.12260.21980.084*H14B0.5198-0.00690.27250.084*H14C0.44950.11750.31040.084*C15-0.07474 (19)0.06430 (19)0.20584 (15)0.0498 (5)H15A-0.03670.08110.27160.075*H15B-0.16320.02760.21370.075*H15C-0.08190.14200.16840.075*O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.11267 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	C13	0.2660 (3)	0.2734 (2)	0.21109 (18)	0.0673 (6)
H13B0.24590.35270.17870.101*H13C0.33550.28580.26120.101*C140.4830 (2)0.0732 (2)0.25188 (15)0.0559 (5)H14A0.55260.12260.21980.084*H14B0.5198-0.00690.27250.084*H14C0.44950.11750.31040.084*C15-0.07474 (19)0.06430 (19)0.20584 (15)0.0498 (5)H15A-0.03670.08110.27160.075*H15B-0.16320.02760.21370.075*H15C-0.08190.14200.16840.075*O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.11970 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	H13A	0.1857	0.2415	0.2434	0.101*
H13C0.33550.28580.26120.101*C140.4830 (2)0.0732 (2)0.25188 (15)0.0559 (5)H14A0.55260.12260.21980.084*H14B0.5198-0.00690.27250.084*H14C0.44950.11750.31040.084*C15-0.07474 (19)0.06430 (19)0.20584 (15)0.0498 (5)H15A-0.03670.08110.27160.075*H15B-0.16320.02760.21370.075*H15C-0.08190.14200.16840.075*O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.01970 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.555 (4)H4A0.3033-0.18240.25800.083*	H13B	0.2459	0.3527	0.1787	0.101*
C140.4830 (2)0.0732 (2)0.25188 (15)0.0559 (5)H14A0.55260.12260.21980.084*H14B0.5198-0.00690.27250.084*H14C0.44950.11750.31040.084*C15-0.07474 (19)0.06430 (19)0.20584 (15)0.0498 (5)H15A-0.03670.08110.27160.075*H15B-0.16320.02760.21370.075*H15C-0.08190.14200.16840.075*O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.01970 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	H13C	0.3355	0.2858	0.2612	0.101*
H14A0.55260.12260.21980.084*H14B0.5198-0.00690.27250.084*H14C0.44950.11750.31040.084*C15-0.07474 (19)0.06430 (19)0.20584 (15)0.0498 (5)H15A-0.03670.08110.27160.075*H15B-0.16320.02760.21370.075*H15C-0.08190.14200.16840.075*O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.01970 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	C14	0.4830 (2)	0.0732 (2)	0.25188 (15)	0.0559 (5)
H14B0.5198-0.00690.27250.084*H14C0.44950.11750.31040.084*C15-0.07474 (19)0.06430 (19)0.20584 (15)0.0498 (5)H15A-0.03670.08110.27160.075*H15B-0.16320.02760.21370.075*H15C-0.08190.14200.16840.075*O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.01970 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	H14A	0.5526	0.1226	0.2198	0.084*
H14C 0.4495 0.1175 0.3104 $0.084*$ C15 $-0.07474(19)$ $0.06430(19)$ $0.20584(15)$ $0.0498(5)$ H15A -0.0367 0.0811 0.2716 $0.075*$ H15B -0.1632 0.0276 0.2137 $0.075*$ H15C -0.0819 0.1420 0.1684 $0.075*$ O1 $-0.14548(13)$ $-0.09203(13)$ $0.02165(11)$ $0.0576(4)$ O2 $0.06687(12)$ $-0.16515(11)$ $0.01970(9)$ $0.0429(3)$ O3 $0.22670(13)$ $-0.26232(11)$ $0.12267(9)$ $0.0471(3)$ H3 0.2694 -0.3028 0.0802 $0.071*$ O4 $0.29776(15)$ $-0.11964(14)$ $0.29448(10)$ $0.0555(4)$ H4A 0.3033 -0.1824 0.2580 $0.083*$	H14B	0.5198	-0.0069	0.2725	0.084*
C15 $-0.07474(19)$ $0.06430(19)$ $0.20584(15)$ $0.0498(5)$ H15A -0.0367 0.0811 0.2716 $0.075*$ H15B -0.1632 0.0276 0.2137 $0.075*$ H15C -0.0819 0.1420 0.1684 $0.075*$ O1 $-0.14548(13)$ $-0.09203(13)$ $0.02165(11)$ $0.0576(4)$ O2 $0.06687(12)$ $-0.16515(11)$ $0.01970(9)$ $0.0429(3)$ O3 $0.22670(13)$ $-0.26232(11)$ $0.12267(9)$ $0.0471(3)$ H3 0.2694 -0.3028 0.0802 $0.071*$ O4 $0.29776(15)$ $-0.11964(14)$ $0.29448(10)$ $0.0555(4)$ H4A 0.3033 -0.1824 0.2580 $0.083*$	H14C	0.4495	0.1175	0.3104	0.084*
H15A -0.0367 0.0811 0.2716 0.075^* H15B -0.1632 0.0276 0.2137 0.075^* H15C -0.0819 0.1420 0.1684 0.075^* O1 $-0.14548(13)$ $-0.09203(13)$ $0.02165(11)$ $0.0576(4)$ O2 $0.06687(12)$ $-0.16515(11)$ $0.01970(9)$ $0.0429(3)$ O3 $0.22670(13)$ $-0.26232(11)$ $0.12267(9)$ $0.0471(3)$ H3 0.2694 -0.3028 0.0802 0.071^* O4 $0.29776(15)$ $-0.11964(14)$ $0.29448(10)$ $0.0555(4)$ H4A 0.3033 -0.1824 0.2580 0.083^*	C15	-0.07474 (19)	0.06430 (19)	0.20584 (15)	0.0498 (5)
H15B-0.16320.02760.21370.075*H15C-0.08190.14200.16840.075*O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.01970 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	H15A	-0.0367	0.0811	0.2716	0.075*
H15C -0.0819 0.1420 0.1684 0.075^* O1 $-0.14548(13)$ $-0.09203(13)$ $0.02165(11)$ $0.0576(4)$ O2 $0.06687(12)$ $-0.16515(11)$ $0.01970(9)$ $0.0429(3)$ O3 $0.22670(13)$ $-0.26232(11)$ $0.12267(9)$ $0.0471(3)$ H3 0.2694 -0.3028 0.0802 0.071^* O4 $0.29776(15)$ $-0.11964(14)$ $0.29448(10)$ $0.0555(4)$ H4A 0.3033 -0.1824 0.2580 0.083^*	H15B	-0.1632	0.0276	0.2137	0.075*
O1-0.14548 (13)-0.09203 (13)0.02165 (11)0.0576 (4)O20.06687 (12)-0.16515 (11)0.01970 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	H15C	-0.0819	0.1420	0.1684	0.075*
O20.06687 (12)-0.16515 (11)0.01970 (9)0.0429 (3)O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	O1	-0.14548 (13)	-0.09203 (13)	0.02165 (11)	0.0576 (4)
O30.22670 (13)-0.26232 (11)0.12267 (9)0.0471 (3)H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	O2	0.06687 (12)	-0.16515 (11)	0.01970 (9)	0.0429 (3)
H30.2694-0.30280.08020.071*O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	O3	0.22670 (13)	-0.26232 (11)	0.12267 (9)	0.0471 (3)
O40.29776 (15)-0.11964 (14)0.29448 (10)0.0555 (4)H4A0.3033-0.18240.25800.083*	H3	0.2694	-0.3028	0.0802	0.071*
H4A 0.3033 -0.1824 0.2580 0.083*	O4	0.29776 (15)	-0.11964 (14)	0.29448 (10)	0.0555 (4)
	H4A	0.3033	-0.1824	0.2580	0.083*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.0351 (9)	0.0668 (13)	0.0565 (11)	-0.0029 (9)	0.0062 (9)	-0.0042 (11)
C2	0.0502 (11)	0.0631 (13)	0.0635 (13)	-0.0217 (10)	0.0032 (11)	0.0153 (11)
C3	0.0551 (12)	0.0445 (11)	0.0723 (13)	-0.0125 (9)	-0.0128 (11)	0.0068 (10)
C4	0.0401 (10)	0.0368 (9)	0.0526 (10)	0.0005 (7)	-0.0124 (8)	-0.0072 (8)
C5	0.0328 (9)	0.0441 (10)	0.0369 (9)	0.0036 (8)	-0.0076 (7)	-0.0035 (8)
C6	0.0416 (10)	0.0486 (10)	0.0299 (8)	0.0076 (8)	-0.0010 (7)	-0.0035 (8)
C7	0.0347 (9)	0.0335 (9)	0.0322 (8)	-0.0004 (7)	0.0052 (7)	0.0024 (7)
C8	0.0349 (9)	0.0327 (9)	0.0406 (9)	-0.0038 (7)	0.0043 (8)	-0.0021 (7)
C9	0.0377 (9)	0.0339 (9)	0.0498 (10)	-0.0049 (8)	-0.0017 (8)	-0.0012 (8)
C10	0.0362 (9)	0.0331 (8)	0.0355 (8)	0.0005 (7)	0.0015 (7)	-0.0024 (7)
C11	0.0406 (9)	0.0345 (8)	0.0326 (8)	0.0018 (7)	0.0023 (7)	-0.0027 (7)
C12	0.0320 (8)	0.0398 (9)	0.0400 (9)	0.0069 (7)	0.0001 (7)	0.0024 (8)
C13	0.0713 (15)	0.0482 (12)	0.0823 (16)	0.0058 (11)	-0.0124 (12)	-0.0203 (11)
C14	0.0453 (11)	0.0706 (14)	0.0519 (10)	0.0003 (10)	-0.0178 (9)	-0.0061 (11)
C15	0.0436 (10)	0.0480 (11)	0.0577 (11)	0.0047 (9)	0.0100 (9)	-0.0039 (9)
01	0.0394 (7)	0.0547 (8)	0.0786 (9)	-0.0039 (6)	-0.0148 (7)	-0.0134 (8)
O2	0.0402 (7)	0.0426 (7)	0.0458 (7)	-0.0028 (5)	-0.0015 (6)	-0.0104 (6)
O3	0.0542 (8)	0.0359 (7)	0.0511 (7)	0.0070 (6)	0.0127 (6)	0.0047 (5)
04	0.0637 (9)	0.0639 (9)	0.0390 (7)	0.0101 (7)	-0.0063 (6)	0.0115 (6)
		()				

Geometric parameters (Å, °)

C1—C2	1.517 (3)	C8—C15	1.494 (2)
C1-C12	1.531 (2)	C9—O1	1.206 (2)
C1—H1A	0.9700	C9—O2	1.350 (2)
C1—H1B	0.9700	C10—O3	1.3943 (19)

$C^{2}-C^{3}$	1 521 (3)	C10-02	1460(2)
$C_2 H_2 \Delta$	0.9700	C10-C11	1.100(2) 1.514(2)
C2H2B	0.9700	C_{11}	1.517(2) 1 540(2)
C_2 C_2 C_4	1 528 (3)	C11_H11A	0.9700
$C_3 H_{3A}$	0.9700	C11 H11R	0.9700
C2 H2P	0.9700		0.9700
C_{3} C_{13}	1,531 (2)	C12— $H12$	0.9800
$C_4 = C_1 S_2$	1.551(3)	C13 H13R	0.9000
$C_4 = C_3$	1.331(2)	C12 H12C	0.9000
C4 - H4	0.9800		0.9600
C_{5} C_{12}	1.558(2)	C14 $H14$	0.9000
C5—C12	1.558(2)		0.9600
CSC6	1.556 (2)		0.9600
C6	1.428 (2)	CI5—HI5A	0.9600
	1.490 (2)	СІЗ—НІЗВ	0.9600
С6—Н6	0.9800	CI5—HISC	0.9600
C7—C8	1.323 (2)	O3—H3	0.8200
C7—C10	1.497 (2)	O4—H4A	0.8200
C8—C9	1.473 (2)		
C_{2} — C_{1} — C_{12}	111 83 (15)	01	121 66 (16)
C_2 C_1 H_1A	109.2	01 - C9 - C8	128.29 (17)
$C_1^2 - C_1^2 - H_1^A$	109.2	$0^{2}-0^{9}-0^{8}$	110.06(14)
$C_2 - C_1 - H_1B$	109.2	03-C10-02	108 61 (12)
$C_1^2 - C_1^2 - H_1^2 B$	109.2	O_{3} C_{10} C_{7}	110.25(13)
HIA_C1_HIB	107.9	$0^{2}-C^{10}-C^{7}$	104.09(12)
C1 - C2 - C3	111 80 (17)	$O_2 = C_{10} = C_1^{11}$	104.09(12) 113.40(14)
C1 C2 H2A	100.3	$O_2 = C_{10} = C_{11}$	110.40(14)
$C_1 = C_2 = H_2 \Lambda$	109.3	C_{2} C_{10} C_{11}	110.05(13) 100.46(13)
C_{3} C_{2} H_{2} H_{2} H_{2}	109.3	$C_{10} = C_{10} = C_{11}$	109.40(13)
$C_1 = C_2 = H_2 B$	109.3	$C_{10} = C_{11} = C_{12}$	100.4
C_{3}	109.5	C12 - C11 - H11A	109.4
$\Pi 2A - C_2 - \Pi 2B$	107.9	CI2—CII—HIIA	109.4
$C_2 = C_3 = U_2 A$	113.11 (10)		109.4
$C_2 = C_3 = H_2 A$	109.0		109.4
C4 - C3 - H3A	109.0	HIIA—CII—HIIB	108.0
$C_2 = C_3 = H_3 B$	109.0	C1 = C12 = C11	109.57 (14)
C4 - C3 - H3B	109.0	C1 = C12 = C5	111.28 (15)
$H_3A - C_3 - H_3B$	107.8		113.78 (13)
$C_3 - C_4 - C_{13}$	109.68 (16)	CI_CI2_HI2	107.3
C3—C4—C5	111.97 (15)	СП—СІ2—НІ2	107.3
C13—C4—C5	114.13 (15)	C5—C12—H12	107.3
C3—C4—H4	106.9	C4—C13—H13A	109.5
C13—C4—H4	106.9	C4—C13—H13B	109.5
C5—C4—H4	106.9	H13A—C13—H13B	109.5
C14—C5—C4	111.07 (15)	C4—C13—H13C	109.5
C14—C5—C12	109.80 (14)	H13A—C13—H13C	109.5
C4—C5—C12	109.35 (14)	H13B—C13—H13C	109.5
C14—C5—C6	107.17 (14)	C5—C14—H14A	109.5
C4—C5—C6	110.06 (14)	C5—C14—H14B	109.5

C12—C5—C6	109.34 (14)	H14A—C14—H14B	109.5
O4—C6—C7	109.88 (14)	C5—C14—H14C	109.5
O4—C6—C5	112.07 (14)	H14A—C14—H14C	109.5
C7—C6—C5	109.79 (13)	H14B—C14—H14C	109.5
O4—C6—H6	108.3	C8—C15—H15A	109.5
С7—С6—Н6	108.3	C8—C15—H15B	109.5
С5—С6—Н6	108.3	H15A—C15—H15B	109.5
C8—C7—C6	133.31 (15)	C8—C15—H15C	109.5
C8—C7—C10	110.12 (14)	H15A—C15—H15C	109.5
C6—C7—C10	116.18 (14)	H15B—C15—H15C	109.5
C7—C8—C9	107.39 (15)	C9—O2—C10	108.29 (12)
C7—C8—C15	131.31 (15)	С10—О3—Н3	109.5
C9—C8—C15	121.29 (15)	C6—O4—H4A	109.5
C12—C1—C2—C3	54.1 (2)	C7—C8—C9—O2	-1.19 (19)
C1—C2—C3—C4	-52.5 (2)	C15—C8—C9—O2	177.43 (15)
C2—C3—C4—C13	-179.04 (17)	C8—C7—C10—O3	-118.86 (15)
C2—C3—C4—C5	53.2 (2)	C6—C7—C10—O3	67.41 (18)
C3—C4—C5—C14	67.24 (19)	C8—C7—C10—O2	-2.55 (17)
C13—C4—C5—C14	-58.1 (2)	C6—C7—C10—O2	-176.28 (13)
C3—C4—C5—C12	-54.10 (18)	C8—C7—C10—C11	115.75 (15)
C13—C4—C5—C12	-179.45 (15)	C6-C7-C10-C11	-57.99 (18)
C3—C4—C5—C6	-174.23 (14)	O3—C10—C11—C12	-70.31 (17)
C13—C4—C5—C6	60.42 (19)	O2-C10-C11-C12	167.39 (12)
C14—C5—C6—O4	-48.17 (19)	C7—C10—C11—C12	53.25 (17)
C4—C5—C6—O4	-169.07 (14)	C2-C1-C12-C11	69.93 (19)
C12—C5—C6—O4	70.79 (16)	C2-C1-C12-C5	-56.8 (2)
C14—C5—C6—C7	-170.58 (14)	C10-C11-C12-C1	-179.08 (14)
C4—C5—C6—C7	68.52 (17)	C10-C11-C12-C5	-53.80 (18)
C12—C5—C6—C7	-51.62 (18)	C14—C5—C12—C1	-66.08 (19)
O4—C6—C7—C8	121.9 (2)	C4C5C12C1	56.03 (18)
C5—C6—C7—C8	-114.4 (2)	C6—C5—C12—C1	176.60 (13)
O4—C6—C7—C10	-66.24 (18)	C14—C5—C12—C11	169.56 (15)
C5—C6—C7—C10	57.46 (19)	C4C5C12C11	-68.34 (17)
C6—C7—C8—C9	174.56 (17)	C6-C5-C12-C11	52.23 (17)
C10—C7—C8—C9	2.30 (18)	O1—C9—O2—C10	179.36 (15)
C6—C7—C8—C15	-3.9 (3)	C8—C9—O2—C10	-0.46 (18)
C10—C7—C8—C15	-176.13 (17)	O3—C10—O2—C9	119.19 (14)
C7—C8—C9—O1	179.00 (18)	C7—C10—O2—C9	1.73 (16)
C15—C8—C9—O1	-2.4 (3)	C11—C10—O2—C9	-115.75 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
04—H4 <i>A</i> …O3	0.82	2.11	2.8061 (19)	142
O3—H3…O1 ⁱ	0.82	1.93	2.7502 (18)	174

Symmetry code: (i) x+1/2, -y-1/2, -z.