metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexakis(1*H*-imidazole- κN^3)iron(II) sulfate-1*H*-imidazole (1/2)

Alexandra Nistor,^a Sergiu Shova,^b* Maria Cazacu^a and Alina Lazar^a

^aInstitute of Macromolecular Chemistry 'Petru Poni', Inorganic Polymers Department, 41A Grigore Ghica Voda Alley, Iasi-700487, Romania, and ^bInstitute of Applied Physics of the Academy of Science of Moldova, 5 Academiei Street, Chisinau MD-2028, Republic of Moldova

Correspondence e-mail: shova@usm.md

Received 25 August 2011; accepted 18 October 2011

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.009 Å; R factor = 0.065; wR factor = 0.107; data-to-parameter ratio = 13.2.

The asymmetric unit of the title compound, $[Fe(C_3H_4N_2)_6]$ -SO₄·2C₃H₄N₂, contains two complex cations, two sulfate anions and four imidazole molecules. In both cations, the Fe^{II} atom is coordinated by six monodentate imidazole ligands and exhibits a slightly distorted octahedral coordination geometry. The Fe–N distances [2.184 (4)–2.218 (4) Å] point to a highspin state of the Fe²⁺ ions. N–H···O hydrogen bonds between the ionic components generate a three-dimensional framework containing corrugated channels along [001], which are filled by **N–H···N** hydrogen-bonded imidazole chains.

Related literature

For the crystal structures of other hexakis(imidazole)iron(II) salts, see: Carver *et al.* (2003); Jian *et al.* (2004). For spin crossover in complexes with the FeN₆ core, see: Gütlich & Goodwin (2004); Lemercier *et al.* (2006). For the influence of counter-ions and solvent molecules on spin crossover behaviour, see: Bousseksou *et al.* (1996).

c = 15.9883 (11) Å

 $\alpha = 69.813 \ (5)^{\circ}$

 $\beta = 69.949(5)^{\circ}$

 $\gamma = 73.214 \ (4)^{\circ}$

V = 3291.3 (3) Å³

Experimental

Crystal data $[Fe(C_3H_4N_2)_6]SO_4 \cdot 2C_3H_4N_2$ $M_r = 696.57$

[10(0314112)6]004 20314112
$M_r = 696.57$
Triclinic, P1
a = 15.4091 (8) Å
b = 15.4436 (7) Å

Z = 4Mo $K\alpha$ radiation $\mu = 0.58 \text{ mm}^{-1}$

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.107$ S = 0.8510955 reflections $0.20 \times 0.15 \times 0.15 \text{ mm}$

T = 200 K

15987 measured reflections 10955 independent reflections 5185 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

829 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.63$ e Å⁻³ $\Delta \rho_{min} = -0.50$ e Å⁻³

Table 1		
TT	hand	

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2−H49···O4	0.88	1.84	2.679 (5)	160
N4−H50···O5	0.88	1.89	2.762 (5)	170
$N6-H51\cdots O3^{i}$	0.88	2.09	2.949 (7)	163
$N8-H52\cdots O1^{ii}$	0.88	1.94	2.822 (5)	176
$N10-H53\cdots O7^{iii}$	0.88	1.85	2.711 (6)	166
$N12 - H54 \cdots O7^{iv}$	0.88	2.10	2.867 (7)	145
$N12-H54\cdots O5^{iv}$	0.88	2.61	3.434 (7)	157
$N14 - H55 \cdots O8^{v}$	0.88	1.85	2.716 (5)	167
N16−H56· · ·O1 ^{vi}	0.88	2.22	3.074 (6)	163
N16−H56· · ·O4 ^{vi}	0.88	2.26	2.942 (6)	135
N18−H57···O6 ^{vii}	0.88	2.07	2.937 (6)	169
N18−H57···O8 ^{vii}	0.88	2.47	3.100 (6)	129
N20−H58···O6	0.88	2.21	3.071 (6)	166
N20−H58···O7	0.88	2.45	3.120 (6)	133
N22-H59···O2	0.88	2.18	2.939 (6)	144
N22-H59···O3	0.88	2.37	3.186 (6)	155
$N24 - H60 \cdot \cdot \cdot O2^{viii}$	0.88	1.84	2.710 (6)	168
N26-H61···N29	0.88	1.95	2.825 (6)	177
$N27 - H62 \cdot \cdot \cdot N25$	0.88	2.04	2.875 (6)	158
$N30-H63\cdots N32^{ix}$	0.88	2.02	2.869 (6)	160
N31−H64· · ·N28	0.88	1.92	2.800 (6)	174

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x, y + 1, z; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z + 1; (v) x, y - 1, z; (vi) x - 1, y, z; (vii) -x + 1, -y + 1, -z; (viii) -x + 1, -y - z + 1; (ix) x, y, z - 1.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This research was financially supported by the European Regional Development Fund, Sectoral Operational Programme 'Increase of Economic Competitiveness', Priority Axis 2 (SOP IEC-A2–O2.1.2–2009–2, ID 570, COD SMIS-CSNR: 12473, contract 129/2010-POLISILMET).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2405).

References

Bousseksou, A., Verelst, M., Constant-Machado, H., Lemercier, G., Tuchagues, J. P. & Varret, F. (1996). *Inorg. Chem.* 35, 110–115.

- Carver, G., Tregenna-Piggott, P. L. W., Barra, A. L., Neels, A. & Stride, J. A. (2003). Inorg. Chem. 42, 5771–5777.
 Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gütlich, P. & Goodwin, H. A. (2004). *Top. Curr. Chem.* **233**, 1–47. Jian, F. F., Wang, Q. X., Sun, P. P. & Jiao, K. (2004). *Chin. J. Inorg. Chem.* **20**, 581-585.
- Lemercier, G., Brefuel, N., Shova, S., Wolny, J. A., Dahan, F., Verelst, M., Paulsen, H., Trautwein, A. X. & Tuchagues, J. P. (2006). Chem. Eur. J. 12, 7421-7432.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m1600-m1601 [doi:10.1107/S1600536811043169]

Hexakis(1*H*-imidazole- κN^3)iron(II) sulfate-1*H*-imidazole (1/2)

Alexandra Nistor, Sergiu Shova, Maria Cazacu and Alina Lazar

S1. Comment

As part of our research of iron(II) complexes with mono- and polydentate N-containing ligands we report the synthesis and crystal structure of $[Fe(Im)_6]SO_42Im$, where Im = imidazole. The cationic complexes $[Fe(Im)_6]^{2+}$ characterized by an $[FeN_6]$ coordination core are increasingly investigated as spin crossover (SC) materials, because their bistability (LS, S=0, ${}^{1}A_1 <->$ HS, S=2, ${}^{5}T_{2g}$) is easily triggered thermally, magnetically, by pressure or by light irradiation (Gütlich & Goodwin, 2004; Lemercier *et al.*, 2006).

The presence of sulfate counteranion in the title compound with respect to the earlier studied hexakis(imidazole)iron(II) dinitrate, $[Fe(Im)_6]2(NO_3)$ (Carver *et al.*, 2003) and hexakis(imidazole)iron(II) dichloride tetrahydate, $[Fe(Im)_6]Cl_2 4H_2O$ (Jian *et al.*, 2004) is useful as the cationic species could exhibit a large variety of SC behaviors, depending on the non-coordinated counter anions and solvate molecules (Bousseksou *et al.*, 1996). The asymmetric unit of the title compound is depicted in Fig. 1. The Fe^{II} atoms have a slightly distorted octahedral environment, being each coordinated by six monodentate imidazole ligands. The interatomic distances of the FeN₆ cores allow to conclude that the Fe²⁺ cation is in a high-spin state. Indeed, the average Fe—N bond lenghs for the two $[Fe(Im)_6]^{2+}$ units A and B is equal to 2.200 (4) Å and 2.210 (4) Å, respectively. The ionic components in the crystal form a three dimensional framework *via* N—H···O hydrogen bonds (Fig. 2 a) and the imidazole molecules form hydrogen bonded chains running in the channels of ionic framework (Fig. 2 b). The geometry of hydrogen bonds is listed in Table 1.

S2. Experimental

Colourless and transparent single crystals of the title compound were obtained as a principal product from the reaction of iron(III) sulfate pentahydrate (0.06 mmol/0.024 g) and imidazole (0.36 mmol/0.0245 g) in the presence of hexamethyl-disilazane (0.06 mmol/0.0096 g), terephtalic acid (0.06 mmol/0.00996 g) and dimethylformamide (6 ml) as solvent. The reaction mixture was placed in a glass reactor, which was sealed and kept at 354 K for 24 h. Then, the mixture was cooled to room temperature with a cooling rate of 0.1 K/min and maintained in these conditions for 20 days. Suitable crystals for *X*- ray analysis were separated at the bottom of the flask. Elemental analysis calculated for ($C_{24}H_{32}N_{16}FeSO_4$): C 41.39%, H, 4.63%, N, 32.17%, found: C 41.50%; 4.60%, N 32.11%.

S3. Refinement

The H atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.95 Å, N—H = 0.88 Å and with $U_{iso}(H) = 1.2 x U_{eq}(C,N)$.

Figure 1

The structure of the asymmetric unit for $[Fe(C_3H_4N_2)_6]SO_4.2C_3H_4N_2$ with displacement ellipsoids shown at the 50% probability level.

Figure 2

Crystal packing diagrams showing three-dimensional framework formed by hydrogen-bonded cations and anions (*a*) and the [0 0 1] chain of hydrogen-bonded imidazole molecules (*b*). Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are shown with dashed lines. Symmetry code: (i)1 - x, 1 - y, 1 - z; (ii) x - 1, y, z.

Hexakis(1*H*-imidazole- κN^3)iron(II) sulfate- 1*H*-imidazole (1/2)

Crystal data	
$[Fe(C_3H_4N_2)_6]SO_4 \cdot 2C_3H_4N_2$	$\beta = 69.949 \ (5)^{\circ}$
$M_r = 696.57$	$\gamma = 73.214 \ (4)^{\circ}$
Triclinic, $P\overline{1}$	V = 3291.3 (3) Å ³
a = 15.4091 (8) Å	Z = 4
b = 15.4436 (7) Å	F(000) = 1448
c = 15.9883 (11) Å	$D_{\rm x} = 1.406 {\rm ~Mg} {\rm ~m}^{-3}$
$\alpha = 69.813 \ (5)^{\circ}$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3265 reflections	T = 200 K
$\theta = 2.9 - 29.1^{\circ}$	Prism, colourless
$\mu = 0.58 \text{ mm}^{-1}$	$0.20 \times 0.15 \times 0.15$ mm
Data collection	
Oxford Diffraction Xcalibur E	15987 measured reflections
diffractometer	10955 independent reflections
Radiation source: fine-focus sealed tube	5185 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
Detector resolution: 16.1593 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.9^\circ$
ω scans	$h = -14 \rightarrow 18$
Absorption correction: multi-scan	$k = -18 \rightarrow 18$
(CrysAlis PRO; Oxford Diffraction, 2009)	$l = -19 \rightarrow 18$
$T_{\min} = 0.901, \ T_{\max} = 0.917$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
S = 0.85	H-atom parameters constrained
10955 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0001P)^2]$
829 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8831 (4)	0.5306 (3)	0.1041 (4)	0.0406 (14)
H1	0.8907	0.5862	0.0547	0.049*
C2	0.8911 (4)	0.4450 (4)	0.0941 (4)	0.0564 (18)
H2	0.9063	0.4293	0.0376	0.068*
C3	0.8569 (3)	0.4366 (3)	0.2397 (4)	0.0408 (14)
Н3	0.8431	0.4115	0.3050	0.049*
C4	0.6680 (4)	0.7430 (4)	0.3389 (4)	0.0506 (17)
H4	0.6936	0.7779	0.3601	0.061*
C5	0.5748 (4)	0.7497 (4)	0.3535 (4)	0.0613 (19)
Н5	0.5238	0.7872	0.3870	0.074*
C6	0.6578 (4)	0.6494 (4)	0.2730 (4)	0.0485 (15)
H6	0.6733	0.6043	0.2394	0.058*

C7	0.8287 (4)	0.7768 (3)	0.0738 (4)	0.0514 (16)
H7	0.7629	0.7785	0.0979	0.062*
C8	0.8722 (5)	0.8207 (4)	-0.0143 (5)	0.069 (2)
H8	0.8433	0.8580	-0.0624	0.083*
C9	0.9751 (4)	0.7461 (3)	0.0637 (4)	0.0405 (14)
H9	1.0337	0.7222	0.0786	0.049*
C10	0.8820 (4)	0.7156 (3)	0.4120 (4)	0.0486 (16)
H10	0.8740	0.6587	0.4596	0.058*
C11	0.8913 (4)	0.7942 (4)	0.4237 (4)	0.0538 (17)
H11	0.8904	0.8035	0.4798	0.065*
C12	0.8984 (3)	0.8172 (3)	0.2799 (4)	0.0420 (15)
H12	0.9041	0.8471	0.2160	0.050*
C13	1.0812 (4)	0.5137 (4)	0.1793 (4)	0.0497 (17)
H13	1.0588	0.4815	0.1522	0.060*
C14	1.1718 (4)	0.5038 (4)	0.1747 (5)	0.066 (2)
H14	1.2241	0.4649	0.1442	0.079*
C15	1.0857 (4)	0.6036 (4)	0.2509 (4)	0.0482 (16)
H15	1.0678	0.6492	0.2843	0.058*
C16	0.9236 (4)	0.4531 (4)	0.4261 (4)	0.0562 (17)
H16	0.9892	0.4450	0.3959	0.067*
C17	0.8826 (5)	0.3985 (4)	0.5096 (5)	0.073 (2)
H17	0.9134	0.3443	0.5471	0.088*
C18	0.7769 (5)	0.5072 (3)	0.4562 (4)	0.0522 (17)
H18	0.7165	0.5435	0.4516	0.063*
C19	0.3554 (4)	0.0387 (4)	0.0896 (4)	0.0521 (17)
H19	0.3463	0.0980	0.0455	0.063*
C20	0.3532 (4)	-0.0454 (4)	0.0809 (4)	0.0610 (19)
H20	0.3413	-0.0552	0.0307	0.073*
C21	0.3814 (3)	-0.0680 (4)	0.2105 (4)	0.0495 (17)
H21	0.3933	-0.0991	0.2692	0.059*
C22	0.1618 (4)	0.2330 (4)	0.3056 (4)	0.0572 (18)
H22	0.1804	0.2809	0.3164	0.069*
C23	0.0712 (4)	0.2272 (5)	0.3179 (5)	0.079 (2)
H23	0.0154	0.2689	0.3394	0.094*
C24	0.1668 (4)	0.1106 (4)	0.2685 (4)	0.0498 (16)
H24	0.1892	0.0549	0.2486	0.060*
C25	0.2971 (4)	0.2983 (3)	0.0741 (4)	0.0421 (14)
H25	0.2336	0.2989	0.1105	0.050*
C26	0.3248 (4)	0.3585 (4)	-0.0112 (4)	0.0521 (16)
H26	0.2861	0.4083	-0.0446	0.063*
C27	0.4462 (4)	0.2595 (3)	0.0288 (4)	0.0431 (15)
H27	0.5095	0.2279	0.0259	0.052*
C28	0.3728 (4)	0.2350 (4)	0.3791 (5)	0.067 (2)
H28	0.3601	0.1825	0.4311	0.081*
C29	0.3862 (5)	0.3168 (4)	0.3815 (5)	0.076 (2)
H29	0.3849	0.3321	0.4346	0.092*
C30	0.3982 (4)	0.3240 (3)	0.2411 (4)	0.0489 (17)
H30	0.4074	0.3474	0.1760	0.059*

C31	0.5881 (4)	0.0190 (4)	0.1647 (4)	0.0497 (16)
H31	0.5665	-0.0214	0.1461	0.060*
C32	0.6772 (4)	0.0084 (4)	0.1642 (5)	0.073 (2)
H32	0.7297	-0.0375	0.1445	0.088*
C33	0.5884 (4)	0.1284 (4)	0.2165 (4)	0.0484 (16)
H33	0.5696	0.1808	0.2413	0.058*
C34	0.4485 (4)	-0.0236(4)	0.4049 (4)	0.0511 (16)
H34	0.5128	-0.0252	0.3715	0.061*
C35	0.4172 (4)	-0.0696(4)	0.4943 (4)	0.0550 (17)
H35	0.4547	-0.1095	0.5345	0.066*
C36	0.2995 (4)	0.0082 (4)	0.4388 (4)	0.0494 (16)
H36	0.2366	0.0327	0.4346	0.059*
C37	0.5915(4)	0.0327 0.4256 (3)	0.0643(4)	0.029
H37	0.5389	0.4761	0.0614	0.053*
C38	0.6337(4)	0.3757(4)	0.0011 0.0021(4)	0.033 0.0449 (15)
H38	0.6162	0.3853	-0.0524	0.054*
C30	0.0102 0.7043 (4)	0.3218(4)	0.0924	0.054
H30	0.7043 (4)	0.3218 (4)	0.1094 (4)	0.0529 (10)
C40	0.7474 0.5647 (4)	0.2342 0.4377(4)	0.1440 0.3840 (4)	0.0502 (16)
U40	0.5211	0.4956	0.3745	0.0502 (10)
C41	0.5211 0.5914 (4)	0.3905 (4)	0.5745 0.4620 (4)	0.0500 (16)
H41	0.5574	0.5909 (4)	0.5178	0.0500 (10)
C42	0.6655 (4)	0.3135(4)	0.3643(4)	0.000
С 1 2 Н42	0.0055 (4)	0.3135 (4)	0.3359	0.055*
C43	0.8919 (4)	0.2000	-0.0391(4)	0.035 0.0453 (15)
С 4 3 Н43	0.0919 (4)	0.0628	0.0591 (4)	0.054*
11 4 5 C44	0.9766 (4)	0.0552 (3)	-0.1126(4)	0.034
U H//	0.9200 (4)	-0.0001	-0.1120 (4)	0.0410 (14)
C45	0.9729 0.8238 (4)	0.0001 0.1831 (4)	-0.1424(4)	0.049
С 4 5 Н45	0.7855	0.1351 (4)	-0.1747	0.055*
11 4 5 C46	0.7855	0.0070 (3)	0.1747 0.5650 (4)	0.033
U40 H46	0.9204 (4)	0.05/3	0.5581	0.0403 (14)
C47	0.9791 0.8726 (4)	0.0343 0.1345 (4)	0.5381	0.049°
U47	0.8720 (4)	0.1343 (4)	0.3007 (4)	0.0409 (13)
C18	0.0090	0.1239	0.4413	0.030°
U40	0.7970 (4)	0.1849 (3)	0.0218 (4)	0.0427(13) 0.051*
1140 N1	0.7505	0.2179	0.0024	0.031° 0.0222 (11)
INI NO	0.8023(3)	0.3232(2) 0.3862(2)	0.1939(3)	0.0332(11)
INZ 1140	0.8731 (3)	0.3803 (3)	0.1605 (5)	0.0449 (13)
П49 N2	0.8722 0.7205 (3)	0.5201 0.6705 (2)	0.1930	0.034°
NJ	0.7203(3) 0.5702(3)	0.0793(3)	0.2699(3)	0.0378(11) 0.0463(12)
IN4 1150	0.5702 (5)	0.0900 (3)	0.3088 (3)	0.0403(12)
П30 N5	0.3183 0.8021 (2)	0.0805 0.7205 (2)	0.3047 0.1210(2)	0.030°
NJ NG	0.8931(3)	0.7303(2)	0.1219(3)	0.0552(11)
1NU 1151	0.9043 (4)	0.0004 (3)	-0.0193(3)	0.0393 (13)
ПЭ1 N7	1.0099	0.0194	-0.008/	$0.0/1^{*}$
IN /	0.8855(3)	0.7292(2)	0.3222(3)	0.0322(11)
1Nð 1152	0.9024 (3)	0.85/4(3)	0.3397 (3)	0.041/(12)
пэ2	0.9107	0.9151	0.3207	0.050*

N9	1.0254 (3)	0.5760 (3)	0.2280 (3)	0.0394 (11)
N10	1.1739 (3)	0.5608 (3)	0.2223 (4)	0.0571 (14)
H53	1.2240	0.5678	0.2321	0.068*
N11	0.8552 (3)	0.5217 (3)	0.3926 (3)	0.0360 (11)
N12	0.7920 (4)	0.4350 (3)	0.5287 (4)	0.0783 (19)
H54	0.7491	0.4153	0.5800	0.094*
N13	0.3731 (3)	0.0232 (3)	0.1728 (3)	0.0383 (12)
N14	0.3711 (3)	-0.1118 (3)	0.1568 (3)	0.0463 (13)
H55	0.3753	-0.1727	0.1687	0.056*
N15	0.2210 (3)	0.1589 (3)	0.2754 (3)	0.0389 (11)
N16	0.0771(4)	0.1505 (4)	0.2931 (4)	0.0773 (18)
H56	0.0293	0 1301	0.2933	0.093*
N17	0.0235 0.3736 (3)	0.1301 0.2371(3)	0.0996 (3)	0.0355(11)
N18	0.5750(3) 0.4197(3)	0.2371(3) 0.3317(3)	-0.0379(3)	0.0335(11) 0.0476(12)
H57	0.4574	0.3577	-0.0906	0.057*
N10	0.4374 0.3804 (3)	0.3377 0.2307 (3)	0.0900	0.037 0.0443(13)
N20	0.3004(3)	0.2397(3)	0.2897(3) 0.2030(4)	0.0443(13)
IN20 L159	0.4017(4)	0.3723 (3)	0.2939 (4)	0.0091 (18)
N21	0.4122 0.5218 (2)	0.4299 0.0037(3)	0.2751 0.1048 (2)	0.085°
N21	0.5518(3)	0.0937(3)	0.1948(3)	0.0301(11)
N22	0.0758 (3)	0.0780 (3)	0.1980 (4)	0.0001 (10)
H39	0.7249	0.0886	0.2065	0.079°
N23	0.3744 (3)	0.0256 (3)	0.3694 (3)	0.0376(11)
N24	0.3226 (3)	-0.0481 (3)	0.5157 (3)	0.0526 (13)
H60	0.2835	-0.0675	0.5701	0.063*
N25	0.6377 (3)	0.3910 (3)	0.1336 (3)	0.0469 (13)
N26	0.7052 (3)	0.3096 (3)	0.0299 (3)	0.0536 (14)
H61	0.7441	0.2676	0.0018	0.064*
N27	0.6113 (3)	0.3877 (3)	0.3215 (3)	0.0506 (13)
H62	0.6067	0.4013	0.2648	0.061*
N28	0.6587 (3)	0.3115 (3)	0.4493 (3)	0.0561 (14)
N29	0.8255 (3)	0.1704 (3)	-0.0570 (3)	0.0486 (13)
N30	0.8833 (3)	0.1136 (3)	-0.1778 (3)	0.0452 (12)
H63	0.8922	0.1074	-0.2330	0.054*
N31	0.7945 (3)	0.1907 (3)	0.5383 (3)	0.0460 (12)
H64	0.7496	0.2252	0.5119	0.055*
N32	0.8733 (3)	0.1284 (3)	0.6417 (3)	0.0452 (12)
O1	0.9397 (2)	0.0386 (2)	0.2964 (3)	0.0546 (11)
O2	0.7783 (3)	0.1092 (3)	0.3067 (3)	0.0821 (14)
O3	0.8813 (3)	0.1121 (4)	0.1626 (3)	0.1085 (18)
O4	0.8938 (3)	0.1995 (2)	0.2527 (4)	0.113 (2)
05	0.4011 (3)	0.6542 (2)	0.3180 (3)	0.0648 (13)
O6	0.4728 (3)	0.5586 (2)	0.2131 (3)	0.0780 (14)
07	0.3098 (3)	0.5833 (3)	0.2806 (3)	0.0946 (17)
08	0.3793 (3)	0.7069 (2)	0.1671 (3)	0.0575 (12)
S1	0.87346 (9)	0.11509 (8)	0.25340 (9)	0.0254 (3)
S2	0.39014 (9)	0.62584 (8)	0.24501 (9)	0.0286 (3)
Fe1	0.87273 (5)	0.62872 (4)	0.25814 (5)	0.03015 (19)
Fe2	0.37628 (5)	0.12942 (5)	0.23314 (6)	0.0351 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.057 (4)	0.037 (3)	0.027 (3)	-0.016 (3)	-0.011 (3)	-0.003 (3)
C2	0.079 (5)	0.054 (4)	0.040 (4)	-0.018 (3)	-0.013 (4)	-0.016 (3)
C3	0.051 (4)	0.040 (3)	0.036 (4)	-0.015 (3)	-0.014 (3)	-0.009(3)
C4	0.042 (4)	0.048 (4)	0.064 (5)	-0.009 (3)	-0.017 (4)	-0.015 (3)
C5	0.050 (4)	0.062 (4)	0.075 (6)	0.003 (3)	-0.014 (4)	-0.036 (4)
C6	0.049 (4)	0.061 (4)	0.034 (4)	-0.009 (3)	-0.012 (3)	-0.012 (3)
C7	0.056 (4)	0.052 (4)	0.037 (4)	-0.020(3)	-0.019 (4)	0.012 (3)
C8	0.074 (5)	0.077 (5)	0.051 (5)	-0.015 (4)	-0.038 (4)	0.012 (4)
C9	0.046 (4)	0.033 (3)	0.033 (4)	-0.013 (3)	-0.001 (3)	-0.004 (3)
C10	0.087 (5)	0.034 (3)	0.030 (4)	-0.023 (3)	-0.014 (3)	-0.008 (3)
C11	0.078 (5)	0.049 (4)	0.039 (4)	-0.016 (3)	-0.010 (4)	-0.021 (3)
C12	0.057 (4)	0.032 (3)	0.043 (4)	-0.017 (3)	-0.015 (3)	-0.009 (3)
C13	0.036 (4)	0.053 (4)	0.071 (5)	0.000 (3)	-0.015 (3)	-0.037 (4)
C14	0.050 (4)	0.061 (4)	0.084 (6)	0.009 (4)	-0.023 (4)	-0.028 (4)
C15	0.040 (4)	0.055 (4)	0.059 (5)	-0.008 (3)	-0.020 (3)	-0.020 (3)
C16	0.055 (4)	0.062 (4)	0.049 (5)	-0.019 (4)	-0.019 (4)	-0.001 (3)
C17	0.103 (6)	0.057 (4)	0.048 (5)	-0.013 (5)	-0.023 (5)	0.002 (4)
C18	0.079 (5)	0.034 (3)	0.029 (4)	-0.009 (3)	-0.007 (4)	0.000 (3)
C19	0.091 (5)	0.039 (3)	0.027 (4)	-0.021 (3)	-0.018 (4)	0.000 (3)
C20	0.101 (6)	0.050 (4)	0.042 (4)	-0.032 (4)	-0.009 (4)	-0.020 (3)
C21	0.049 (4)	0.043 (3)	0.071 (5)	-0.006 (3)	-0.021 (4)	-0.030 (4)
C22	0.045 (4)	0.043 (4)	0.067 (5)	0.000 (3)	-0.005 (4)	-0.013 (3)
C23	0.029 (4)	0.096 (6)	0.066 (6)	0.018 (4)	0.001 (4)	-0.007 (5)
C24	0.041 (4)	0.084 (4)	0.029 (4)	-0.032 (4)	-0.008 (3)	-0.005 (3)
C25	0.035 (3)	0.053 (3)	0.028 (3)	-0.018 (3)	-0.004 (3)	0.004 (3)
C26	0.033 (4)	0.064 (4)	0.045 (4)	-0.007 (3)	-0.003 (3)	-0.007 (3)
C27	0.029 (3)	0.048 (4)	0.059 (5)	-0.010 (3)	-0.007 (3)	-0.025 (3)
C28	0.084 (5)	0.078 (5)	0.048 (5)	-0.039 (4)	0.003 (4)	-0.028 (4)
C29	0.115 (7)	0.067 (5)	0.072 (6)	-0.020 (4)	-0.036 (5)	-0.037 (4)
C30	0.058 (4)	0.040 (3)	0.063 (5)	-0.013 (3)	-0.023 (4)	-0.022 (3)
C31	0.035 (4)	0.060 (4)	0.055 (5)	-0.011 (3)	-0.003 (3)	-0.025 (3)
C32	0.038 (4)	0.091 (5)	0.092 (7)	-0.004 (4)	-0.017 (4)	-0.034 (5)
C33	0.045 (4)	0.061 (4)	0.052 (4)	-0.016 (3)	-0.027 (3)	-0.012 (3)
C34	0.045 (4)	0.061 (4)	0.041 (4)	-0.011 (3)	-0.012 (3)	-0.005(3)
C35	0.041 (4)	0.069 (4)	0.048 (5)	-0.006(3)	-0.014 (4)	-0.011 (4)
C36	0.047 (4)	0.063 (4)	0.031 (4)	-0.026(3)	-0.003(3)	0.001 (3)
C37	0.052 (4)	0.041 (3)	0.044 (4)	-0.010 (3)	-0.019 (3)	-0.010 (3)
C38	0.051 (4)	0.065 (4)	0.021 (3)	-0.019 (3)	-0.012 (3)	-0.007 (3)
C39	0.073 (5)	0.063 (4)	0.024 (4)	-0.020 (4)	-0.013 (3)	-0.008 (3)
C40	0.062 (4)	0.050 (4)	0.040 (4)	-0.010 (3)	-0.012 (4)	-0.016 (3)
C41	0.063 (4)	0.046 (4)	0.032 (4)	-0.006(3)	-0.006 (3)	-0.010 (3)
C42	0.045 (4)	0.038 (3)	0.052 (5)	0.005 (3)	-0.023 (3)	-0.012 (3)
C43	0.066 (4)	0.049 (4)	0.029 (4)	-0.018 (3)	-0.017 (3)	-0.011 (3)
C44	0.044 (4)	0.030 (3)	0.042 (4)	0.001 (3)	-0.014 (3)	-0.004 (3)
C45	0.046 (4)	0.037 (3)	0.059 (5)	0.004 (3)	-0.023(3)	-0.018 (3)

C46	0.029 (3)	0.047 (3)	0.047 (4)	0.003 (3)	-0.013 (3)	-0.021(3)
C47	0.045 (4)	0.081 (4)	0.023 (4)	-0.016 (3)	-0.005 (3)	-0.025(3)
C48	0.047 (4)	0.039 (3)	0.038 (4)	-0.001(3)	-0.010 (3)	-0.014 (3)
N1	0.038 (3)	0.025 (2)	0.036 (3)	-0.007(2)	-0.014 (2)	-0.003 (2)
N2	0.057 (3)	0.027 (2)	0.058 (4)	-0.005 (2)	-0.023 (3)	-0.016 (3)
N3	0.040 (3)	0.046 (3)	0.025 (3)	-0.014 (2)	-0.006 (2)	-0.005 (2)
N4	0.035 (3)	0.063 (3)	0.042 (3)	-0.013 (3)	-0.014 (3)	-0.009(3)
N5	0.047 (3)	0.024 (2)	0.031 (3)	-0.010 (2)	-0.010 (2)	0.000 (2)
N6	0.088 (4)	0.045 (3)	0.031 (3)	-0.022 (3)	-0.003 (3)	0.001 (3)
N7	0.036 (3)	0.031 (2)	0.034 (3)	-0.015 (2)	-0.007 (2)	-0.009(2)
N8	0.060 (3)	0.024 (2)	0.047 (3)	-0.011 (2)	-0.017 (3)	-0.012 (2)
N9	0.040 (3)	0.043 (3)	0.034 (3)	-0.015 (2)	-0.009 (2)	-0.003 (2)
N10	0.045 (3)	0.060 (3)	0.070 (4)	-0.013 (3)	-0.020 (3)	-0.017 (3)
N11	0.053 (3)	0.029 (2)	0.031 (3)	-0.017 (2)	-0.011 (3)	-0.006(2)
N12	0.119 (5)	0.054 (3)	0.022 (3)	-0.010 (4)	0.017 (4)	-0.004 (3)
N13	0.040 (3)	0.029 (2)	0.050 (3)	-0.013 (2)	-0.013 (3)	-0.010 (2)
N14	0.057 (3)	0.031 (3)	0.055 (4)	-0.015 (2)	-0.010 (3)	-0.018 (3)
N15	0.035 (3)	0.033 (2)	0.040 (3)	-0.015 (2)	-0.012 (2)	0.010 (2)
N16	0.037 (4)	0.137 (5)	0.052 (4)	-0.022 (4)	-0.020 (3)	-0.007 (4)
N17	0.036 (3)	0.034 (2)	0.038 (3)	-0.015 (2)	-0.010 (2)	-0.005 (2)
N18	0.060 (4)	0.057 (3)	0.024 (3)	-0.023 (3)	-0.004 (3)	-0.007(2)
N19	0.048 (3)	0.044 (3)	0.048 (4)	-0.022 (2)	-0.002 (3)	-0.021 (3)
N20	0.099 (5)	0.033 (3)	0.097 (5)	0.001 (3)	-0.055 (4)	-0.028 (3)
N21	0.028 (3)	0.052 (3)	0.029 (3)	-0.014 (2)	-0.006 (2)	-0.009(2)
N22	0.046 (4)	0.073 (4)	0.088 (5)	-0.016 (3)	-0.044 (3)	-0.003 (3)
N23	0.042 (3)	0.037 (3)	0.035 (3)	-0.011 (2)	-0.010 (2)	-0.010 (2)
N24	0.048 (3)	0.063 (3)	0.040 (4)	-0.012 (3)	-0.006 (3)	-0.012 (3)
N25	0.052 (3)	0.048 (3)	0.049 (4)	-0.002 (3)	-0.017 (3)	-0.026 (3)
N26	0.049 (3)	0.066 (3)	0.048 (4)	-0.006 (3)	-0.005 (3)	-0.031 (3)
N27	0.054 (3)	0.061 (3)	0.046 (4)	-0.009 (3)	-0.020 (3)	-0.021 (3)
N28	0.067 (4)	0.046 (3)	0.041 (4)	0.004 (3)	-0.016 (3)	-0.006 (3)
N29	0.044 (3)	0.058 (3)	0.049 (4)	0.002 (3)	-0.017 (3)	-0.027 (3)
N30	0.047 (3)	0.047 (3)	0.049 (4)	-0.011 (2)	-0.016 (3)	-0.017 (3)
N31	0.055 (3)	0.051 (3)	0.036 (3)	-0.016 (3)	-0.019 (3)	-0.006 (2)
N32	0.055 (3)	0.044 (3)	0.039 (3)	-0.008 (3)	-0.018 (3)	-0.010 (2)
01	0.064 (3)	0.038 (2)	0.070 (3)	0.0048 (19)	-0.043 (3)	-0.012 (2)
O2	0.040 (3)	0.154 (4)	0.042 (3)	-0.025 (3)	0.001 (2)	-0.022 (3)
03	0.079 (4)	0.205 (5)	0.046 (3)	0.028 (3)	-0.031 (3)	-0.071 (4)
O4	0.103 (4)	0.019 (2)	0.229 (7)	-0.003 (2)	-0.091 (4)	-0.009 (3)
05	0.063 (3)	0.089 (3)	0.070 (3)	0.007 (2)	-0.042 (3)	-0.049 (3)
06	0.079 (3)	0.059 (2)	0.051 (3)	0.025 (2)	0.002 (3)	-0.013 (2)
O7	0.092 (4)	0.138 (4)	0.071 (4)	-0.092 (3)	-0.017 (3)	0.003 (3)
08	0.092 (3)	0.033 (2)	0.038 (3)	0.001 (2)	-0.022 (3)	-0.0052 (19)
S 1	0.0245 (7)	0.0285 (7)	0.0213 (7)	-0.0020 (6)	-0.0054 (6)	-0.0080 (6)
S2	0.0324 (8)	0.0315 (7)	0.0235 (8)	-0.0044 (6)	-0.0084 (6)	-0.0099 (6)
Fe1	0.0341 (5)	0.0300 (4)	0.0259 (5)	-0.0140 (3)	-0.0048 (4)	-0.0040 (3)
Fe2	0.0347 (5)	0.0354 (4)	0.0384 (5)	-0.0168 (4)	-0.0051 (4)	-0.0107 (4)

Geometric parameters (Å, °)

C1—C2	1.351 (6)	C31—H31	0.9500
C1—N1	1.369 (6)	C32—N22	1.353 (6)
C1—H1	0.9500	C32—H32	0.9500
C2—N2	1.349 (6)	C33—N21	1.332 (5)
С2—Н2	0.9500	C33—N22	1.337 (6)
C3—N1	1.318 (5)	С33—Н33	0.9500
C3—N2	1.342 (6)	C34—C35	1.342 (7)
С3—Н3	0.9500	C34—N23	1.360 (6)
C4—C5	1.353 (7)	C34—H34	0.9500
C4—N3	1.366 (6)	C35—N24	1.345 (6)
C4—H4	0.9500	С35—Н35	0.9500
C5—N4	1.375 (6)	C36—N23	1.315 (6)
С5—Н5	0.9500	C36—N24	1.334 (7)
C6—N3	1.323 (6)	C36—H36	0.9500
C6—N4	1.330 (6)	C37—C38	1.342 (6)
С6—Н6	0.9500	C37—N25	1.391 (6)
C7—N5	1.349 (6)	С37—Н37	0.9500
С7—С8	1.360 (8)	C38—N26	1.352 (6)
С7—Н7	0.9500	C38—H38	0.9500
C8—N6	1.344 (7)	C39—N25	1.313 (6)
C8—H8	0.9500	C39—N26	1.343 (6)
C9—N5	1.318 (6)	C39—H39	0.9500
C9—N6	1.341 (6)	C40—C41	1.344 (7)
С9—Н9	0.9500	C40—N27	1.352 (6)
C10-C11	1.345 (6)	C40—H40	0.9500
C10—N7	1.362 (6)	C41—N28	1.379 (6)
C10—H10	0.9500	C41—H41	0.9500
C11—N8	1.349 (6)	C42—N28	1.316 (7)
C11—H11	0.9500	C42—N27	1.334 (6)
C12—N7	1.331 (5)	C42—H42	0.9500
C12—N8	1.333 (6)	C43—C44	1.338 (6)
C12—H12	0.9500	C43—N29	1.379 (6)
C13—C14	1.339 (7)	C43—H43	0.9500
C13—N9	1.361 (6)	C44—N30	1.352 (6)
C13—H13	0.9500	C44—H44	0.9500
C14—N10	1.361 (6)	C45—N29	1.319 (7)
C14—H14	0.9500	C45—N30	1.344 (6)
C15—N9	1.324 (5)	C45—H45	0.9500
C15—N10	1.325 (6)	C46—C47	1.341 (7)
C15—H15	0.9500	C46—N32	1.365 (6)
C16—C17	1.359 (8)	C46—H46	0.9500
C16—N11	1.368 (6)	C47—N31	1.350 (6)
C16—H16	0.9500	C47—H47	0.9500
C17—N12	1.317 (7)	C48—N32	1.303 (6)
С17—Н17	0.9500	C48—N31	1.323 (6)
C18—N11	1.302 (6)	C48—H48	0.9500

C18—N12	1.336 (7)	N1—Fe1	2.218 (4)
С18—Н18	0.9500	N2—H49	0.8800
C19—C20	1.363 (6)	N3—Fe1	2.185 (4)
C19—N13	1.377 (6)	N4—H50	0.8800
C19—H19	0.9500	N5—Fe1	2,184 (4)
C20—N14	1 344 (7)	N6—H51	0.8800
C_{20} H20	0.9500	N7—Fe1	2215(3)
C_{21} N13	1 314 (6)	N8—H52	0.8800
C21—N14	1 332 (6)	N9—Fe1	2.195(4)
C_{21} H21	0.9500	N10_H53	0.8800
$C_{22} = N_{15}$	1 361 (6)	N11—Fe1	2199(4)
C_{22} C_{23}	1 367 (7)	N12_H54	0.8800
C22_023	0.9500	N12—1134 N13—Fe2	2189(4)
C221122	1 344 (7)	N14_H55	0.8800
C23_H23	0.9500	N15_Fe2	2,205(4)
C24 N15	1 321 (5)	N16 H56	0.8800
C_{24} N16	1.321(5) 1.322(6)	$N17 E_{P}2$	2.213(4)
C_{24} H24	0.9500	N18 H57	2.213 (4)
$C_{24} = 1124$	1.364(7)	$N10 = E_{2}$	0.0000
$C_{25} = C_{20}$	1.368 (6)	N19-1-1-62 N20 H58	2.211 (4)
$C_{23} = M_{17}$	1.308 (0)	N20 - H30 $N21 = E_{2}2$	0.8800
C25—1125	1 355 (6)	N22 H50	2.210 (4)
C_{20} H_{26}	0.0500	N22 = -1137 $N22 = E_{2}2$	0.8800
C_{20} H_{20} C_{27} N_{17}	0.9300	N24 H60	2.211 (4)
$C_2/-N_1$	1.310(0) 1.328(6)	N26 H61	0.8800
$C_27 = 1127$	1.528 (0)	N27 1162	0.8800
$C_2/-H_2/$	0.9500	N20 HC2	0.8800
C_{28}	1.355 (0)	N30—H03	0.8800
C28—N19	1.370(7)	N31—H64	0.8800
C28—H28	0.9500		1.460 (3)
C29—N20	1.347 (7)	02-51	1.433 (4)
C29—H29	0.9500	03-81	1.431 (4)
C30—N19	1.318 (6)	04—\$1	1.422 (3)
C30—N20	1.328 (6)	05-82	1.454 (3)
С30—Н30	0.9500	06—\$2	1.454 (4)
C31—C32	1.332 (7)	07—S2	1.421 (3)
C31—N21	1.355 (5)	08—S2	1.446 (4)
C2—C1—N1	110.0 (5)	N32—C46—H46	124.6
C2—C1—H1	125.0	C46—C47—N31	105.0 (5)
N1—C1—H1	125.0	C46—C47—H47	127.5
N2—C2—C1	106.3 (5)	N31—C47—H47	127.5
N2—C2—H2	126.9	N32—C48—N31	111.9 (5)
C1—C2—H2	126.9	N32—C48—H48	124.1
N1—C3—N2	111.4 (5)	N31—C48—H48	124.1
N1—C3—H3	124.3	C3—N1—C1	104.8 (4)
N2—C3—H3	124.3	C3—N1—Fe1	125.1 (4)
C5—C4—N3	111.3 (5)	C1—N1—Fe1	128.3 (3)
C5—C4—H4	124.4	C3—N2—C2	107.4 (4)

N3—C4—H4	124.4	C3—N2—H49	126.3
C4—C5—N4	104.5 (5)	C2—N2—H49	126.3
С4—С5—Н5	127.7	C6—N3—C4	104.6 (4)
N4—C5—H5	127.7	C6—N3—Fe1	127.4 (4)
N3—C6—N4	111.6 (5)	C4—N3—Fe1	127.8 (3)
N3—C6—H6	124.2	C6—N4—C5	108.1 (5)
N4—C6—H6	124.2	C6—N4—H50	126.0
N5—C7—C8	109.8 (5)	C5—N4—H50	126.0
N5—C7—H7	125.1	C9—N5—C7	105.8 (5)
C8—C7—H7	125.1	C9—N5—Fe1	125.4 (4)
N6-C8-C7	106.0 (6)	C7—N5—Fel	127.8 (4)
N6-C8-H8	127.0	C9 - N6 - C8	127.0(1) 107.7(5)
C7 - C8 - H8	127.0	C_{9} N6 H_{51}	126.1
$N_{2} = C_{3} = M_{3}$	127.0 110.7 (5)	C8_N6_H51	126.1
N5 C9 H9	124.7	$C_1^2 = N_7 = C_{10}^2$	120.1
N6 C0 H0	124.7	C12 = N7 = C10	105.0(4)
$\begin{array}{ccc} \mathbf{N}0 & -\mathbf{C}9 & -\mathbf{H}9 \\ \mathbf{C}11 & \mathbf{C}10 & \mathbf{N}7 \\ \end{array}$	124.7	C12 N7 Eq.	120.7(4)
C11 = C10 = N/	110.5 (5)	C10 NP $C11$	128.3(3)
	124.9	C12 = N8 = U52	108.2 (4)
N = C I I = H I I O	124.9	C12 - N8 - H52	125.9
C10—C11—N8	106.1 (5)	C11—N8—H52	125.9
CIO-CII-HII	127.0	C15—N9—C13	103.7 (4)
N8—C11—H11	127.0	C15—N9—Fel	125.9 (4)
N7—C12—N8	110.6 (5)	C13—N9—Fe1	130.4 (3)
N7—C12—H12	124.7	C15—N10—C14	106.4 (5)
N8—C12—H12	124.7	C15—N10—H53	126.8
C14—C13—N9	110.8 (5)	C14—N10—H53	126.8
C14—C13—H13	124.6	C18—N11—C16	104.8 (5)
N9—C13—H13	124.6	C18—N11—Fe1	127.6 (4)
C13—C14—N10	106.3 (5)	C16—N11—Fe1	127.5 (4)
C13—C14—H14	126.9	C17—N12—C18	107.7 (6)
N10-C14-H14	126.8	C17—N12—H54	126.1
N9—C15—N10	112.7 (5)	C18—N12—H54	126.1
N9—C15—H15	123.7	C21—N13—C19	105.0 (4)
N10—C15—H15	123.7	C21—N13—Fe2	127.7 (4)
C17—C16—N11	108.9 (6)	C19—N13—Fe2	127.1 (3)
C17—C16—H16	125.6	C21—N14—C20	107.0 (4)
N11—C16—H16	125.6	C21—N14—H55	126.5
N12—C17—C16	106.8 (6)	C20—N14—H55	126.5
N12—C17—H17	126.6	C_{24} N15 C_{22}	106.0 (4)
C16-C17-H17	126.6	$C24 - N15 - Fe^{2}$	125.6 (4)
N11 - C18 - N12	111.7 (6)	C_{2}^{2} N15—Fe ²	128.2(3)
N11-C18-H18	124.2	C_{24} N16 C_{23}	120.2(5) 108.7(5)
N12-C18-H18	1242	C24—N16—H56	125 7
C_{20} C_{10} N_{13}	108.6 (5)	C23N16H56	125.7
$C_{20} = C_{10} = H_{10}$	125.7	$C_{23} = N_{10} = 1150$	10/ 8 (5)
N12 C10 H10	125.7	$C_{27} = N_{17} = C_{23}$	107.0(3)
N13 - C17 - 1117 N14 - C20 - C10	123.7	$C_2 = \frac{1}{12} = 1$	127.4(4)
1117 - 0.20 - 0.17	107.1 (3)	$C_{23} = \frac{1}{12} C_{23} = \frac$	127.0(4)
$\Pi \Pi H - C 2 U - \Pi 2 U$	120.3	$U_2 / - 1 N 10 - U_2 0$	100.3 (3)

С19—С20—Н20	126.5	C27—N18—H57	125.8
N13—C21—N14	112.2 (5)	C26—N18—H57	125.8
N13—C21—H21	123.9	C30—N19—C28	104.8 (4)
N14—C21—H21	123.9	C30—N19—Fe2	125.8 (4)
N15-C22-C23	108.8 (5)	C28—N19—Fe2	129.2 (4)
N15—C22—H22	125.6	C30—N20—C29	107.3 (5)
C23—C22—H22	125.6	C30—N20—H58	126.3
N16—C23—C22	105.9 (6)	C29—N20—H58	126.3
N16-C23-H23	127.0	$C_{33} = N_{21} = C_{31}$	104.5 (4)
C^{22} — C^{23} — H^{23}	127.0	$C33 = N21 = Fe^2$	1261(4)
N15-C24-N16	110.7(5)	$C31 - N21 - Fe^2$	127.8(3)
N15 - C24 - H24	124 7	$C_{33} N_{22} C_{32}$	127.0(5) 109.6(5)
N16_C24_H24	124.7	C_{33} N_{22} C_{32}	105.0 (5)
$C_{2}^{-}C_{2}^{-}N_{1}^{-}$	110 3 (5)	C_{32} N22 H59	125.2
$C_{20} = C_{25} = 1017$	124.0	$C_{32} = N_{22} = H_{33}$	104.6 (5)
N17 C25 H25	124.9	$C_{30} = N_{23} = C_{34}$	104.0(3)
N17 - C25 - H25	124.9	$C_{24} = N_{23} = F_{23}$	120.3(4)
N18 - C26 - C25	104.9 (5)	C_{34} N23—Fe2	128.3(4)
N18 - C20 - H20	127.5	$C_{30} = N_2 4 = C_{33}$	106.9 (5)
C25-C26-H26	127.5	$C_{30} = N_{24} = H_{60}$	126.6
N1/	111.5 (5)	C35—N24—H60	126.6
N1/C2/H2/	124.2	C39 = N25 = C37	104.4 (5)
N18—C27—H27	124.2	C39—N26—C38	105.3 (5)
C29—C28—N19	109.3 (6)	C39—N26—H61	127.3
C29—C28—H28	125.3	C38—N26—H61	127.3
N19—C28—H28	125.3	C42—N27—C40	105.2 (5)
N20—C29—C28	106.6 (6)	C42—N27—H62	127.4
N20—C29—H29	126.7	C40—N27—H62	127.4
С28—С29—Н29	126.7	C42—N28—C41	102.7 (5)
N19—C30—N20	111.9 (6)	C45—N29—C43	104.9 (4)
N19—C30—H30	124.0	C45—N30—C44	107.0 (5)
N20-C30-H30	124.0	C45—N30—H63	126.5
C32—C31—N21	112.4 (5)	C44—N30—H63	126.5
C32—C31—H31	123.8	C48—N31—C47	108.0 (5)
N21—C31—H31	123.8	C48—N31—H64	126.0
C31—C32—N22	104.1 (5)	C47—N31—H64	126.0
С31—С32—Н32	128.0	C48—N32—C46	104.3 (5)
N22—C32—H32	128.0	04—81—03	112.3 (3)
N21—C33—N22	109.4 (5)	04 - 81 - 02	109.2 (3)
N21-C33-H33	125.3	03-81-02	106.9(3)
N22-C33-H33	125.3	04 - 101	105.9(2)
$C_{35} - C_{34} - N_{23}$	110.0 (5)	03 - 51 - 01	103.9(2) 111.7(2)
C35 - C34 - H34	125.0	02 - 81 - 01	110.9(2)
N23_C34_H34	125.0	07 - 57 - 08	110.9(2) 110.4(3)
1323 - 037 - 1137 1323 - 035 - 1137	106.6 (6)	07 - 52 - 00	10.7(3)
$C_{34} = C_{35} = 1_{124}$	126.7	0, -52 - 05	100.7(3) 100.0(2)
N24 C25 H25	120.7	00-52-05	109.9(2)
$\frac{1}{24} - \frac{1}{23} - \frac{1}{133}$	120.7	0^{-52}	109.2(3)
$N_{23} = 0.30 = N_{24}$	111.8 (3)	$0_{0} - 5_{2} - 0_{0}$	108.1(2)
N23-U30-H30	124.1	05-52-06	110.5 (2)

N24—C36—H36	124.1	N5—Fe1—N3	91.34 (16)
C38—C37—N25	108.5 (5)	N5—Fe1—N9	89.46 (16)
С38—С37—Н37	125.7	N3—Fe1—N9	179.19 (16)
N25—C37—H37	125.7	N5—Fe1—N11	177.69 (15)
C37—C38—N26	108.6 (5)	N3—Fe1—N11	89.94 (16)
С37—С38—Н38	125.7	N9—Fe1—N11	89.25 (16)
N26—C38—H38	125.7	N5—Fe1—N7	91.76 (15)
N25—C39—N26	113.1 (5)	N3—Fe1—N7	89.64 (15)
N25—C39—H39	123.4	N9—Fe1—N7	90.47 (14)
N26—C39—H39	123.4	N11—Fe1—N7	90.17 (14)
C41—C40—N27	107.5 (5)	N5—Fe1—N1	89.24 (15)
C41—C40—H40	126.3	N3—Fe1—N1	91.41 (15)
N27—C40—H40	126.3	N9—Fe1—N1	88.46 (15)
C40—C41—N28	110.2 (5)	N11—Fe1—N1	88.80 (14)
C40—C41—H41	124.9	N7—Fe1—N1	178.53 (15)
N28—C41—H41	124.9	N13—Fe2—N15	88.93 (15)
N28—C42—N27	114.4 (5)	N13—Fe2—N21	89.99 (15)
N28—C42—H42	122.8	N15—Fe2—N21	177.53 (15)
N27—C42—H42	122.8	N13—Fe2—N19	178.24 (18)
C44—C43—N29	109.6 (5)	N15—Fe2—N19	91.41 (16)
C44—C43—H43	125.2	N21—Fe2—N19	89.74 (15)
N29—C43—H43	125.2	N13—Fe2—N23	91.88 (15)
C43—C44—N30	107.2 (5)	N15—Fe2—N23	88.94 (15)
C43—C44—H44	126.4	N21—Fe2—N23	88.88 (16)
N30—C44—H44	126.4	N19—Fe2—N23	89.85 (16)
N29—C45—N30	111.3 (5)	N13—Fe2—N17	89.60 (15)
N29—C45—H45	124.3	N15—Fe2—N17	89.37 (16)
N30—C45—H45	124.3	N21—Fe2—N17	92.84 (15)
C47—C46—N32	110.8 (5)	N19—Fe2—N17	88.68 (16)
C47—C46—H46	124.6	N23—Fe2—N17	177.73 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H49…O4	0.88	1.84	2.679 (5)	160
N4—H50…O5	0.88	1.89	2.762 (5)	170
N6—H51···O3 ⁱ	0.88	2.09	2.949 (7)	163
N8—H52…O1 ⁱⁱ	0.88	1.94	2.822 (5)	176
N10—H53…O7 ⁱⁱⁱ	0.88	1.85	2.711 (6)	166
N12—H54…O7 ^{iv}	0.88	2.10	2.867 (7)	145
N12—H54····O5 ^{iv}	0.88	2.61	3.434 (7)	157
N14—H55···O8 ^v	0.88	1.85	2.716 (5)	167
N16—H56…O1 ^{vi}	0.88	2.22	3.074 (6)	163
N16—H56…O4 ^{vi}	0.88	2.26	2.942 (6)	135
N18—H57…O6 ^{vii}	0.88	2.07	2.937 (6)	169
N18—H57…O8 ^{vii}	0.88	2.47	3.100 (6)	129
N20—H58…O6	0.88	2.21	3.071 (6)	166
N20—H58…O7	0.88	2.45	3.120 (6)	133

N22—H59…O2	0.88	2.18	2.939 (6)	144	
N22—H59…O3	0.88	2.37	3.186 (6)	155	
N24—H60····O2 ^{viii}	0.88	1.84	2.710 (6)	168	
N26—H61…N29	0.88	1.95	2.825 (6)	177	
N27—H62…N25	0.88	2.04	2.875 (6)	158	
N30—H63…N32 ^{ix}	0.88	2.02	2.869 (6)	160	
N31—H64…N28	0.88	1.92	2.800 (6)	174	

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) *x*, *y*+1, *z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*, *y*-1, *z*; (vi) *x*-1, *y*, *z*; (vii) -*x*+1, -*y*+1, -*z*; (viii) -*x*+1, -*y*, -*z*+1; (ix) *x*, *y*, *z*-1.