

 $\gamma = 70.100 \ (3)^{\circ}$

Z = 1

V = 1102.9 (6) Å³

Mo $K\alpha$ radiation

 $0.22\,\times\,0.20\,\times\,0.18$ mm

3506 reflections with $I > 2\sigma(I)$

intensity decay: 1%

2 standard reflections every 120 min

 $\mu = 1.03 \text{ mm}^{-3}$

T = 293 K

 $R_{\rm int} = 0.009$

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

The one-dimensional coordination polymer poly[tetrakis[(4-chlorophenyl)methanaminium] [cadmate-µ-cyclohexaphosphorato]]

Sonia Abid,^a* S. Salem Al-Deyab^b and Mohamed Rzaigui^a

^aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and ^bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia Correspondence e-mail: sonia.abid@fsb.rnu.tn

Received 20 September 2011; accepted 7 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.027; wR factor = 0.074; data-to-parameter ratio = 13.6.

Cyclohexaphosphoric acid $(P_6O_{18}H_6)$ reacts with cadmium carbonate and 4-chlorobenzylamine (CBA) to give the mononuclear title complex, $(C_7H_9ClN)_4[Cd(P_6O_{18})]_n$, in which the Cd^{II} atom, lying on an inversion centre, has an octahedral coordination built of six O atoms of two centrosymmetric P_6O_{18} rings. Each P_6O_{18} ligand acts as a bridge, linking two Cd^{II} atoms and forming an anionic coordination polymer $[Cd(P_6O_{18})^{4-}]_n$ extending along [010]. Adjacent polymeric chains are connected through N-H···O and C-H···O hydrogen bonds, generating a three-dimensional supramolecular network.

Related literature

For the crystal chemistry of condensed phosphates, see: Averbuch-Pouchot & Durif (1996); Durif (2005). For general background to supramolecular complexes, see: Kolotuchin *et al.* (1995); Tong *et al.* (1999). For Cl···Cl interactions, see: Hathwar *et al.* (2010) and for π - π interactions, see: Janiak *et al.* (2000). For the synthesis, see: Schülke & Kayser (1985). For related structures, see: Du *et al.* (2010); Hu *et al.* (2008); Kontturi *et al.* (2005); Man *et al.* (2006).

Experimental

Crystal data

 $(C_7H_9CIN)_4[Cd(P_6O_{18})]$ $M_r = 1156.63$ Triclinic, $P\overline{1}$ a = 8.021 (4) Å b = 8.1696 (16) Å c = 17.919 (3) Å $\alpha = 87.31$ (5)° $\beta = 88.914$ (19)°

Data collection

Enraf-Nonius TurboCAD-4 diffractometer 3873 measured reflections 3770 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	277 parameters
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$
3770 reflections	$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O1$	0.89	1.91	2.785 (3)	167
$N1 - H1B \cdot \cdot \cdot O6^{i}$	0.89	1.88	2.740 (3)	162
$N1 - H1C \cdot \cdot \cdot O9^{ii}$	0.89	1.93	2.809 (4)	168
$N2-H2A\cdots O2$	0.89	1.96	2.814 (4)	160
$N2 - H2B \cdot \cdot \cdot O5^{ii}$	0.89	2.19	2.866 (3)	133
$N2-H2C\cdots O1^{iii}$	0.89	1.95	2.824 (3)	169
C3-H3···O1 ^{iv}	0.93	2.56	3.339 (5)	142
C13−H13···O6 ⁱⁱ	0.93	2.53	3.394 (4)	154
$C14-H14B\cdots O3^{v}$	0.97	2.56	3.410 (4)	147

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y, -z + 1; (iv) x, y + 1, z; (v) -x + 1, -y, -z + 1.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997);

metal-organic compounds

software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2028).

References

- Averbuch-Pouchot, M. T. & Durif, A. (1996). In *Topics in Phosphate Chemistry*. Singapore: World Scientific.
- Du, Z. Y., Sun, Y. H., Xie, Y. R., Lin, J. & Wen, H. R. (2010). Inorg. Chem. Commun. 13, 77–80.
- Durif, A. (2005). Solid State Sci. 7, 760-766.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Row, T. N. G. (2010). J. Chem. Sci. 122, 677–685.
- Hu, J.-Y., Zhao, J.-A., Hou, H.-W. & Fan, Y.-T. (2008). *Inorg. Chem. Commun.* **11**, 1110–1112.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Kolotuchin, S. V., Fenlon, E. E., Wilson, S. R., Loweth, C. J. & Zimmerman, S. C. (1995). Angew. Chem. Int. Ed. 34, 2654–2657.
- Kontturi, M., Laurila, E., Mattsson, R., Peraniemi, S., Vepsalainen, J. J. & Ahlgren, M. (2005). *Inorg. Chem.* 44, 2400–2406.
- Man, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017–1032.
- Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. & Mak, T. C. M. (1999). J. Chem. Soc. Dalton Trans. pp. 3657–3659.

supporting information

Acta Cryst. (2011). E67, m1549-m1550 [doi:10.1107/S160053681104133X]

The one-dimensional coordination polymer poly[tetrakis[(4-chlorophenyl)methanaminium] [cadmate-µ-cyclohexaphosphorato]]

Sonia Abid, S. Salem Al-Deyab and Mohamed Rzaigui

S1. Comment

The key to successful construction of supramolecular architecture is the control and manipulation of coordination bonds an non-covalent interactions by carefully selecting the coordination geometry of the metal atoms and the organic ligands containing appropriate functional groups (such as polyphosphoric acid and polyamine) (Kolotuchin et al., 1995). Up to now, a large number of supramolecular complexes with various dimensions and topologies have been achieved through judicious choice of linkers and metal ions (Tong et al., 1999). The approach to supramolecular framework employed in this work is to use the hexafunctional linker $P_6O_{18}^{6-}$ that is of strong coordinating ability and suitable hydrogen bond acceptor. The 4-chlorobenzylamine (CBA) is used to create possibly π - π packing interactions between the aromatic rings and Cl--Cl interactions, which could facilitate the formation of ordered and non-interpenetrated open frameworks. In this contribution, we report the self-assembly of Cd^{II} with $P_6O_{18}^{6}$ in the presence of template (CBA) into a supramolecular open framework material $[Cd(P_6O_{18}^{6-})]_n$ 4n(CABH) (Scheme I). Single-crystal X-ray diffraction study of this compound shows that the asymmetric unit contains half of cadmium atom, half of a cycle P_6O_{18} and two crystallographically independent 4-chlorobenzylammonium (CBAH) cations (Fig. 1). The Cd atom locates on an inversion centre and is coordinated by six O atoms. The CdO₆ octahedron, sharing six vertex oxygen atoms with two adjacent P_6O_{18} rings, is slightly distorted compared to other cases (Du et al., 2010; Kontturi et al., 2005; Man et al., 2006; Hu et al., 2008). Bond distances Cd—O range from 2.230 (2) to 2.353 (7)Å and angles O—Cd—O range from 83.53 (8) to 88.19 (7) °. The P₆O₁₈ units display average P–O distances of 1.540 A and P–P distances of 2.967 Å, values usually found in other condensed anions (Averbuch-Pouchot & Durif, 1996). The values of the P-P-P angles, varying from 87.13 (1) to 128.55 (1)°, are in the range of values observed with other cyclohexaphosphates (Durif, 2005). As shown in Fig. 2, the Cd^{II} atoms are bridged by P_6O_{18} rings to form infinite 1-D coordination polymers $[Cd(P_6O_{18})]$ parallel to the *b* axis. Fig. 3 shows the supramolecular open framework structure built of the infinite zigzag chains linked by hydrogen bonds of types N(C)—H···O ranging from 2.714 (3) to 3.410 (4) Å, established by the protonated amine (CBAH). The phenyl rings of these organic molecules are planar, with a mean plane deviation of 0.0043 Å and are parallel with a dihedral angle of 4.94°. The orientations of the $-CH_2$ —NH₃⁺ substituent in the two cations (CBAH) are distinct, as seen from the following torsion angles: N1—C7—C1—C2 = 13.1 (3) and N2—C14—C8—C9 = 118.3 (17)°. The supramolecular framework structure is further stabilized by electrostatic strengths, Cl-Cl interactions [4.051 Å] (Hathwar et al., 2010). The interplanar distance between nearby phenyl rings is in the vicinity of 4.165 Å, which is longer than 3.80 Å, value required for the formation of π - π interactions (Janiak *et al.*, 2000).

S2. Experimental

The chemicals used to prepare the title compounds include CdCO₃, 4-chlorobenzylamine (CBA) and $H_6P_6O_{18}$. Both first reagents were commercially available (Accros), the third one was produced from Li₆P₆O₁₈.6H₂O, which is prepared by the process of Schülke (Schülke & Kayser, 1985) and protonated with an ion-exchange resin (Amberlite IR 120) in its H-state. An aqueous solution of $H_6P_6O_{18}$ (5 mmol, 15 ml) was added dropwise to a stirred mixture of CdCO₃ (0.86 g, 5 mmol), 4-chlorobenzylamine (2.45 ml, 20 mmol)and C₂H₅OH (50 ml). The obtained solution was allowed to stand in air at room temperature until formation of single crystals of the title complex.

S3. Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, $[N-H = 0.89 \text{ with } U_{iso}(H) = 1.5 \text{Ueq}, C-H = 0.96 \text{ Å} (CH_3) \text{ and } C-H = 0.96 \text{ Å} (Ar-H), \text{ with } U_{iso}(H) = 1.2 \text{Ueq}].$

Figure 1

ORTEP-3 (Farrugia,(1999)) view of (I) with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

Perspective view showing the 1-D coordination polymers $[Cd(P_6O_{18})^4]_n$ developed along the *b* axis.

Figure 3

Perspective view of [Cd(P₆O₁₈)].4(CBAH) showing the the supramolecular open framework structure.

poly[tetrakis[(4-chlorophenyl)methanaminium] [cadmate-µ-cyclohexaphosphorato]]

Crystal data	
$(C_7H_9ClN)_4[Cd(P_6O_{18})]$	<i>a</i> = 8.021 (4) Å
$M_r = 1156.63$	<i>b</i> = 8.1696 (16) Å
Triclinic, $P\overline{1}$	<i>c</i> = 17.919 (3) Å
Hall symbol: -P 1	$\alpha = 87.31 \ (5)^{\circ}$

 $\beta = 88.914 (19)^{\circ}$ $\gamma = 70.100 (3)^{\circ}$ $V = 1102.9 (6) Å^{3}$ Z = 1 F(000) = 582 $D_{\rm x} = 1.741 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 Å$

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Radiation source: Enraf Nonius FR590 Graphite monochromator non–profiled ω scans 3873 measured reflections 3770 independent reflections 3506 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.074$ S = 1.143770 reflections 277 parameters 0 restraints Primary atom site location: structure-invariant direct methods Cell parameters from 25 reflections $\theta = 9.1-10.8^{\circ}$ $\mu = 1.03 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.22 \times 0.20 \times 0.18 \text{ mm}$

 $R_{int} = 0.009$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -9 \rightarrow 10$ $k = 0 \rightarrow 10$ $l = -5 \rightarrow 23$ 2 standard reflections every 120 min intensity decay: 1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0373P)^2 + 0.863P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.022$ $\Delta\rho_{max} = 0.76$ e Å⁻³ $\Delta\rho_{min} = -0.57$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

= $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ (Fractional at	tomic co	ordinates	and	isotropic d	or equivale	ent isotropic	displacement	parameters	$(Å^2$	²)
---	---------------	----------	-----------	-----	-------------	-------------	---------------	--------------	------------	--------	----------------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.67291 (7)	0.07788 (7)	0.58321 (4)	0.02160 (17)	
P2	0.31753 (7)	0.30435 (7)	0.62408 (4)	0.02213 (17)	
P3	0.21259 (7)	0.28764 (8)	0.46566 (4)	0.02360 (18)	
01	0.8257 (2)	0.0489 (2)	0.63383 (12)	0.0306 (5)	
O2	0.6552 (2)	0.1994 (2)	0.51710 (12)	0.0278 (5)	
03	0.4957 (2)	0.1402 (2)	0.63318 (13)	0.0332 (5)	
04	0.6588 (2)	-0.1001 (2)	0.55819 (13)	0.0321 (6)	
05	0.3676 (2)	0.4624 (2)	0.60678 (11)	0.0265 (5)	
06	0.2085 (2)	0.3003 (2)	0.69060 (12)	0.0316 (5)	
07	0.2237 (3)	0.2579 (3)	0.55466 (12)	0.0354 (6)	

08	0.0311 (2)	0.3219 (2)	0.44049 (13)	0.0390 (6)
09	0.3052 (2)	0.4116 (2)	0.43979 (12)	0.0295 (5)
Cd	0.5000	0.5000	0.5000	0.02314 (9)
N1	0.8521 (3)	0.3592 (3)	0.68090 (16)	0.0336 (6)
H1A	0.8605	0.2565	0.6633	0.050*
H1B	0.9603	0.3617	0.6892	0.050*
H1C	0.7969	0.4438	0.6476	0.050*
C1	0.7286 (4)	0.5549 (4)	0.7877 (2)	0.0373 (9)
C2	0.7656 (4)	0.6922 (4)	0.7522 (2)	0.0452 (10)
H2	0.8130	0.6803	0.7042	0.054*
C3	0.7325 (5)	0.8486 (5)	0.7875 (2)	0.0500 (10)
H3	0.7541	0.9424	0.7631	0.060*
C4	0.6673 (5)	0.8608 (5)	0.8592 (2)	0.0564 (12)
C5	0.6306 (6)	0.7272 (6)	0.8958 (3)	0.0661 (13)
Н5	0.5852	0.7391	0.9442	0.079*
C6	0.6619 (5)	0.5735 (5)	0.8598 (2)	0.0522 (11)
H6	0.6377	0.4813	0.8844	0.063*
C7	0.7503 (5)	0.3849 (4)	0.7516 (2)	0.0502 (11)
H7A	0.8092	0.2893	0.7867	0.060*
H7B	0.6336	0.3799	0.7420	0.060*
C11	0.6261 (2)	1.05722 (18)	0.90321 (8)	0.1103 (6)
N2	0.8179 (3)	0.1736 (3)	0.37553 (14)	0.0286 (6)
H2A	0.7756	0.1534	0.4200	0.043*
H2B	0.8255	0.2800	0.3734	0.043*
H2C	0.9251	0.0952	0.3689	0.043*
C8	0.7590 (4)	0.1923 (4)	0.24011 (19)	0.0358 (8)
С9	0.8004 (5)	0.0633 (5)	0.1879 (2)	0.0564 (12)
H9	0.7943	-0.0456	0.2019	0.068*
C10	0.8495 (7)	0.0933 (6)	0.1169 (3)	0.0694 (15)
H10	0.8750	0.0059	0.0826	0.083*
C11	0.8614 (6)	0.2538 (6)	0.0958 (2)	0.0589 (12)
C12	0.8237 (5)	0.3838 (5)	0.1459 (2)	0.0558 (11)
H12	0.8325	0.4915	0.1317	0.067*
C13	0.7730 (4)	0.3532 (4)	0.2169 (2)	0.0453 (10)
H13	0.7472	0.4416	0.2507	0.054*
C14	0.6978 (4)	0.1610 (4)	0.3163 (2)	0.0401 (9)
H14A	0.5808	0.2454	0.3244	0.048*
H14B	0.6877	0.0460	0.3198	0.048*
Cl2	0.9233 (3)	0.2940 (2)	0.00535 (8)	0.1069 (6)
	· ·		. /	

Atomic aisplacement parameters (A ²	ic displacement paramete	rs (Ų))
--	--------------------------	--------	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0171 (2)	0.0128 (2)	0.0337 (4)	-0.0031 (2)	0.0003 (3)	-0.0040 (3)
P2	0.0190 (2)	0.0152 (3)	0.0315 (4)	-0.0047 (2)	0.0032 (3)	-0.0051 (3)
P3	0.0204 (2)	0.0144 (3)	0.0364 (4)	-0.0057 (2)	-0.0049 (3)	-0.0045 (4)
O1	0.0246 (8)	0.0235 (8)	0.0421 (13)	-0.0050(7)	-0.0056 (8)	-0.0079 (10)
02	0.0262 (8)	0.0182 (8)	0.0356 (13)	-0.0035 (6)	0.0047 (8)	-0.0001 (10)

O3	0.0249 (8)	0.0201 (8)	0.0471 (15)	0.0005 (7)	0.0114 (9)	0.0041 (11)
O4	0.0235 (7)	0.0152 (7)	0.0566 (16)	-0.0043 (6)	-0.0065 (9)	-0.0078 (11)
05	0.0288 (8)	0.0161 (7)	0.0355 (12)	-0.0084 (6)	0.0038 (8)	-0.0060 (10)
06	0.0268 (8)	0.0288 (9)	0.0387 (13)	-0.0085 (7)	0.0084 (8)	-0.0065 (11)
O7	0.0427 (10)	0.0386 (11)	0.0354 (14)	-0.0273 (9)	-0.0031 (9)	-0.0022 (12)
08	0.0230 (8)	0.0293 (9)	0.0635 (17)	-0.0050 (7)	-0.0104 (9)	-0.0154 (12)
09	0.0334 (8)	0.0195 (8)	0.0392 (13)	-0.0133 (7)	-0.0079 (9)	-0.0007 (10)
Cd	0.02384 (11)	0.01532 (11)	0.03217 (18)	-0.00887 (9)	-0.00109 (10)	-0.00258 (13)
N1	0.0303 (10)	0.0249 (10)	0.0464 (17)	-0.0101 (9)	-0.0057 (11)	-0.0041 (13)
C1	0.0316 (12)	0.0382 (15)	0.043 (2)	-0.0126 (12)	-0.0013 (13)	-0.0018 (19)
C2	0.0535 (17)	0.0464 (18)	0.042 (2)	-0.0242 (15)	0.0066 (16)	-0.012 (2)
C3	0.068 (2)	0.0419 (17)	0.047 (3)	-0.0273 (17)	0.0068 (18)	-0.006 (2)
C4	0.074 (2)	0.050 (2)	0.049 (3)	-0.0237 (19)	0.009 (2)	-0.015 (2)
C5	0.091 (3)	0.070 (3)	0.042 (3)	-0.032 (2)	0.017 (2)	-0.012 (3)
C6	0.066 (2)	0.049 (2)	0.044 (3)	-0.0245 (18)	0.006 (2)	0.008 (2)
C7	0.0545 (18)	0.0404 (17)	0.062 (3)	-0.0249 (15)	0.0130 (18)	-0.008 (2)
Cl1	0.1789 (15)	0.0753 (8)	0.0887 (11)	-0.0554 (9)	0.0468 (10)	-0.0485 (9)
N2	0.0239 (9)	0.0246 (10)	0.0353 (15)	-0.0048 (8)	0.0001 (9)	-0.0065 (12)
C8	0.0382 (13)	0.0338 (14)	0.0370 (19)	-0.0138 (12)	-0.0073 (13)	-0.0016 (17)
C9	0.081 (2)	0.0355 (17)	0.053 (3)	-0.0185 (17)	-0.008 (2)	-0.010 (2)
C10	0.112 (3)	0.048 (2)	0.045 (3)	-0.022 (2)	0.002 (2)	-0.015 (3)
C11	0.082 (3)	0.064 (2)	0.030(2)	-0.025 (2)	0.0006 (19)	0.003 (3)
C12	0.072 (2)	0.0465 (19)	0.054 (3)	-0.0269 (18)	-0.006 (2)	0.000 (2)
C13	0.0578 (18)	0.0387 (17)	0.045 (2)	-0.0227 (15)	0.0010 (16)	-0.009 (2)
C14	0.0350 (13)	0.0433 (16)	0.048 (2)	-0.0211 (12)	-0.0060 (14)	-0.0035 (19)
Cl2	0.1687 (16)	0.1080 (12)	0.0444 (8)	-0.0486 (12)	0.0145 (9)	-0.0017 (10)

Geometric parameters (Å, °)

P1-01	1.4846 (19)	C3—C4	1.372 (6)
P1—O2	1.486 (2)	С3—Н3	0.9300
P1—O4	1.5822 (16)	C4—C5	1.362 (6)
P1O3	1.607 (2)	C4—C11	1.748 (3)
Р2—Об	1.471 (2)	C5—C6	1.383 (5)
Р2—О5	1.4947 (18)	С5—Н5	0.9300
Р2—О7	1.5909 (19)	С6—Н6	0.9300
Р2—О3	1.5975 (18)	C7—H7A	0.9700
Р3—О8	1.4614 (18)	C7—H7B	0.9700
Р3—О9	1.499 (2)	N2—C14	1.478 (3)
P3—O4 ⁱ	1.6009 (16)	N2—H2A	0.8900
Р3—О7	1.601 (2)	N2—H2B	0.8900
O2—Cd	2.3534 (18)	N2—H2C	0.8900
O4—P3 ⁱ	1.6009 (16)	C8—C9	1.392 (4)
O5—Cd	2.230 (2)	C8—C13	1.401 (5)
O9—Cd	2.2432 (17)	C8—C14	1.482 (5)
$Cd-O5^{ii}$	2.230 (2)	C9—C10	1.361 (6)
Cd—O9 ⁱⁱ	2.2432 (17)	С9—Н9	0.9300
Cd—O2 ⁱⁱ	2.3534 (18)	C10—C11	1.382 (7)

N1 C7	1 479 (4)	C10 H10	0.0200
	1.478 (4)		0.9300
	0.8900		1.374 (5)
NI—HIB	0.8900		1./35 (5)
NI—HIC	0.8900	C12—C13	1.365 (5)
C1—C2	1.380 (5)	С12—Н12	0.9300
C1—C6	1.383 (5)	С13—Н13	0.9300
C1—C7	1.515 (4)	C14—H14A	0.9700
C2—C3	1.393 (4)	C14—H14B	0.9700
С2—Н2	0.9300		
O1—P1—O2	117.93 (12)	С3—С2—Н2	119.7
01-P1-04	111.66 (10)	C4-C3-C2	118 4 (4)
02 - P1 - 04	109.88 (11)	C4 - C3 - H3	120.8
$O_1 P_1 O_3$	107.00(11) 107.43(12)	$C_2 C_3 H_3$	120.8
01 - 1 - 03	107.43(12) 100.06(11)	$C_2 - C_3 - H_3$	120.0
$02 - r_1 - 03$	109.90(11)	$C_{5} = C_{4} = C_{5}$	122.2(3)
04—P1—03	98.11 (10)		119.5 (3)
06—P2—O5	118.97 (11)	C3—C4—C11	118.2 (3)
O6—P2—O7	107.58 (11)	C4—C5—C6	118.8 (4)
O5—P2—O7	111.28 (13)	C4—C5—H5	120.6
O6—P2—O3	106.68 (13)	С6—С5—Н5	120.6
O5—P2—O3	108.08 (11)	C5—C6—C1	121.0 (4)
O7—P2—O3	102.99 (12)	С5—С6—Н6	119.5
O8—P3—O9	118.36 (13)	C1—C6—H6	119.5
O8—P3—O4 ⁱ	111.32 (9)	N1—C7—C1	114.6 (3)
09—P3—O4 ⁱ	104.99 (10)	N1—C7—H7A	108.6
08—P3—07	110 18 (13)	C1—C7—H7A	108.6
$09 - P_3 - 07$	110.64 (11)	N1-C7-H7B	108.6
O_{4i} P3 O7	110.04(11) 00.62(12)	C1 $C7$ $H7B$	108.6
$P_1 = O_2 = C_1$	33.02(12)		107.6
P1 = 02 = Cd	131.47(10) 121.50(1()	$\Pi/A - C / - \Pi/B$	107.0
P2-03-P1	131.39 (10)	C14— $N2$ — $H2A$	109.5
$P1 = 04 = P3^{4}$	138.76(11)	C14—N2—H2B	109.5
P2-05-Cd	122.36 (10)	H2A—N2—H2B	109.5
P2—O7—P3	139.86 (14)	C14—N2—H2C	109.5
P3—O9—Cd	129.75 (13)	H2A—N2—H2C	109.5
O5—Cd—O5 ⁱⁱ	180.0	H2B—N2—H2C	109.5
O5—Cd—O9	88.19 (7)	C9—C8—C13	117.2 (4)
O5 ⁱⁱ —Cd—O9	91.81 (7)	C9—C8—C14	121.0 (3)
O5—Cd—O9 ⁱⁱ	91.81 (7)	C13—C8—C14	121.8 (3)
O5 ⁱⁱ —Cd—O9 ⁱⁱ	88.19 (7)	C10—C9—C8	121.4 (4)
O9—Cd—O9 ⁱⁱ	180.00 (10)	С10—С9—Н9	119.3
O5—Cd—O2	83.53 (8)	С8—С9—Н9	119.3
$O5^{ii}$ —Cd—O2	96.47 (8)	C9—C10—C11	119.8 (3)
09—Cd—O2	83.70 (7)	C9—C10—H10	120.1
O_{i}^{i} C_{d} O_{i}^{2}	96 30 (7)	$C_{11} - C_{10} - H_{10}$	120.1
$O_{2} C_{4} O_{2}^{ii}$	96.47 (8)	C_{12} C_{11} C_{10}	120.1 120.5(4)
05 - 04 - 02	92.52(0)	$C_{12} = C_{11} = C_{10}$	120.3(4)
$O_{1} = O_{1} = O_{2}^{\circ}$	05.55 (0) 06.20 (7)	C_{12} $-C_{11}$ $-C_{12}$ C_{10} C_{11} C_{12} C_{10} C_{11} C_{12} C_{12} C_{12} C_{12} C_{13}	119.2 (4)
	90.30(7)		120.3 (3)
$O9^{n}$ —Cd— $O2^{n}$	83.70 (7)	C13—C12—C11	119.3 (4)

O2—Cd—O2 ⁱⁱ	180.000 (1)	C13—C12—H12	120.3
C7—N1—H1A	109.5	C11—C12—H12	120.3
C7—N1—H1B	109.5	C12—C13—C8	121.7 (3)
H1A—N1—H1B	109.5	С12—С13—Н13	119.2
C7—N1—H1C	109.5	C8—C13—H13	119.2
H1A—N1—H1C	109.5	N2-C14-C8	113.1 (2)
H1B—N1—H1C	109.5	N2-C14-H14A	109.0
C2—C1—C6	118.9 (3)	C8—C14—H14A	109.0
C2—C1—C7	123.9 (3)	N2-C14-H14B	109.0
C6—C1—C7	117.2 (3)	C8—C14—H14B	109.0
C1—C2—C3	120.7 (3)	H14A—C14—H14B	107.8
C1—C2—H2	119.7		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

	D—H	Н…А	D····A	D—H···A
N1—H1A…O1	0.89	1.91	2.785 (3)	167
N1—H1 <i>B</i> ···O6 ⁱⁱⁱ	0.89	1.88	2.740 (3)	162
N1—H1 <i>C</i> ···O9 ⁱⁱ	0.89	1.93	2.809 (4)	168
N2—H2A····O2	0.89	1.96	2.814 (4)	160
N2—H2 <i>B</i> ···O5 ⁱⁱ	0.89	2.19	2.866 (3)	133
N2—H2 C ···O1 ^{iv}	0.89	1.95	2.824 (3)	169
C3—H3…O1 ^v	0.93	2.56	3.339 (5)	142
C13—H13…O6 ⁱⁱ	0.93	2.53	3.394 (4)	154
C14—H14 <i>B</i> ····O3 ⁱ	0.97	2.56	3.410 (4)	147

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, -*y*, -*z*+1; (v) *x*, *y*+1, *z*.