

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Chloroselanyl-3,5-diethyl-1H-pyrazol-2-ium chloride

Maksym Seredyuk,^a* Kateryna O. Znovjyak,^a Tetyana Yu. Sliva,^a Matti Haukka^b and Igor O. Fritsky^a

^aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01033 Kviv, Ukraine, and ^bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland Correspondence e-mail: mcs@univ.kiev.ua

Received 14 October 2011; accepted 21 October 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.026; wR factor = 0.049; data-to-parameter ratio = 20.4.

In the cation of the title compound, $C_7H_{12}ClN_2Se^+ \cdot Cl^-$, the ethylene groups and the Se-Cl fragment adopt a cis configuration with a C-Se-Cl angle of 96.09 (6)°. In the crystal, intermolecular N-H···Cl hydrogen bonds link two cations and two chlorine anions into centrosymmetric clusters. π - π interactions between the pyrazole rings [centroidcentroid distance of 3.530 (2) Å] link these clusters into columns along [001] with short intermolecular Se...Clcontacts of 2.995 (1) Å.

Related literature

For reviews of organoselenium chemistry, see: Krief (1995); Freudendahl et al. (2009). For structural studies of bis(1Hpyrazol-4-yl)selenides, see: Seredyuk, Fritsky et al. (2010). For structural studies of *d*-metal complexes of bis(1*H*-pyrazol-4yl)selenides, see: Seredyuk et al. (2007, 2009); Seredyuk, Moroz et al. (2010).

Experimental

Crystal data $C_7H_{12}ClN_2Se^+ \cdot Cl^ M_r = 274.05$

Acta Cryst. (2011). E67, o3083

Monoclinic, $P2_1/c$ a = 8.1944 (6) Å

b = 19.3719 (10) Åc = 7.1241 (3) Å $\beta = 111.025 \ (6)^{\circ}$ $V = 1055.60 (10) \text{ Å}^3$ Z = 4

Data collection

Nonius KappaCCD diffractometer	13385 measured reflections
Absorption correction: multi-scan	2423 independent reflections
(XPREP in SHELXTL;	2040 reflections with $I > 2\sigma(I)$
Sheldrick, 2008)	$R_{\rm int} = 0.032$
$T_{\min} = 0.379, \ T_{\max} = 0.699$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	H atoms treated by a mixture of
$wR(F^2) = 0.049$	independent and constrained
S = 1.04	refinement
2423 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
119 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots Cl1$ $N2 - H2 \cdots Cl1^{i}$	0.82 (3) 0.81 (3)	2.22 (3) 2.22 (3)	3.0333 (19) 3.030 (2)	172 (3) 178 (2)

Symmetry code: (i) -x, -y, -z + 3.

Data collection: COLLECT (Bruker-Nonius, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5179).

References

- Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Freudendahl, D. M., Shahzad, S. A. & Wirth, T. (2009). Eur. J. Org. Chem. pp. 1649-1664
- Krief, A. (1995). Comprehensive Organometallic Chemistry II, edited by E. V. Abel, F. G. A. Stone & G. Wilkinson. New York: Pergamon Press.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). Tetrahedron, 66, 8772-8777.
- Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.
- Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.
- Seredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010). Acta Cryst. E66, m363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.30 \times 0.21 \times 0.10 \text{ mm}$

T = 120 K

···A	$D - \Pi \cdots A$

supporting information

Acta Cryst. (2011). E67, o3083 [doi:10.1107/S1600536811043790]

4-Chloroselanyl-3,5-diethyl-1H-pyrazol-2-ium chloride

Maksym Seredyuk, Kateryna O. Znovjyak, Tetyana Yu. Sliva, Matti Haukka and Igor O. Fritsky

S1. Comment

Aryl selenides are central reagents in organoselenium chemistry (Krief, 1995; Freudendahl *et al.*, 2009). Pyrazole-based selenides are promising multidentate ligands for supramolecular frameworks and complexes of 3*d*-metals (Seredyuk *et al.*, 2007; Seredyuk *et al.*, 2009; Seredyuk, Moroz *et al.*, 2010). As a part of our study of the bis(1*H*-pyrazol-4-yl)selenides (Seredyuk, Fritsky *et al.*, 2010), we report the crystal structure of the title compound (Fig. 1).

In the title compound, between pairs of molecules of the compound strong N—H···Cl hydrogen bonds are observed with the distance N···Cl being 3.030 (2) and 3.0333 (19) Å (Table 1). The crystal packing exhibits π ··· π interactions between the pyrazol rings (centroid-centroid distance is 3.530 (2) Å) and short intermolecular Se···Cl⁻ contacts of 2.995 (1) Å.

S2. Experimental

Mixture of 3,5-diethyl-1*H*-pyrazole (1.241 g, 10 mmol), selenium dioxide (1.670 g, 15 mmol) and pyridine (25 ml) was refluxed 6 h, after that pyridine was distilled off under reduced pressure. Syrup-like residue was dissolved in 20 ml of conc. HCl and put in a fridge at 4°C for one week. The obtained precipitate was filtered off and dried. In the obtained mixture, well formed orange crystals are the target compound, whereas yellowish crystals are hydrochloride of bis(3,5-di-ethyl-1*H*-pyrazol-4-yl)selenide. $C_7H_{12}Cl_2N_2Se$ requires: C, 30.68; H, 4.41; N, 10.22. Found: C, 30.44; H, 4.54; N, 10.20.

S3. Refinement

N-bound H atoms were located on a difference Fourier map and refined isotropically. Other H atoms were placed in idealized position and constrained to ride on their parent atoms with the distances 0.98–0.99 Å and with $U_{iso} = 1.2-1.5_{eq}$ (parent atom).

Figure 1

The content of asymmetric part of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. Dashed line denotes hydrogen bond.

4-Chloroselanyl-3,5-diethyl-1*H*-pyrazol-2-ium chloride

Crystal data	
$C_7H_{12}ClN_2Se^+\cdot Cl^-$	$V = 1055.60 (10) \text{ Å}^3$
$M_r = 274.05$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 544
Hall symbol: -P 2ybc	$D_{\rm x} = 1.724 { m Mg} { m m}^{-3}$
a = 8.1944 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 19.3719 (10) Å	Cell parameters from 3966 reflections
c = 7.1241 (3) Å	$\theta = 1.0-27.5^{\circ}$
$\beta = 111.025 \ (6)^{\circ}$	$\mu = 4.01 \mathrm{~mm^{-1}}$

T = 120 KBlock, orange

Data collection

Nonius KappaCCD diffractometer	$T_{\min} = 0.379, T_{\max} = 0.699$ 13385 measured reflections
Radiation source: fine-focus sealed tube	2423 independent reflections
Horizontally mounted graphite crystal	2040 reflections with $I > 2\sigma(I)$
monochromator	$R_{\rm int} = 0.032$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.7^\circ$
φ scans and ω scans with κ offset	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -23 \rightarrow 25$
(XPREP in SHELXTL; Sheldrick, 2008)	$l = -9 \rightarrow 9$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from
$wR(F^2) = 0.049$	neighbouring sites

0.049 $wR(F^2)$ S = 1.042423 reflections 119 parameters 0 restraints Primary atom site location: structure-invariant direct methods

neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0163P)^2 + 1.0004P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$

 $0.30 \times 0.21 \times 0.10 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Se1	0.09775 (3)	0.154947 (11)	0.72449 (3)	0.01773 (7)
Cl1	-0.26973 (7)	-0.02283 (3)	1.32107 (8)	0.01820 (12)
Cl2	0.00330 (8)	0.25802 (3)	0.77369 (9)	0.02668 (14)
N1	-0.0543 (3)	0.06371 (10)	1.1409 (3)	0.0188 (4)
H1	-0.119 (4)	0.0437 (15)	1.188 (4)	0.040 (8)*
N2	0.1181 (3)	0.06797 (9)	1.2431 (3)	0.0192 (4)
H2	0.162 (3)	0.0557 (13)	1.359 (4)	0.023 (7)*
C1	0.0658 (3)	0.11191 (10)	0.9452 (3)	0.0144 (4)
C2	-0.0913 (3)	0.08920 (10)	0.9570 (3)	0.0158 (4)
C3	0.1960 (3)	0.09761 (10)	1.1294 (3)	0.0164 (4)
C4	-0.2731 (3)	0.09086 (12)	0.8111 (4)	0.0235 (5)
H4A	-0.3384	0.0512	0.8368	0.028*
H4B	-0.2718	0.0860	0.6733	0.028*

C5	-0.3658 (3)	0.15699 (13)	0.8246 (5)	0.0352 (6)	
H5A	-0.3615	0.1634	0.9627	0.053*	
H5B	-0.4880	0.1545	0.7333	0.053*	
H5C	-0.3082	0.1960	0.7864	0.053*	
C6	0.3877 (3)	0.10861 (12)	1.2043 (4)	0.0247 (5)	
H6A	0.4335	0.0933	1.1001	0.030*	
H6B	0.4428	0.0796	1.3251	0.030*	
C7	0.4393 (3)	0.18281 (13)	1.2570 (4)	0.0353 (6)	
H7A	0.3884	0.2117	1.1371	0.053*	
H7B	0.5670	0.1869	1.3064	0.053*	
H7C	0.3960	0.1982	1.3617	0.053*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	0.02534 (13)	0.01435 (11)	0.01690 (11)	-0.00085 (9)	0.01169 (9)	0.00111 (9)
Cl1	0.0180 (3)	0.0205 (3)	0.0173 (3)	0.0003 (2)	0.0077 (2)	0.0031 (2)
Cl2	0.0454 (4)	0.0144 (3)	0.0276 (3)	0.0047 (2)	0.0220 (3)	0.0042 (2)
N1	0.0212 (11)	0.0159 (9)	0.0228 (10)	-0.0016 (8)	0.0122 (9)	0.0014 (8)
N2	0.0281 (11)	0.0145 (9)	0.0156 (10)	0.0028 (8)	0.0084 (9)	0.0021 (8)
C1	0.0201 (11)	0.0097 (10)	0.0153 (10)	-0.0002 (8)	0.0086 (9)	-0.0004 (8)
C2	0.0209 (12)	0.0095 (9)	0.0194 (11)	0.0004 (8)	0.0101 (10)	-0.0010 (8)
C3	0.0218 (12)	0.0097 (10)	0.0178 (11)	0.0011 (8)	0.0072 (9)	-0.0030 (8)
C4	0.0181 (12)	0.0209 (12)	0.0307 (13)	-0.0004 (9)	0.0076 (10)	-0.0010 (10)
C5	0.0208 (12)	0.0229 (13)	0.0586 (18)	0.0025 (11)	0.0103 (12)	0.0011 (12)
C6	0.0196 (12)	0.0232 (12)	0.0276 (12)	0.0002 (10)	0.0039 (10)	-0.0023 (10)
C7	0.0311 (15)	0.0263 (13)	0.0429 (16)	-0.0088 (11)	0.0063 (13)	-0.0067 (12)

Geometric parameters (Å, °)

Se1—C1	1.8793 (19)	C4—H4A	0.9900
Se1—Cl2	2.2144 (6)	C4—H4B	0.9900
N1—C2	1.329 (3)	С5—Н5А	0.9800
N1—N2	1.339 (3)	С5—Н5В	0.9800
N1—H1	0.82 (3)	С5—Н5С	0.9800
N2—C3	1.328 (3)	C6—C7	1.507 (3)
N2—H2	0.81 (3)	С6—Н6А	0.9900
C1—C3	1.390 (3)	C6—H6B	0.9900
C1—C2	1.391 (3)	C7—H7A	0.9800
C2—C4	1.480 (3)	С7—Н7В	0.9800
С3—С6	1.482 (3)	С7—Н7С	0.9800
C4—C5	1.510 (3)		
C1—Se1—Cl2	96.09 (6)	C5—C4—H4B	109.2
C2—N1—N2	109.64 (18)	H4A—C4—H4B	107.9
C2—N1—H1	129 (2)	C4—C5—H5A	109.5
N2—N1—H1	121 (2)	C4—C5—H5B	109.5
C3—N2—N1	109.82 (19)	H5A—C5—H5B	109.5

C3—N2—H2 N1—N2—H2	128.2 (18) 121.9 (18)	C4—C5—H5C H5A—C5—H5C	109.5 109.5
C3—C1—C2	107.06 (18)	H5B—C5—H5C	109.5
C3—C1—Se1	126.01 (16)	C3—C6—C7	113.1 (2)
C2—C1—Se1	126.93 (16)	С3—С6—Н6А	109.0
N1—C2—C1	106.75 (19)	С7—С6—Н6А	109.0
N1—C2—C4	121.10 (19)	С3—С6—Н6В	109.0
C1—C2—C4	132.13 (19)	С7—С6—Н6В	109.0
N2—C3—C1	106.72 (19)	H6A—C6—H6B	107.8
N2—C3—C6	121.5 (2)	С6—С7—Н7А	109.5
C1—C3—C6	131.8 (2)	С6—С7—Н7В	109.5
C2—C4—C5	112.1 (2)	H7A—C7—H7B	109.5
C2—C4—H4A	109.2	С6—С7—Н7С	109.5
C5—C4—H4A	109.2	H7A—C7—H7C	109.5
C2—C4—H4B	109.2	H7B—C7—H7C	109.5
C2—N1—N2—C3	1.3 (2)	N1—N2—C3—C6	-179.63 (18)
Cl2—Se1—C1—C3	-101.57 (18)	C2—C1—C3—N2	0.0 (2)
Cl2—Se1—C1—C2	77.53 (18)	Se1—C1—C3—N2	179.22 (14)
N2—N1—C2—C1	-1.3 (2)	C2—C1—C3—C6	178.7 (2)
N2—N1—C2—C4	179.96 (18)	Se1—C1—C3—C6	-2.1 (3)
C3—C1—C2—N1	0.8 (2)	N1—C2—C4—C5	90.0 (3)
Se1-C1-C2-N1	-178.43 (15)	C1—C2—C4—C5	-88.4 (3)
C3—C1—C2—C4	179.4 (2)	N2—C3—C6—C7	-105.4 (3)
Se1—C1—C2—C4	0.1 (3)	C1—C3—C6—C7	76.0 (3)
N1—N2—C3—C1	-0.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…Cl1	0.82(3)	2.22 (3)	3.0333 (19)	172 (3)
N2—H2…Cl1 ⁱ	0.81(3)	2 22 (3)	3.030 (2)	178 (2)

Symmetry code: (i) -x, -y, -z+3.