organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

5-Chloro-1,3-dimethyl-1*H*-pyrazole-4-carbaldehyde

Yong-Jun Shen, Mei Xub and Chong-Guang Fana*

^aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China, and ^bDepartment of Chemistry and Environmental Science, Cangzhou Normal University, Cangzhou 061001, People's Republic of China

Correspondence e-mail: gaofz2005@yahoo.com.cn

Received 3 October 2011; accepted 7 October 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.081; data-to-parameter ratio = 14.2.

In the title compound, $C_6H_7ClN_2O$, the molecules are situated on mirror planes, so H atoms of two methyl groups were treated as rotationally disordered over two orientations each. The crystal packing exhibits weak intermolecular $C-H\cdots O$ interactions and short $Cl\cdots N$ contacts of 3.046 (2) Å.

Related literature

For the biological activity of pyrazole derivatives, see: Hamaguchi *et al.* (1995); Motoba *et al.* (1992). For a related structure, see: Yokoyama *et al.* (2004).

Experimental

Crystal data C₆H₇ClN₂O

 $M_r = 158.59$

Orthorhombic, *Pnma* Z = 4 Mo Kα radiation b = 6.463 (5) Å μ = 0.47 mm⁻¹ c = 8.190 (6) Å T = 113 K V = 696.9 (8) Å³ $0.24 \times 0.22 \times 0.18$ mm

Data collection

Rigaku Saturn724 CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) $T_{\min} = 0.895$, $T_{\max} = 0.920$ 7166 measured reflections 897 independent reflections 726 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.049$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.027 & 63 \text{ parameters} \\ WR(F^2)=0.081 & \text{H-atom parameters constrained} \\ S=1.05 & \Delta\rho_{\max}=0.36 \text{ e Å}^{-3} \\ 897 \text{ reflections} & \Delta\rho_{\min}=-0.25 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
C5-H5A···O1i	0.98	2.58	3.220 (3)	123

Symmetry code: (i) x, y, z + 1.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Scientific Research Foundation for Talent Introduction of Nantong University (grant No. 03080226).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5167).

References

Hamaguchi, H., Kajihara, O. & Katoh, M. (1995). J. Pestic. Sci. 20, 173–175. Motoba, K., Suzuki, T. & Uchida, M. (1992). Pestic. Biochem. Physiol. 43, 37–44.

Rigaku (2008). *CrystalClear*. Rigaku Corporation, Toyko, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Vokovama V. Kurimoto V. Saito V. Katsurada M. Okada I. (2008).

Yokoyama, Y., Kurimoto, Y., Saito, Y., Katsurada, M., Okada, I., Osano, Y. T., Sasaki, C., Yokoyama, Y., Tukada, H., Adachi, M., Nakamura, S., Murayama, T., Harazono, T. & Kodaira, T. (2004). *Chem. Lett.* **33**, 106–107.

supporting information

Acta Cryst. (2011). E67, o2936 [doi:10.1107/S1600536811041407]

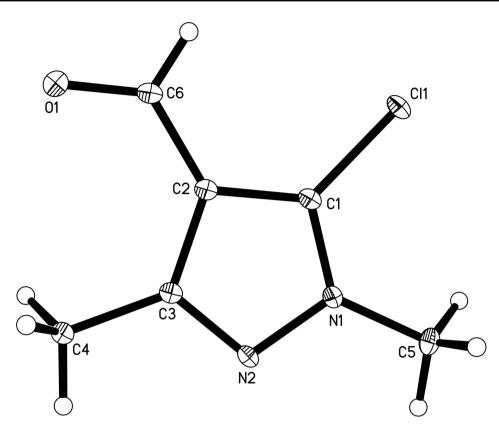
5-Chloro-1,3-dimethyl-1*H*-pyrazole-4-carbaldehyde

Yong-Jun Shen, Mei Xu and Chong-Guang Fan

S1. Comment

The pyrazole ring is a prominent heterocyclic scaffold in numerous bioactive molecules. Many pyrazole-based compounds are reported to possess diverse biological activities (Motoba *et al.*, 1992; Hamaguchi *et al.*, 1995). The title compound (I), is an important intermediate for the synthesis of agrochemicals and drugs. Details of its crystal structure may be helpful for the design of novel bioactive molecules.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in ethyl 4-formyl-1,3-dimethylpyrazole-5-carboxylate (Yokoyama *et al.*, 2004). All molecules in (I) are situated on mirror planes. The crystal packing exhibits weak intermolecular C—H···O interactions (Table 1) and short Cl···N contacts of 3.046 (2) Å.


S2. Experimental

To a well stirred cold solution of DMF(60 mmol) was added dropwise phosphoryl trichloride (90 mmol). The resulting mixture was stirred at 273 K for another 20 min. To the above solution was added 1,3-dimethyl- 1*H*-pyrazol-5(4*H*)-one (30 mmol), then it was heated to 363 k for 4 h. Completion of the reaction was checked by TLC, the reaction mixture was cooled and poured into cold water(100 ml). The pH of the mixture was adjusted to 7 by sodium hydroxide solution. The resulting solution was extracted with ethyl acetate (3 * 30 ml). The organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, then the residue was recrystallized from ethyl acetate/petroleum ether to give a colourless crystal.

S3. Refinement

All H atoms were placed in calculated positions, with C-H = 0.95, and $0.98 \,^{\circ}$ A, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. H atoms of two methyl groups were treated as rotationally disordered over two orientations each with occupancies fixed to 0.5.

Acta Cryst. (2011). E67, o2936 Sup-1

Figure 1The molecular structure of (I) showing the atomic labels and 30% probability displacement ellipsoids.

5-Chloro-1,3-dimethyl-1*H*-pyrazole-4-carbaldehyde

Crystal data

 $C_6H_7CIN_2O$ $M_r = 158.59$ Orthorhombic, PnmaHall symbol: -P 2ac 2n a = 13.167 (9) Å b = 6.463 (5) Å c = 8.190 (6) Å V = 696.9 (8) Å³ Z = 4

Data collection

Rigaku Saturn724 CCD diffractometer Radiation source: rotating anode Multilayer monochromator Detector resolution: 14.22 pixels mm $^{-1}$ ω and φ scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2008) $T_{\min} = 0.895$, $T_{\max} = 0.920$

F(000) = 328 $D_x = 1.511 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2460 reflections $\theta = 2.5 - 27.8^{\circ}$ $\mu = 0.47 \text{ mm}^{-1}$ T = 113 KPrism, colourless $0.24 \times 0.22 \times 0.18 \text{ mm}$

7166 measured reflections 897 independent reflections 726 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.049$ $\theta_{\text{max}} = 27.8^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$ $h = -16 \rightarrow 17$ $k = -8 \rightarrow 8$ $l = -10 \rightarrow 10$

Acta Cryst. (2011). E67, o2936 sup-2

supporting information

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.027$

 $wR(F^2) = 0.081$

S = 1.05

897 reflections

63 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0516P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.002$

 $\Delta \rho_{\rm max} = 0.36 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.25 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C11	0.41884 (3)	0.2500	0.25597 (5)	0.01825 (17)	
O1	0.48840 (10)	0.2500	-0.28470(15)	0.0222 (3)	
N1	0.62098 (12)	0.2500	0.23171 (16)	0.0159 (4)	
N2	0.70015 (10)	0.2500	0.12266 (17)	0.0166(3)	
C1	0.53190 (11)	0.2500	0.1537 (2)	0.0146 (4)	
C2	0.54995 (11)	0.2500	-0.0124 (2)	0.0141 (4)	
C3	0.65799 (11)	0.2500	-0.0242 (2)	0.0142 (4)	
C4	0.72306 (11)	0.2500	-0.1739 (2)	0.0178 (4)	
H4A	0.7015	0.3620	-0.2468	0.027*	0.50
H4B	0.7161	0.1170	-0.2303	0.027*	0.50
H4C	0.7942	0.2710	-0.1426	0.027*	0.50
C5	0.63988 (14)	0.2500	0.4067 (2)	0.0234 (4)	
H5A	0.5928	0.3457	0.4603	0.035*	0.50
H5B	0.7099	0.2942	0.4276	0.035*	0.50
H5C	0.6297	0.1102	0.4500	0.035*	0.50
C6	0.47278 (12)	0.2500	-0.1387 (2)	0.0167 (4)	
H6	0.4039	0.2500	-0.1041	0.020*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0131 (3)	0.0215 (3)	0.0202(3)	0.000	0.00588 (14)	0.000
O1	0.0198 (7)	0.0291 (8)	0.0177 (6)	0.000	-0.0013(5)	0.000
N1	0.0138 (8)	0.0210(8)	0.0130(7)	0.000	0.0020 (5)	0.000
N2	0.0119 (7)	0.0226 (8)	0.0153 (7)	0.000	0.0035 (6)	0.000

Acta Cryst. (2011). E67, o2936 Sup-3

4.	• •	4 •
supporting	intori	mation
Supporting	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nauvn

C1	0.0119 (8)	0.0145 (9)	0.0175 (8)	0.000	0.0017 (6)	0.000
C2	0.0124 (8)	0.0137 (8)	0.0163 (8)	0.000	0.0001 (6)	0.000
C3	0.0125 (8)	0.0137 (9)	0.0163 (8)	0.000	0.0000(6)	0.000
C4	0.0135 (8)	0.0239 (10)	0.0159(8)	0.000	0.0008 (6)	0.000
C5	0.0237 (9)	0.0354 (12)	0.0111 (9)	0.000	0.0000(7)	0.000
C6	0.0119 (8)	0.0182 (9)	0.0199(8)	0.000	-0.0006(7)	0.000

Geometric parameters (Å, °)

Geometric parameters (A,)	/		
C11—C1	1.7081 (18)	C3—C4	1.495 (2)
O1—C6	1.213 (2)	C4—H4A	0.9800
N1—C1	1.336 (2)	C4—H4B	0.9800
N1—N2	1.373 (2)	C4—H4C	0.9800
N1—C5	1.455 (2)	C5—H5A	0.9800
N2—C3	1.325 (2)	C5—H5B	0.9800
C1—C2	1.381 (2)	C5—H5C	0.9800
C2—C3	1.426 (2)	C6—H6	0.9500
C2—C6	1.450 (2)		
C1—N1—N2	110.83 (14)	C3—C4—H4B	109.5
C1—N1—C5	128.43 (15)	H4A—C4—H4B	109.5
N2—N1—C5	120.74 (15)	C3—C4—H4C	109.5
C3—N2—N1	105.82 (13)	H4A—C4—H4C	109.5
N1—C1—C2	108.67 (14)	H4B—C4—H4C	109.5
N1—C1—C11	122.06 (14)	N1—C5—H5A	109.5
C2—C1—C11	129.27 (13)	N1—C5—H5B	109.5
C1—C2—C3	103.80 (14)	H5A—C5—H5B	109.5
C1—C2—C6	125.60 (15)	N1—C5—H5C	109.5
C3—C2—C6	130.61 (15)	H5A—C5—H5C	109.5
N2—C3—C2	110.88 (14)	H5B—C5—H5C	109.5
N2—C3—C4	120.27 (14)	O1—C6—C2	125.74 (15)
C2—C3—C4	128.84 (15)	O1—C6—H6	117.1
C3—C4—H4A	109.5	C2—C6—H6	117.1
C1—N1—N2—C3	0.0	Cl1—C1—C2—C6	0.0
C5—N1—N2—C3	180.0	N1—N2—C3—C2	0.0
N2—N1—C1—C2	0.0	N1—N2—C3—C4	180.0
C5—N1—C1—C2	180.0	C1—C2—C3—N2	0.0
N2-N1-C1-C11	180.0	C6—C2—C3—N2	180.0
C5—N1—C1—C11	0.0	C1—C2—C3—C4	180.0
N1—C1—C2—C3	0.0	C6—C2—C3—C4	0.0
C11—C1—C2—C3	180.0	C1—C2—C6—O1	180.0
N1—C1—C2—C6	180.0	C3—C2—C6—O1	0.0

Hydrogen-bond geometry (Å, o)

D—H H M D—M D—

Acta Cryst. (2011). E67, o2936 sup-4

supporting information

C5—H5 <i>A</i> ···O1 ⁱ	0.98	2.58	3.220(3)	123

Symmetry code: (i) x, y, z+1.

Acta Cryst. (2011). E67, o2936 sup-5