

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,4-Difluorophenyl)[1-(1H-1,2,4-triazol-1-yl)cyclopropyl]methanone

Chunli Wu,* Wei Lei, Huiyan Ma, Jiabin Qiao and Aixing Li

School of Pharmaceutical Sciences, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China Correspondence e-mail: kedi2009@126.com

Received 17 September 2011; accepted 29 September 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.111; data-to-parameter ratio = 12.5.

The asymmetric unit of the title compound, $C_{12}H_{9}F_{2}N_{3}O_{1}$ contains two independent molecules (A and B) in which the benzene and cyclopropane rings form dihedral angles of 33.0 (1) and 29.7 (1) $^{\circ}$, respectively. In the crystal, weak intermolecular $C-H\cdots O$ hydrogen bonds link alternating A and B molecules into chains along [010].

Related literature

For applications of triazole derivatives, see: Che & Zhang (2009); Lieven & Leo (2005). For related structures, see: Tarun et al. (1998).

Experimental

Crystal data $C_{12}H_9F_2N_3O$

 $M_r = 249.22$

organic compounds

Triclinic, P1	V = 1179.4 (2) Å ³
a = 9.6067 (11) Å	Z = 4
b = 11.4840 (13) Å	Mo $K\alpha$ radiation
c = 11.9127 (14) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 73.652 \ (1)^{\circ}$	$T = 298 { m K}$
$\beta = 84.202 \ (2)^{\circ}$	$0.49 \times 0.40 \times 0.38 \text{ mm}$
$\gamma = 69.260 \ (1)^{\circ}$	

Data collection

Rigaku R-AXIS CCD detector	5900 measured reflections
diffractometer	4080 independent reflections
Absorption correction: multi-scan	2816 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.017$
$T_{\min} = 0.983, T_{\max} = 0.986$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	326 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
4080 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12A\cdots O2^{i}$	0.93	2.35	3.268 (2)	171
$C24 - H24A \cdots O1^{ii}$	0.93	2.37	3.265 (3)	161
Symmetry codes: (i) $-x$	+1, -y + 2, -	-z + 1; (ii) $-x - z = -z + 1$	+1, -y + 1, -z +	1.

Data collection: R-AXIS II Software (Rigaku, 1997); cell refinement: R-AXIS II Software; data reduction: R-AXIS II Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN (Molecular Structure Corporation, 1992); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5156).

References

- Che, X.-Y. & Zhang, W.-N. (2009). Eur. J. Med. Chem. 44, 4218-4226.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Lieven, M. & Leo, J. J. (2005). J. Med. Chem. 48, 2184-2193.
- Molecular Structure Corporation (1992). TEXSAN. MSC, The Woodlands, Texas, USA
- Rigaku (1997). R-AXIS II Software. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tarun, K. M., Debasis, D. & Chittaranjan, S. (1998). Inorg. Chem. 37, 1672-1678

supporting information

Acta Cryst. (2011). E67, o2913 [doi:10.1107/S1600536811040037]

(2,4-Difluorophenyl)[1-(1H-1,2,4-triazol-1-yl)cyclopropyl]methanone

Chunli Wu, Wei Lei, Huiyan Ma, Jiabin Qiao and Aixing Li

S1. Comment

The triazole derivatives exhibit various antifungal activities (Che & Zhang, 2009; Lieven & Leo, 2005). As our contribution to the research of triazole compounds, herewith we report the crystal structure of the title compound (I).

The asymmetric unit of (I) contains two independent molecules, A and B, respectively (Fig. 1). The benzene and cyclopropane rings form a dihedral angle of 33.0 (1)° in A and 29.7 (1)° in B. All bond lengths and angles in (I) are normal and comparable with those found in related compounds (Tarun *et al.*, 1998). In the crystal structure, weak intermolecular C— H…O hydrogen bonds (Table 1) link alternating A and B molecules into chains in [010].

S2. Experimental

To a suspension of 2.27 g (10 mmol) of 2-(1*H*-1,2,4- triazol)-2',4'-difluoroacetophenone and 1.68 g (30 mmol) of KOH in 60 ml of stirred acetone, was cautiously added 2.6 ml (30 mmol) of 1,2-dibromoethane. After the mixture was stirred at room temperature for 6 hr, the mixture was filtered,and then solvent was evaporated. The crystalline product was separated by chromatographic column(petroleum ether:acetone 6:1) with yield 30%. Crystals suitable for X-ray analysis were grown by slow evaporation from acetone at room temperature for two weeks. M.p. 89–90 °C. Spectroscopic analysis: ¹H NMR (400 MHz, CDCl₃) σ : 8.21(s, 1H), 7.80(s, 1H), 7.40(1*H*, dd, *J*=14.5 8.2 Hz), 6.87(m, 1H), 6.73(m, 1H), 2.13(1*H*, q, *J*=5.0 Hz), 1.80(1*H*, q, *J*=5.0 Hz). ¹³C NMR (100 MHz, CDCl₃) σ : 196.47, 165.45, 165.33, 162.95, 162.83, 160.62, 160.50, 158.12, 157.99, 152.33, 146.44, 130.94, 130.89, 130.83, 130.79, 122.71, 122.67, 122.55, 122.51, 112.48, 112.44, 112.26, 112.23, 105.25, 104.99, 104.73, 49.23, 19.04.

S3. Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Two independent molecules of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

(2,4-Difluorophenyl)[1-(1H-1,2,4-triazol-1-yl)cyclopropyl]methanone

Crystal data

 $C_{12}H_9F_2N_3O$ $M_r = 249.22$ Triclinic, *P*1 a = 9.6067 (11) Å b = 11.4840 (13) Å c = 11.9127 (14) Å $a = 73.652 (1)^{\circ}$ $\beta = 84.202 (2)^{\circ}$ $\gamma = 69.260 (1)^{\circ}$ $V = 1179.4 (2) \text{ Å}^3$ Z = 4

Data collection

Rigaku R-AXIS CCD detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.983, T_{\max} = 0.986$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.111$ S = 1.024080 reflections 326 parameters 0 restraints F(000) = 512 $D_x = 1.404 \text{ Mg m}^{-3}$ Melting point: 362.15 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2449 reflections $\theta = 4.9-52.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.49 \times 0.40 \times 0.38 \text{ mm}$

5900 measured reflections 4080 independent reflections 2816 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -10 \rightarrow 11$ $k = -13 \rightarrow 12$ $l = -13 \rightarrow 14$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.2296P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$	Extinction correction: SHELXL97 (Sheldrick,
$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$	Extinction coefficient: 0.0200 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and i	sotropic or	equivalent isotropic	c displacement	parameters ($(Å^2)$)
-------------------------------------	-------------	----------------------	----------------	--------------	---------	---

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
F1	1.40947 (15)	0.64219 (16)	0.00685 (15)	0.1017 (5)	
F2	0.96387 (13)	0.81942 (11)	0.18986 (12)	0.0717 (4)	
F3	0.93617 (18)	0.62666 (18)	0.51796 (17)	0.1195 (6)	
F4	0.49568 (16)	0.58407 (11)	0.69708 (13)	0.0857 (4)	
C1	1.2783 (2)	0.6334 (2)	0.0552 (2)	0.0647 (6)	
C2	1.2443 (2)	0.5265 (2)	0.0588 (2)	0.0668 (6)	
H2A	1.3102	0.4597	0.0302	0.080*	
C3	1.1099 (2)	0.52091 (19)	0.10591 (18)	0.0584 (5)	
H3A	1.0851	0.4485	0.1102	0.070*	
C4	1.0094 (2)	0.62149 (17)	0.14757 (16)	0.0478 (5)	
C5	1.0544 (2)	0.72398 (18)	0.14347 (17)	0.0512 (5)	
C6	1.1876 (2)	0.7330 (2)	0.09827 (18)	0.0591 (6)	
H6A	1.2151	0.8033	0.0969	0.071*	
C7	0.8640 (2)	0.61067 (19)	0.19488 (18)	0.0556 (5)	
C8	0.7238 (2)	0.72473 (17)	0.16397 (16)	0.0463 (5)	
C9	0.5788 (2)	0.7042 (2)	0.1994 (2)	0.0678 (6)	
H9A	0.4949	0.7541	0.1470	0.081*	
H9B	0.5817	0.6175	0.2403	0.081*	
C10	0.6327 (3)	0.7735 (2)	0.26206 (19)	0.0700 (6)	
H10A	0.6689	0.7291	0.3413	0.084*	
H10B	0.5820	0.8658	0.2480	0.084*	
N2	0.7482 (2)	0.78048 (16)	-0.04611 (14)	0.0591 (5)	
N3	0.7144 (2)	0.99200 (16)	-0.08345 (15)	0.0647 (5)	
C13	0.8010 (3)	0.6783 (3)	0.5629 (2)	0.0762 (7)	
C14	0.7534 (3)	0.8061 (2)	0.5600 (2)	0.0788 (7)	
H14A	0.8135	0.8558	0.5296	0.095*	
C15	0.6152 (3)	0.8589 (2)	0.6032 (2)	0.0691 (7)	
H15A	0.5821	0.9455	0.6030	0.083*	
C16	0.5225 (2)	0.78710 (18)	0.64746 (18)	0.0573 (6)	
C17	0.5794 (3)	0.65813 (19)	0.64870 (19)	0.0604 (6)	
C18	0.7182 (3)	0.6007 (2)	0.6075 (2)	0.0690 (6)	
H18A	0.7540	0.5134	0.6100	0.083*	

C19	0.3729 (3)	0.8500 (2)	0.69230 (19)	0.0678 (6)
C20	0.2382 (2)	0.83360 (19)	0.65607 (17)	0.0582 (5)
C21	0.1380 (3)	0.7875 (3)	0.7494 (2)	0.0928 (9)
H21A	0.0900	0.7320	0.7342	0.111*
H21B	0.1660	0.7684	0.8303	0.111*
C22	0.0889 (3)	0.9228 (3)	0.6814 (2)	0.0884 (8)
H22A	0.0864	0.9871	0.7204	0.106*
H22B	0.0105	0.9507	0.6244	0.106*
N6	0.2577 (2)	0.69776 (17)	0.41577 (15)	0.0633 (5)
N5	0.26550 (18)	0.87964 (14)	0.44550 (14)	0.0533 (4)
C12	0.7074 (2)	0.94269 (18)	0.02927 (17)	0.0536 (5)
H12A	0.6907	0.9894	0.0846	0.064*
C11	0.7406 (3)	0.8883 (2)	-0.12474 (18)	0.0662 (6)
H11A	0.7525	0.8930	-0.2042	0.079*
N1	0.72688 (16)	0.81780 (13)	0.05495 (12)	0.0423 (4)
N4	0.25081 (17)	0.79612 (14)	0.54907 (13)	0.0464 (4)
C24	0.2467 (2)	0.68990 (19)	0.52741 (19)	0.0588 (5)
H24A	0.2371	0.6190	0.5847	0.071*
C23	0.2694 (2)	0.81488 (19)	0.37037 (18)	0.0542 (5)
H23A	0.2797	0.8479	0.2904	0.065*
01	0.85746 (19)	0.50900 (16)	0.25590 (17)	0.0984 (6)
O2	0.3590 (2)	0.9191 (2)	0.75643 (18)	0.1132 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
F1	0.0625 (9)	0.1236 (13)	0.1359 (14)	-0.0376 (9)	0.0205 (9)	-0.0597 (11)
F2	0.0660 (8)	0.0637 (8)	0.0980 (10)	-0.0180 (6)	-0.0012 (7)	-0.0458 (7)
F3	0.0818 (12)	0.1246 (14)	0.1586 (17)	-0.0256 (10)	-0.0010 (10)	-0.0595 (13)
F4	0.1023 (11)	0.0479 (7)	0.1065 (11)	-0.0320(7)	-0.0159 (8)	-0.0061 (7)
C1	0.0459 (12)	0.0778 (16)	0.0745 (15)	-0.0183 (11)	-0.0014 (10)	-0.0297 (13)
C2	0.0566 (14)	0.0630 (14)	0.0824 (16)	-0.0086 (11)	-0.0069 (11)	-0.0345 (12)
C3	0.0601 (13)	0.0419 (11)	0.0718 (14)	-0.0118 (10)	-0.0159 (11)	-0.0146 (10)
C4	0.0504 (11)	0.0401 (10)	0.0495 (11)	-0.0122(9)	-0.0116 (9)	-0.0065 (8)
C5	0.0519 (12)	0.0468 (11)	0.0566 (12)	-0.0101 (9)	-0.0101(9)	-0.0215 (9)
C6	0.0542 (13)	0.0580 (13)	0.0741 (15)	-0.0230 (10)	-0.0108 (11)	-0.0225 (11)
C7	0.0643 (13)	0.0430 (12)	0.0546 (12)	-0.0207(10)	-0.0066(10)	-0.0001(9)
C8	0.0522 (11)	0.0431 (11)	0.0444 (11)	-0.0203(9)	-0.0006(9)	-0.0075(8)
C9	0.0594 (13)	0.0629 (14)	0.0797 (16)	-0.0295 (11)	0.0040 (11)	-0.0068(12)
C10	0.0797 (16)	0.0751 (15)	0.0522 (13)	-0.0272(13)	0.0119 (11)	-0.0155 (11)
N2	0.0828 (13)	0.0495 (10)	0.0472 (10)	-0.0189 (9)	-0.0041 (8)	-0.0197 (8)
N3	0.0933 (14)	0.0466 (10)	0.0496 (11)	-0.0238(9)	-0.0031(9)	-0.0048 (8)
C13	0.0669 (16)	0.0743 (17)	0.0896 (18)	-0.0180 (14)	-0.0208(13)	-0.0258(14)
C14	0.0871 (19)	0.0678 (16)	0.0901 (18)	-0.0367(15)	-0.0249(15)	-0.0121 (14)
C15	0.0893 (18)	0.0437 (12)	0.0798 (16)	-0.0221(12)	-0.0336(14)	-0.0140(11)
C16	0.0774 (15)	0.0406 (11)	0.0577 (13)	-0.0164 (10)	-0.0262(11)	-0.0146 (9)
C17	0.0800 (16)	0.0407 (11)	0.0635 (14)	-0.0227(11)	-0.0236(11)	-0.0075(10)
C18	0.0771 (16)	0.0447 (12)	0.0835 (16)	-0.0082(12)	-0.0308(13)	-0.0198 (11)

C19	0.0935 (18)	0.0516 (13)	0.0608 (14)	-0.0151 (12)	-0.0176 (12)	-0.0253 (11)
C20	0.0743 (14)	0.0527 (12)	0.0469 (12)	-0.0143 (11)	-0.0016 (10)	-0.0210 (10)
C21	0.117 (2)	0.112 (2)	0.0538 (15)	-0.0430 (19)	0.0201 (14)	-0.0304 (15)
C22	0.0852 (18)	0.094 (2)	0.0825 (18)	-0.0074 (15)	0.0070 (14)	-0.0493 (16)
N6	0.0885 (13)	0.0544 (11)	0.0570 (11)	-0.0311 (10)	0.0008 (9)	-0.0215 (9)
N5	0.0702 (11)	0.0415 (9)	0.0490 (10)	-0.0234 (8)	0.0010 (8)	-0.0078 (8)
C12	0.0735 (14)	0.0383 (11)	0.0507 (12)	-0.0181 (10)	-0.0012 (10)	-0.0151 (9)
C11	0.0932 (17)	0.0598 (14)	0.0409 (12)	-0.0215 (12)	-0.0025 (11)	-0.0111 (11)
N1	0.0511 (9)	0.0361 (8)	0.0403 (8)	-0.0138 (7)	-0.0024 (7)	-0.0117 (7)
N4	0.0597 (10)	0.0391 (8)	0.0428 (9)	-0.0187 (7)	-0.0004 (7)	-0.0121 (7)
C24	0.0857 (15)	0.0456 (12)	0.0534 (13)	-0.0350 (11)	0.0014 (10)	-0.0105 (9)
C23	0.0663 (13)	0.0528 (12)	0.0447 (11)	-0.0221 (10)	0.0050 (9)	-0.0140 (9)
01	0.0834 (12)	0.0565 (10)	0.1217 (15)	-0.0247 (9)	-0.0031 (10)	0.0301 (10)
O2	0.1266 (16)	0.1143 (15)	0.1246 (16)	-0.0233 (12)	-0.0190 (12)	-0.0879 (14)

Geometric parameters (Å, °)

F1—C1	1.357 (3)	C13—C14	1.365 (3)	
F2—C5	1.354 (2)	C14—C15	1.364 (3)	
F3—C13	1.348 (3)	C14—H14A	0.9300	
F4—C17	1.348 (2)	C15—C16	1.390 (3)	
C1—C6	1.366 (3)	C15—H15A	0.9300	
C1—C2	1.366 (3)	C16—C17	1.382 (3)	
C2—C3	1.371 (3)	C16—C19	1.483 (3)	
C2—H2A	0.9300	C17—C18	1.371 (3)	
C3—C4	1.396 (3)	C18—H18A	0.9300	
С3—НЗА	0.9300	C19—O2	1.215 (2)	
C4—C5	1.378 (3)	C19—C20	1.493 (3)	
C4—C7	1.486 (3)	C20—N4	1.437 (2)	
C5—C6	1.364 (3)	C20—C22	1.498 (3)	
С6—Н6А	0.9300	C20—C21	1.502 (3)	
C7—O1	1.209 (2)	C21—C22	1.464 (4)	
С7—С8	1.498 (3)	C21—H21A	0.9700	
C8—N1	1.436 (2)	C21—H21B	0.9700	
С8—С9	1.494 (3)	C22—H22A	0.9700	
C8—C10	1.503 (3)	C22—H22B	0.9700	
C9—C10	1.470 (3)	N6C24	1.303 (3)	
С9—Н9А	0.9700	N6—C23	1.342 (3)	
С9—Н9В	0.9700	N5—C23	1.305 (2)	
C10—H10A	0.9700	N5—N4	1.363 (2)	
C10—H10B	0.9700	C12—N1	1.327 (2)	
N2-C11	1.309 (3)	C12—H12A	0.9300	
N2—N1	1.361 (2)	C11—H11A	0.9300	
N3—C12	1.307 (2)	N4—C24	1.330 (2)	
N3—C11	1.348 (3)	C24—H24A	0.9300	
C13—C18	1.364 (3)	С23—Н23А	0.9300	
F1—C1—C6	117.4 (2)	C17—C16—C15	116.4 (2)	

F1—C1—C2	118.9 (2)	C17—C16—C19	124.0 (2)
C6—C1—C2	123.7 (2)	C15—C16—C19	119.55 (19)
C1—C2—C3	117.9 (2)	F4—C17—C18	118.42 (19)
C1—C2—H2A	121.1	F4—C17—C16	117.9 (2)
C3—C2—H2A	121.1	C18—C17—C16	123.6 (2)
C2-C3-C4	121.47 (19)	C13—C18—C17	116.4 (2)
C2—C3—H3A	119.3	C13—C18—H18A	121.8
C4—C3—H3A	119.3	C17—C18—H18A	121.8
C_{5} C_{4} C_{3}	116 77 (19)	02-C19-C16	1197(2)
$C_{5} - C_{4} - C_{7}$	12450(17)	02 - C19 - C20	119.7(2) 119.5(2)
$C_3 C_4 C_7$	124.30(17) 118.72(17)	$C_{16} C_{19} C_{20}$	119.3(2) 120.83(17)
$E_2 = C_2 = C_1$	110.72(17) 117.88(17)	$N_{10} = C_{10} = C_{20}$	120.05(17)
$F_2 = C_5 = C_0$	117.00(17) 119.42(19)	N4 - C20 - C13	110.14(10) 116.22(10)
$F_2 = C_3 = C_4$	110.42(10) 122.66(10)	N4-C20-C22	110.25 (18)
$C_{0} - C_{3} - C_{4}$	125.00(18) 11(.47(10))	C19 - C20 - C22	117.79 (19)
	110.47 (19)	N4-C20-C21	117.20 (19)
С5—С6—Н6А	121.8	C19—C20—C21	118.64 (19)
C1—C6—H6A	121.8	C22—C20—C21	58.42 (17)
01	120.29 (19)	C22—C21—C20	60.67 (17)
O1—C7—C8	119.54 (19)	C22—C21—H21A	117.7
C4—C7—C8	120.14 (16)	C20—C21—H21A	117.7
N1—C8—C9	116.98 (16)	C22—C21—H21B	117.7
N1—C8—C7	115.56 (15)	C20—C21—H21B	117.7
C9—C8—C7	118.05 (17)	H21A—C21—H21B	114.8
N1—C8—C10	117.75 (16)	C21—C22—C20	60.91 (16)
C9—C8—C10	58.74 (14)	C21—C22—H22A	117.7
C7—C8—C10	117.95 (17)	C20—C22—H22A	117.7
С10—С9—С8	60.96 (14)	C21—C22—H22B	117.7
С10—С9—Н9А	117.7	C20—C22—H22B	117.7
С8—С9—Н9А	117.7	H22A—C22—H22B	114.8
С10—С9—Н9В	117.7	C24—N6—C23	102.17 (16)
С8—С9—Н9В	117.7	C23—N5—N4	102.04 (15)
H9A—C9—H9B	114.8	N3—C12—N1	111.64 (17)
C9-C10-C8	60.30 (14)	N3—C12—H12A	124.2
C9-C10-H10A	117.7	N1—C12—H12A	124.2
C8-C10-H10A	117.7	N2-C11-N3	115 84 (18)
C9-C10-H10B	117.7	N2-C11-H11A	122.1
C8-C10-H10B	117.7	N3—C11—H11A	122.1
H_{10A} C_{10} H_{10B}	117.7	$C12$ _N1_N2	108.90 (15)
C_{11} N2 N1	101.85 (15)	C12 N1 C8	100.00(15) 132.04(15)
C12 N3 C11	101.05(15) 101.76(17)	N2 N1 C8	132.04(13) 110.02(14)
$E_{12} = 113 = C_{11}$	101.70(17) 118.2(2)	12-11-00	119.02(14)
F_{3} C_{13} C_{14}	110.3(2)	C_24 N_4 C_{20}	108.33(13) 121.78(17)
$\Gamma_{3} = C_{13} = C_{14}$	110.2(3) 122 4(3)	\mathbb{C}_{24} \mathbb{N}_{4} \mathbb{C}_{20} \mathbb{N}_{5} \mathbb{N}_{4} \mathbb{C}_{20}	131.70(17) 110.64(15)
$C_{10} - C_{13} - C_{14}$	123.4(3)	$\frac{1}{10} - \frac{1}{10} $	117.04 (13)
C15 - C14 - C15	110.1 (2)	INO - C24 - IN4	111.40 (18)
C12 C14 H14A	120.9	$H_{-} = C_{-} + C_{-$	124.5
C13—C14—H14A	120.9	N4-C24-H24A	124.5
C14—C15—C16	122.0 (2)	ND	115.78 (18)
C14—C15—H15A	119.0	N5—C23—H23A	122.1

supporting information

C16—C15—H15A	119.0	N6—C23—H23A	122.1
F1—C1—C2—C3	-178.8 (2)	C17—C16—C19—O2	132.8 (2)
C6—C1—C2—C3	1.6 (4)	C15—C16—C19—O2	-45.8 (3)
C1—C2—C3—C4	0.9 (3)	C17—C16—C19—C20	-49.5 (3)
C2—C3—C4—C5	-2.6 (3)	C15—C16—C19—C20	131.9 (2)
C2—C3—C4—C7	178.48 (19)	O2-C19-C20-N4	156.3 (2)
C3—C4—C5—F2	-175.89 (17)	C16—C19—C20—N4	-21.4 (3)
C7—C4—C5—F2	2.9 (3)	O2—C19—C20—C22	11.7 (3)
C3—C4—C5—C6	2.1 (3)	C16—C19—C20—C22	-166.0 (2)
C7—C4—C5—C6	-179.09 (19)	O2-C19-C20-C21	-55.6 (3)
F2C5C6C1	178.18 (18)	C16—C19—C20—C21	126.7 (2)
C4—C5—C6—C1	0.2 (3)	N4—C20—C21—C22	-105.5 (2)
F1-C1-C6-C5	178.23 (19)	C19—C20—C21—C22	106.7 (2)
C2-C1-C6-C5	-2.1 (3)	N4—C20—C22—C21	107.2 (2)
C5-C4-C7-O1	-137.7 (2)	C19—C20—C22—C21	-108.2 (2)
C3—C4—C7—O1	41.0 (3)	C11—N3—C12—N1	-0.4 (2)
C5—C4—C7—C8	44.3 (3)	N1—N2—C11—N3	-0.8 (3)
C3—C4—C7—C8	-136.94 (19)	C12—N3—C11—N2	0.8 (3)
O1—C7—C8—N1	-152.1 (2)	N3—C12—N1—N2	-0.1 (2)
C4—C7—C8—N1	25.9 (2)	N3—C12—N1—C8	-177.66 (18)
O1—C7—C8—C9	-6.6 (3)	C11—N2—N1—C12	0.5 (2)
C4—C7—C8—C9	171.43 (17)	C11—N2—N1—C8	178.46 (17)
O1—C7—C8—C10	60.9 (3)	C9—C8—N1—C12	93.1 (2)
C4—C7—C8—C10	-121.1 (2)	C7—C8—N1—C12	-121.0 (2)
N1—C8—C9—C10	-107.59 (19)	C10—C8—N1—C12	26.0 (3)
C7—C8—C9—C10	107.3 (2)	C9—C8—N1—N2	-84.3 (2)
N1—C8—C10—C9	106.28 (19)	C7—C8—N1—N2	61.6 (2)
C7—C8—C10—C9	-107.5 (2)	C10—C8—N1—N2	-151.36 (17)
F3—C13—C14—C15	178.6 (2)	C23—N5—N4—C24	-0.2 (2)
C18—C13—C14—C15	-0.7 (4)	C23—N5—N4—C20	-178.35 (17)
C13—C14—C15—C16	-1.0 (3)	C19—C20—N4—C24	115.3 (2)
C14—C15—C16—C17	1.9 (3)	C22—C20—N4—C24	-99.5 (3)
C14—C15—C16—C19	-179.5 (2)	C21—C20—N4—C24	-33.2 (3)
C15—C16—C17—F4	176.35 (18)	C19—C20—N4—N5	-67.0 (2)
C19—C16—C17—F4	-2.2 (3)	C22—C20—N4—N5	78.1 (2)
C15—C16—C17—C18	-1.1 (3)	C21—C20—N4—N5	144.4 (2)
C19—C16—C17—C18	-179.7 (2)	C23—N6—C24—N4	0.2 (2)
F3—C13—C18—C17	-177.9 (2)	N5—N4—C24—N6	0.0 (2)
C14—C13—C18—C17	1.4 (3)	C20—N4—C24—N6	177.81 (19)
F4—C17—C18—C13	-177.89 (19)	N4—N5—C23—N6	0.4 (2)
C16—C17—C18—C13	-0.5 (3)	C24—N6—C23—N5	-0.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C12—H12A···O2 ⁱ	0.93	2.35	3.268 (2)	171

			supportin	supporting information		
C24—H24A···O1 ⁱⁱ	0.93	2.37	3.265 (3)	161		
Symmetry codes: (i) $-x+1$, $-y+2$, $-z+1$; (iii) -x+1, -y+1, -z+1.					