metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[(2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(II)]- μ -(E)-3,3'-(but-2-ene-2,3diyl)dibenzoato- $\kappa^4 O, O': O'', O'''$] hemihydrate]

Zong-Sheng Li^a and Seik Weng Ng^{b,c}*

^aCollege of Safety and Environmental Engineering, Capital University of Economics and Business, Beijing 100070, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 9 October 2011; accepted 10 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.045; wR factor = 0.119; data-to-parameter ratio = 17.3.

The title coordination polymer, $\{[Co(C_{18}H_{14}O_4)(C_{10}H_8N_2)]$. 0.5H₂O}_n, features a helical polymeric chain that runs along the *b* axis. The Co atoms are chelated by the carboxylate groups of two 3,3'-(but-2-ene-2,3-diyl)dibenzoate ligands and the N atoms of a 2,2'-bipyridine ligand. The lattice water molecule is disordered about a center of inversion and is connected to the chain by an O–H···O hydrogen bond. The Co^{II} atom shows a distorted octahedral coordination.

Related literature

For a review of the adducts of metal carboxylates with 2,2'bipyridine-like ligands, see: Ye *et al.* (2005). For details of the synthesis, see: McMurry (1989).

Experimental

Crystal data

 $[Co(C_{18}H_{14}O_4)(C_{10}H_8N_2)] \cdot 0.5H_2O$ $M_r = 518.41$ Monoclinic, $P2_1/n$ a = 8.7028 (9) Å b = 19.872 (2) Å c = 14.5181 (14) Å $\beta = 97.845$ (2)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.822, T_{\rm max} = 0.965$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	6 restraints
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
5667 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
327 parameters	

V = 2487.2 (4) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.17 \times 0.05 \; \rm mm$

14695 measured reflections

5667 independent reflections

3153 reflections with $I > 2\sigma(I)$

 $\mu = 0.73 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.046$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1w-H11···O1	0.84	1.98	2.812 (5)	173

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X*-*SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Beijing Municipal Commission of Educational S&T Development Foundation (KM201010038002) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5671).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

McMurry, J. E. (1989). Chem. Rev. 89, 1513-1524.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.

supporting information

Acta Cryst. (2011). E67, m1546 [doi:10.1107/S1600536811041699]

catena-Poly[[[(2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(II)]- μ -(*E*)-3,3'-(but-2-ene-2,3-diyl)dibenzoato- $\kappa^4 O, O': O'', O'''$] hemihydrate]

Zong-Sheng Li and Seik Weng Ng

S1. Comment

Meta(II) dicarboxylates generally adopt three-dimensional polymeric architectures as the carboxyl $-CO_2$ ends of the dianion are both capable of binding to more than one metal atom. The three-dimensional motifs can be altered to two-dimensional layers or even linear chains through the formation of adducts with 2,2'-bipyridine like ligands; the molecular architectures of such adducts of metal carboxylates with such α, α' -dimine ligands have been reviewed (Ye *et al.*, 2005).

We have synthesized (*E*)-3,3'-(but-2-ene-2,3-diyl)dibenzoic acid in a multi-step synthesis for use in another research project theme; we have used this rigid dicarboxylic acid to form a coordination polymer as no derivatives of this acid have been reported. The dicarboxylate ion of the coordination polymer, $[Co(C_{10}H_8N_2)(C_{18}H_{14}O_4)0.5H_2O]_n$ (Scheme I, Fig. 1), has its carboxyl –CO₂ ends each chelating a 2,2'-bipyridine chelated Co^{II} atom to generate a helical polymeric chain that runs along the *b*-axis of the monoclinic unit cell (Fig. 2). The Co^{II} atom shows octahedral coordination. The lattice water molecule is disordered about a center-of-inversion and is connected to the chain by an O–H…O hydrogen bond (Table 1).

S2. Experimental

2,3-Bis-(3-bromophenyl)-2-butene was synthesized from the cross-coupling of 3-bromoacetophenone catalyzed by low-valent titanium (McMurry, 1989).

2,3-Bis-(3-bromophenyl)-2-butene (17.3 g, 0.048 mol) was added to a solution of *n*-butyllithium (2.5 *M* in hexane, 40 ml, 0.10 mol) in ether (400 ml) at 200 K. The reaction was carried out under nitrogen. The mixture was warmed to room temperature and then stirred overnight. The reaction was quenched with water (100 ml) and the organic compounds were extracted with ether. The aqueous phase was adjusted to a pH of 1 by the addition of concentrated hydrochloric acid. The precipitate was collected, washed with ethyl acetate and dried to yield 3,3'-(but-2-ene-2,3-diyl)dibenzoic acid (yield 9.8 g, 70%) as a mixture of *E* and *Z* isomers.

3,3'-(But-2-ene-2,3-diyl)dibenzoic acid (10 g, 0.034 mol), thionyl chloride (12.0 ml) and methanol (150 ml) were heated for 2 h. The solvent was evaporated and the residue was purified by silica gel chromatography to yield 2.2 g of (*Z*)-dimethyl 3,3'-(but-2-ene-2,3-diyl)dibenzoate and 6.6 g of (*E*)-dimethyl 3,3'-(but-2-ene-2,3-diyl)dibenzoate.

To (*E*)-dimethyl 3,3'-(but-2-ene-2,3-diyl)dibenzoate (5.0 g,15.4 mmol) in THF (30 ml) was added lithium hydroxide (1.48 g, 61.6 mmol) in water (30 ml). The mixture was stirred overnight. The solvent was removed and then acidified with concentrated hydrochloric acid; the reaction was carried out at 273 K. The precipitate was collected, washed with ethyl acetate and dried to give to (*E*)-3,3'-(but-2-ene-2,3-diyl)dibenzoic acid (yield 4.3 g, 95%) as a white solid.

(*E*)-3,3'-(But-2-ene-2,3-diyl)dibenzoic acid (15.3 mg, 0.05 mmol), sodium hydroxide (4.1 mg, 0.10 mmol), cobalt(II) chloride hexahydrate (11.8 mg, 0.05 mmol) and 2,2'-bipyridine (7.8 mg, 0.05 mol) were mixed in water (4 ml). This was transferred to a 25-mLTeflon-lined stainless-steel Parr bomb. The bomb was heated at 408 K for 3 days. The bomb was cooled slowly to room temperature. Red block-shaped crystals were obtained; yield: 10.8 mg (40% based on the acid).

CH&N elemental analysis. Calcd. (%): C, 65.00; H, 4.22; N, 5.33. Found (%): C, 65.29; H, 4.05; N, 5.32.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The water molecule lies near a center-of-inversion, and was assigned half site-occupancy. The H atoms were placed in a chemically sensible position on the basis of one hydrogen bonding interaction.

Figure 1

Anisotropic ellipsoid plot (Barbour, 2001) of a portion of polymeric $Co(C_{10}H_8N_2)(C_{18}H_{14}O_4) \cdot 0.5H_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

Chain structure; the lattice water molecules are not shown.

catena-Poly[[[(2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(II)]- μ -(*E*)-3,3'-(but-2-ene-2,3-diyl)dibenzoato- $\kappa^4 O, O': O'', O'''$] hemihydrate]

Crystal data	
$[Co(C_{18}H_{14}O_4)(C_{10}H_8N_2)] \cdot 0.5H_2O$	<i>b</i> = 19.872 (2) Å
$M_r = 518.41$	c = 14.5181 (14) Å
Monoclinic, $P2_1/n$	$\beta = 97.845 \ (2)^{\circ}$
Hall symbol: -P 2yn	V = 2487.2 (4) Å ³
a = 8.7028 (9) Å	Z = 4

F(000) = 1072 $D_x = 1.384 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2090 reflections $\theta = 2.6-21.1^{\circ}$

Data collection

Refinement on F^2

 $wR(F^2) = 0.119$

5667 reflections

327 parameters 6 restraints

direct methods

S = 0.96

Least-squares matrix: full

Primary atom site location: structure-invariant

 $R[F^2 > 2\sigma(F^2)] = 0.045$

14695 measured reflections
5667 independent reflections
3153 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.046$
$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
$h = -10 \rightarrow 11$
$k = -23 \rightarrow 25$
$l = -18 \rightarrow 14$

 $\mu = 0.73 \text{ mm}^{-1}$

 $0.28 \times 0.17 \times 0.05 \text{ mm}$

T = 293 K

Plate, red

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0535P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>x</i>	У	<i>Z</i>	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Col	0.72581 (4)	0.433780 (19)	0.65569 (3)	0.05411 (15)	
01	0.6416 (2)	0.49163 (10)	0.76819 (13)	0.0630 (5)	
O2	0.6521 (2)	0.53304 (10)	0.63038 (14)	0.0648 (6)	
O3	-0.0199 (2)	0.88087 (10)	0.90530 (14)	0.0629 (5)	
O4	-0.2047 (2)	0.83205 (10)	0.81231 (14)	0.0659 (6)	
O1W	0.6236 (8)	0.4682 (3)	0.9574 (3)	0.125 (2)	0.50
H11	0.6219	0.4775	0.9009	0.188*	0.50
H12	0.5499	0.4883	0.9774	0.188*	0.50
N1	0.9576 (3)	0.44197 (11)	0.71738 (18)	0.0564 (6)	
N2	0.8468 (3)	0.41977 (11)	0.54323 (17)	0.0555 (6)	
C1	0.6243 (3)	0.54056 (14)	0.7128 (2)	0.0507 (7)	
C2	0.5758 (3)	0.60753 (14)	0.74361 (19)	0.0468 (6)	
C3	0.5469 (3)	0.66010 (15)	0.68050 (19)	0.0526 (7)	
Н3	0.5576	0.6534	0.6183	0.063*	
C4	0.5025 (3)	0.72181 (15)	0.7100 (2)	0.0590 (8)	
H4	0.4817	0.7567	0.6674	0.071*	
C5	0.4887 (3)	0.73232 (15)	0.8025 (2)	0.0571 (7)	
Н5	0.4581	0.7744	0.8215	0.069*	
C6	0.5193 (3)	0.68143 (14)	0.86754 (18)	0.0497 (7)	
C7	0.5619 (3)	0.61921 (14)	0.83632 (18)	0.0490 (7)	
H7	0.5817	0.5842	0.8788	0.059*	

C8	0.5183 (3)	0.69319 (14)	0.96955 (19)	0.0547 (7)
С9	0.6782 (4)	0.69610 (19)	1.0248 (2)	0.0845 (11)
H9A	0.7295	0.7366	1.0096	0.127*
H9B	0.7373	0.6577	1.0100	0.127*
H9C	0.6696	0.6958	1.0900	0.127*
C10	0.3872 (4)	0.70120 (14)	1.00524 (19)	0.0569 (7)
C11	0.3799 (4)	0.71311 (19)	1.1077 (2)	0.0856 (11)
H11A	0.3364	0.6743	1.1338	0.128*
H11B	0.3160	0.7516	1.1148	0.128*
H11C	0.4825	0.7210	1.1393	0.128*
C12	0.2327 (3)	0.70095 (14)	0.94623 (19)	0.0528 (7)
C13	0.1647 (4)	0.64333 (16)	0.9054 (2)	0.0682 (9)
H13	0.2170	0.6025	0.9137	0.082*
C14	0.0202 (4)	0.64560 (16)	0.8527 (2)	0.0714 (9)
H14	-0.0243	0.6062	0.8268	0.086*
C15	-0.0583 (3)	0.70517 (15)	0.83819 (19)	0.0570(7)
H15	-0.1548	0.7063	0.8017	0.068*
C16	0.0063 (3)	0.76353 (14)	0.87795 (18)	0.0494 (7)
C17	-0.0770 (3)	0.82881 (14)	0.8639 (2)	0.0516 (7)
C18	0.1496 (3)	0.76036 (14)	0.93232 (19)	0.0522 (7)
H18	0.1916	0.7995	0.9605	0.063*
C19	1.0053 (4)	0.45294 (16)	0.8071 (3)	0.0727 (9)
H19	0.9311	0.4587	0.8468	0.087*
C20	1.1591 (4)	0.45614 (18)	0.8438 (3)	0.0845 (11)
H20	1.1881	0.4646	0.9068	0.101*
C21	1.2687 (4)	0.44668 (18)	0.7861 (4)	0.0916 (12)
H21	1.3736	0.4483	0.8094	0.110*
C22	1.2228 (4)	0.43482 (16)	0.6937 (3)	0.0752 (10)
H22	1.2961	0.4282	0.6536	0.090*
C23	1.0648 (3)	0.43281 (13)	0.6601 (2)	0.0560 (7)
C24	1.0024 (3)	0.42047 (12)	0.5620(2)	0.0534 (7)
C25	1.0942 (4)	0.41078 (15)	0.4925 (3)	0.0668 (9)
H25	1.2017	0.4130	0.5057	0.080*
C26	1.0246 (4)	0.39784 (16)	0.4041 (3)	0.0786 (10)
H26	1.0850	0.3902	0.3570	0.094*
C27	0.8642 (4)	0.39610 (17)	0.3846 (2)	0.0772 (10)
H27	0.8151	0.3868	0.3250	0.093*
C28	0.7805 (4)	0.40859 (16)	0.4565 (2)	0.0690 (9)
H28	0.6728	0.4093	0.4440	0.083*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0452 (2)	0.0561 (3)	0.0637 (3)	-0.00109 (18)	0.01649 (18)	-0.00717 (19)
01	0.0733 (14)	0.0552 (13)	0.0637 (13)	0.0107 (10)	0.0214 (10)	-0.0004 (10)
O2	0.0729 (14)	0.0641 (13)	0.0623 (13)	0.0021 (11)	0.0270 (11)	-0.0056 (10)
03	0.0502 (11)	0.0490 (12)	0.0899 (15)	-0.0008 (9)	0.0108 (10)	-0.0069 (11)
O4	0.0546 (13)	0.0654 (14)	0.0750 (14)	0.0052 (10)	-0.0008 (11)	-0.0053 (11)

O1W	0.195 (6)	0.101 (4)	0.076 (3)	0.032 (4)	0.004 (4)	0.017 (3)
N1	0.0516 (14)	0.0506 (15)	0.0675 (17)	0.0005 (11)	0.0100 (13)	-0.0047 (12)
N2	0.0477 (14)	0.0553 (15)	0.0660 (17)	-0.0051 (11)	0.0173 (12)	-0.0059 (12)
C1	0.0376 (14)	0.0565 (18)	0.060 (2)	-0.0061 (12)	0.0143 (13)	-0.0038 (15)
C2	0.0357 (14)	0.0509 (17)	0.0553 (18)	-0.0017 (12)	0.0121 (12)	-0.0022 (13)
C3	0.0452 (15)	0.063 (2)	0.0500 (17)	-0.0050 (13)	0.0085 (13)	-0.0020 (14)
C4	0.0589 (18)	0.0581 (19)	0.059 (2)	0.0031 (14)	0.0046 (15)	0.0098 (15)
C5	0.0559 (18)	0.0522 (18)	0.063 (2)	0.0081 (13)	0.0087 (15)	-0.0016 (15)
C6	0.0432 (15)	0.0542 (18)	0.0518 (17)	0.0053 (13)	0.0074 (13)	-0.0008 (14)
C7	0.0447 (15)	0.0525 (17)	0.0504 (18)	0.0053 (12)	0.0085 (13)	0.0065 (13)
C8	0.0573 (18)	0.0546 (18)	0.0519 (18)	0.0078 (14)	0.0069 (14)	-0.0023 (13)
C9	0.071 (2)	0.111 (3)	0.069 (2)	0.020 (2)	-0.0006 (18)	-0.007 (2)
C10	0.0654 (19)	0.0571 (18)	0.0490 (17)	0.0085 (15)	0.0102 (15)	-0.0058 (14)
C11	0.092 (3)	0.112 (3)	0.054 (2)	0.021 (2)	0.0129 (18)	-0.0125 (19)
C12	0.0551 (17)	0.0531 (18)	0.0540 (18)	0.0050 (14)	0.0212 (14)	-0.0063 (14)
C13	0.072 (2)	0.056 (2)	0.078 (2)	0.0121 (16)	0.0171 (18)	-0.0117 (16)
C14	0.073 (2)	0.054 (2)	0.086 (2)	-0.0048 (16)	0.0092 (19)	-0.0178 (17)
C15	0.0517 (17)	0.061 (2)	0.0591 (19)	-0.0024 (14)	0.0079 (14)	-0.0079 (15)
C16	0.0511 (16)	0.0510 (17)	0.0499 (17)	-0.0044 (13)	0.0203 (13)	-0.0050 (13)
C17	0.0474 (17)	0.0536 (18)	0.0587 (19)	-0.0001 (14)	0.0242 (14)	-0.0004 (14)
C18	0.0505 (16)	0.0525 (18)	0.0560 (17)	-0.0027 (13)	0.0156 (14)	-0.0093 (13)
C19	0.067 (2)	0.071 (2)	0.079 (3)	0.0006 (16)	0.0034 (19)	-0.0085 (18)
C20	0.076 (3)	0.082 (3)	0.089 (3)	-0.0013 (19)	-0.011 (2)	-0.004 (2)
C21	0.058 (2)	0.087 (3)	0.123 (4)	-0.0026 (19)	-0.011 (2)	0.010 (2)
C22	0.0490 (18)	0.068 (2)	0.110 (3)	0.0052 (16)	0.0142 (19)	0.009 (2)
C23	0.0467 (16)	0.0398 (15)	0.083 (2)	0.0018 (12)	0.0147 (16)	0.0018 (15)
C24	0.0496 (16)	0.0379 (16)	0.077 (2)	0.0009 (12)	0.0226 (15)	0.0019 (13)
C25	0.063 (2)	0.0564 (19)	0.087 (3)	0.0040 (15)	0.0340 (19)	0.0061 (17)
C26	0.090 (3)	0.067 (2)	0.090 (3)	0.0024 (19)	0.052 (2)	0.0011 (19)
C27	0.089 (3)	0.080 (2)	0.068 (2)	-0.013 (2)	0.030 (2)	-0.0066 (18)
C28	0.063 (2)	0.075 (2)	0.073 (2)	-0.0135 (16)	0.0221 (18)	-0.0075 (18)

Geometric parameters (Å, °)

Co1—N2	2.079 (2)	C10—C12	1.492 (4)
Co1—O4 ⁱ	2.088 (2)	C10-C11	1.515 (4)
Co1—O2	2.091 (2)	C11—H11A	0.9600
Co1—N1	2.099 (2)	C11—H11B	0.9600
Co1—O3 ⁱ	2.1602 (18)	C11—H11C	0.9600
Co1—O1	2.2030 (19)	C12—C13	1.385 (4)
O1—C1	1.257 (3)	C12—C18	1.385 (4)
O2—C1	1.262 (3)	C13—C14	1.381 (4)
O3—C17	1.264 (3)	C13—H13	0.9300
O3—Co1 ⁱⁱ	2.1602 (18)	C14—C15	1.369 (4)
O4—C17	1.254 (3)	C14—H14	0.9300
O4—Co1 ⁱⁱ	2.088 (2)	C15—C16	1.381 (3)
O1W—H11	0.8400	C15—H15	0.9300
O1W—H12	0.8401	C16—C18	1.383 (4)

N1—C19	1.330 (4)	C16—C17	1.487 (4)
N1—C23	1.344 (4)	C17—Co1 ⁱⁱ	2.451 (3)
N2—C28	1.330 (3)	C18—H18	0.9300
N2—C24	1.345 (3)	C19—C20	1.372 (4)
C1—C2	1.483 (4)	С19—Н19	0.9300
$C^2 - C^7$	1 387 (3)	C_{20} C_{21}	1 366 (5)
$C_2 - C_3$	1.307(5) 1 390(4)	C20—H20	0.9300
$C_2 = C_3$	1.370(1) 1.371(4)	$C_{20} = 1120$ $C_{21} = C_{22}$	1 367 (5)
$C_3 = H_3$	0.0300	C21 H21	0.0300
	1.282(4)	$\begin{array}{c} C_{21} \\ C_{22} \\ C_{23} \\ C_{23$	1.205(4)
C4 - C3	1.362 (4)	$C_{22} = C_{23}$	1.393 (4)
	0.9300	C22—H22	0.9500
C5—C6	1.384 (4)	C23—C24	1.4/3 (4)
C5—H5	0.9300	C24—C25	1.384 (4)
C6—C7	1.385 (4)	C25—C26	1.366 (4)
C6—C8	1.501 (4)	C25—H25	0.9300
С7—Н7	0.9300	C26—C27	1.387 (5)
C8—C10	1.325 (4)	C26—H26	0.9300
C8—C9	1.510 (4)	C27—C28	1.375 (4)
С9—Н9А	0.9600	C27—H27	0.9300
С9—Н9В	0.9600	C28—H28	0.9300
С9—Н9С	0.9600		
N2—Co1—O4 ⁱ	96.57 (8)	C10-C11-H11B	109.5
N2—Co1—O2	99.46 (8)	H11A—C11—H11B	109.5
$O4^{i}$ —Co1—O2	156.66 (8)	C10—C11—H11C	109.5
N^2 —Co1—N1	77 60 (10)	H11A-C11-H11C	109.5
$O4^{i}$ —Co1—N1	95 09 (8)	H11B—C11—H11C	109.5
$O_2 C_{01} N_1$	104.82 (8)	C_{13} C_{12} C_{18}	117.3 (3)
$N_2 Col Ol^{i}$	104.82(8)	C13 - C12 - C10	117.3(3) 122.2(3)
04i Col $03i$	95.50 (9) 61.75 (7)	C13 - C12 - C10	123.2(3)
04 - 01 - 03	01.73(7)	C12 - C12 - C10	119.5 (5)
$02-03^{-1}$	99.77 (8) 155.20 (8)	C12 - C13 - C14	120.9 (3)
$N1 - Co1 - O3^{1}$	155.20 (8)	C12—C13—H13	119.5
N2—Co1—O1	155.19 (8)	C14—C13—H13	119.5
04 ¹ —Co1—O1	106.98 (8)	C15—C14—C13	120.8 (3)
O2—Co1—O1	60.85 (7)	C15—C14—H14	119.6
N1—Co1—O1	92.34 (9)	C13—C14—H14	119.6
O3 ⁱ —Co1—O1	102.51 (8)	C14—C15—C16	119.7 (3)
C1	87.29 (16)	C14—C15—H15	120.1
C1—O2—Co1	92.23 (17)	C16—C15—H15	120.1
C17—O3—Co1 ⁱⁱ	87.33 (16)	C15—C16—C18	119.0 (3)
C17—O4—Co1 ⁱⁱ	90.83 (16)	C15—C16—C17	120.8 (3)
H11—O1W—H12	108.6	C18—C16—C17	120.2 (3)
C19—N1—C23	118.5 (3)	O4—C17—O3	120.0 (3)
C19—N1—Co1	125.8 (2)	O4—C17—C16	120.2 (3)
C23—N1—Co1	115.7 (2)	O3—C17—C16	119.8 (3)
C_{28} N2 C_{24}	1192(3)	$04-C17-C01^{ii}$	58 40 (14)
C_{28} N2 C_{21}	124 42 (19)	03-017-001	61 68 (14)
$C_{24}N_{2}C_{01}$	1163(2)	C_{16} C_{17} C_{01}	177 01 (10)
	110.2 (4)	C_{10} C_{17} $-C_{01}$	1//.01(12)

a. a. a.		a	
01—C1—O2	119.5 (3)	C16—C18—C12	122.3 (3)
O1—C1—C2	121.0 (3)	C16—C18—H18	118.9
O2—C1—C2	119.4 (3)	C12—C18—H18	118.9
C7—C2—C3	118.8 (3)	N1-C19-C20	123.1 (4)
C7—C2—C1	120.5 (3)	N1—C19—H19	118.5
$C_{3}-C_{2}-C_{1}$	120.6 (2)	C20-C19-H19	118 5
$C_4 - C_3 - C_2$	120.0(2) 120.0(3)	C_{21} C_{20} C_{19} C_{19}	118.7(4)
$C_1 C_2 U_2$	120.0 (5)	C_{21} C_{20} H_{20}	120.6
C_{4}	120.0	$C_{21} = C_{20} = H_{20}$	120.0
$C_2 = C_3 = H_3$	120.0	C19 - C20 - H20	120.0
$C_3 - C_4 - C_5$	120.3 (3)	$C_{22} = C_{21} = C_{20}$	119.4 (3)
C3—C4—H4	119.9	C22—C21—H21	120.3
C5—C4—H4	119.9	C20—C21—H21	120.3
C4—C5—C6	121.2 (3)	C21—C22—C23	119.3 (3)
C4—C5—H5	119.4	C21—C22—H22	120.3
С6—С5—Н5	119.4	С23—С22—Н22	120.3
C5—C6—C7	117.7 (3)	N1—C23—C22	120.9 (3)
C5—C6—C8	122.2 (3)	N1—C23—C24	115.2 (2)
C7—C6—C8	120.0 (2)	C22—C23—C24	123.9 (3)
C6-C7-C2	122.0 (3)	N2-C24-C25	121.1 (3)
C6-C7-H7	119.0	N_{2} C24 C23	1152(2)
$C_2 - C_7 - H_7$	119.0	C_{25} C_{24} C_{23}	123.7(3)
$C_1 C_2 C_3 C_6$	121.8 (3)	$C_{25} C_{24} C_{25} C_{24}$	129.7(3)
$C_{10} = C_{8} = C_{0}$	121.0(3) 124.6(2)	$C_{20} = C_{23} = C_{24}$	119.1 (5)
	124.0 (3)	$C_{20} = C_{23} = H_{23}$	120.3
C6-C8-C9	113.6 (2)	C24—C25—H25	120.5
С8—С9—Н9А	109.5	C25—C26—C27	120.1 (3)
С8—С9—Н9В	109.5	C25—C26—H26	119.9
Н9А—С9—Н9В	109.5	С27—С26—Н26	119.9
С8—С9—Н9С	109.5	C28—C27—C26	117.6 (3)
Н9А—С9—Н9С	109.5	С28—С27—Н27	121.2
Н9В—С9—Н9С	109.5	С26—С27—Н27	121.2
C8-C10-C12	122.1 (2)	N2-C28-C27	122.9 (3)
C8-C10-C11	123.8 (3)	N2—C28—H28	118.6
C12—C10—C11	114.1 (3)	C27—C28—H28	118.6
C10-C11-H11A	109.5		
	107.0		
$N_2 = C_{01} = O_1 = C_1$	380(3)	C6 C8 C10 C12	-1.7(4)
Ω_{12}^{4i} Ω_{21}^{4i} Ω_{1}^{4i} Ω_{1}^{4i} Ω_{1}^{4i} Ω_{1}^{4i}	-160.00(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.7(7)
04 - 01 - 01 - 01	-100.09(10)	$C_{9} = C_{8} = C_{10} = C_{12}$	177.1(3)
	-1.82(15)		1/9.9 (3)
NI-CoI-OI-CI	103.86 (16)	C9—C8—C10—C11	-1.3 (5)
03 ¹ —Co1—O1—C1	-96.14 (16)	C8—C10—C12—C13	72.2 (4)
N2—Co1—O2—C1	-162.06 (17)	C11—C10—C12—C13	-109.3 (3)
O4 ⁱ —Co1—O2—C1	65.2 (3)	C8—C10—C12—C18	-109.3 (3)
N1—Co1—O2—C1	-82.50 (18)	C11—C10—C12—C18	69.2 (4)
O3 ⁱ —Co1—O2—C1	100.77 (17)	C18—C12—C13—C14	0.4 (4)
O1—Co1—O2—C1	1.81 (15)	C10-C12-C13-C14	178.9 (3)
N2-Co1-N1-C19	-179.5 (2)	C12—C13—C14—C15	1.1 (5)
O4 ⁱ —Co1—N1—C19	-83.9 (2)	C13—C14—C15—C16	-1.1 (5)
O2—Co1—N1—C19	83.8 (2)	C14—C15—C16—C18	-0.3(4)

O3 ⁱ —Co1—N1—C19	-103.9 (3)	C14—C15—C16—C17	-179.5 (3)
O1—Co1—N1—C19	23.4 (2)	Co1 ⁱⁱ —O4—C17—O3	-2.0 (3)
N2—Co1—N1—C23	-1.95 (18)	Co1 ⁱⁱ —O4—C17—C16	176.9 (2)
O4 ⁱ —Co1—N1—C23	93.68 (19)	Co1 ⁱⁱ —O3—C17—O4	2.0 (3)
O2—Co1—N1—C23	-98.61 (19)	Co1 ⁱⁱ —O3—C17—C16	-177.0 (2)
O3 ⁱ —Co1—N1—C23	73.7 (3)	C15—C16—C17—O4	-3.1 (4)
O1—Co1—N1—C23	-159.04 (19)	C18—C16—C17—O4	177.8 (3)
O4 ⁱ —Co1—N2—C28	86.1 (2)	C15—C16—C17—O3	175.9 (2)
O2—Co1—N2—C28	-76.9 (2)	C18—C16—C17—O3	-3.3 (4)
N1—Co1—N2—C28	179.9 (2)	C15-C16-C18-C12	1.8 (4)
O3 ⁱ —Co1—N2—C28	24.0 (2)	C17—C16—C18—C12	-179.0 (2)
O1—Co1—N2—C28	-112.2 (3)	C13-C12-C18-C16	-1.8 (4)
O4 ⁱ —Co1—N2—C24	-91.99 (19)	C10-C12-C18-C16	179.6 (3)
O2—Co1—N2—C24	105.04 (19)	C23—N1—C19—C20	0.8 (4)
N1—Co1—N2—C24	1.81 (18)	Co1—N1—C19—C20	178.3 (2)
O3 ⁱ —Co1—N2—C24	-154.10 (19)	N1-C19-C20-C21	-1.0 (5)
O1—Co1—N2—C24	69.7 (3)	C19—C20—C21—C22	0.5 (5)
Co1-01-C1-02	3.0 (3)	C20-C21-C22-C23	0.2 (5)
Co1-01-C1-C2	-175.3 (2)	C19—N1—C23—C22	-0.1 (4)
Co1—O2—C1—O1	-3.2 (3)	Co1—N1—C23—C22	-177.9 (2)
Co1—O2—C1—C2	175.1 (2)	C19—N1—C23—C24	179.6 (2)
O1—C1—C2—C7	5.8 (4)	Co1—N1—C23—C24	1.8 (3)
O2—C1—C2—C7	-172.5 (2)	C21—C22—C23—N1	-0.4 (4)
O1—C1—C2—C3	-175.7 (2)	C21—C22—C23—C24	180.0 (3)
O2—C1—C2—C3	6.0 (4)	C28—N2—C24—C25	1.0 (4)
C7—C2—C3—C4	-1.3 (4)	Co1—N2—C24—C25	179.2 (2)
C1—C2—C3—C4	-179.8 (2)	C28—N2—C24—C23	-179.6 (2)
C2—C3—C4—C5	1.0 (4)	Co1—N2—C24—C23	-1.4 (3)
C3—C4—C5—C6	0.2 (4)	N1-C23-C24-N2	-0.3 (3)
C4—C5—C6—C7	-1.1 (4)	C22—C23—C24—N2	179.4 (3)
C4—C5—C6—C8	174.7 (3)	N1—C23—C24—C25	179.1 (3)
C5—C6—C7—C2	0.8 (4)	C22—C23—C24—C25	-1.2 (4)
C8—C6—C7—C2	-175.1 (2)	N2-C24-C25-C26	-2.5 (4)
C3—C2—C7—C6	0.4 (4)	C23—C24—C25—C26	178.2 (3)
C1—C2—C7—C6	178.9 (2)	C24—C25—C26—C27	1.5 (5)
C5—C6—C8—C10	74.1 (4)	C25—C26—C27—C28	0.8 (5)
C7—C6—C8—C10	-110.3 (3)	C24—N2—C28—C27	1.5 (4)
C5—C6—C8—C9	-104.9 (3)	Co1—N2—C28—C27	-176.5 (2)
C7—C6—C8—C9	70.8 (3)	C26—C27—C28—N2	-2.4 (5)

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) -x+1/2, y+1/2, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1w—H11…O1	0.84	1.98	2.812 (5)	173