organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Bromoimidazo[1,2-a]pyridin-8-amine

Siham Dahmani,^a Youssef Kandri Rodi,^a Frederic Capet,^b El Mokhtar Essassi^c and Seik Weng Ng^{d,e*}

^aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, ^bUnité de Catalyse et de Chimie du Solide, Ecole Nationale Supérieure de Chimie de Lille, Lille, France, ^cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^eChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 29 September 2011; accepted 29 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.078; data-to-parameter ratio = 17.2.

The title compound, $C_7H_6BrN_3$, crystallizes with three independent molecules in the asymmetric unit. The molecules are approximately planar (r.m.s. deviations for all non-H atoms = 0.016, 0.023 and 0.024 Å). The primary amine groups show pyramidal coordination. In the crystal, adjacent molecules are linked by $N-H\cdots N$ hydrogen bonds. For two independent molecules, the amine groups are hydrogen-bond donors *via* one H atom to one acceptor atom, whereas for the third independent molecule, the amine group is a hydrogenbond donor to two acceptor atoms.

Related literature

For background information on 8-amino-6-bromo-imidazo-[1,2-*a*]pyridine, see: Dwyer *et al.* (2007).

Experimental

Crystal data C₇H₆BrN₃

 $M_r = 212.06$

Monoclinic, $P2_1/c$
a = 15.1378 (5) Å
b = 21.2006 (8) Å
c = 6.9744 (3) Å
$\beta = 92.6106 \ (7)^{\circ}$
V = 2235.97 (15) Å ³

Data collection

Bruker APEX DUO diffractometer	44729 measured reflections
Absorption correction: multi-scan	5538 independent reflections
SADABS (Sheldrick, 1996)'	4675 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.538, T_{\max} = 0.899$	$R_{\rm int} = 0.048$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ H atoms treated by a mixture of
independent and constrained
refinementS = 1.08refinement5538 reflections $\Delta \rho_{max} = 1.15$ e Å⁻³322 parameters $\Delta \rho_{min} = -0.46$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å, °)	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N9-H91···N8 ⁱ 0.87 (1) 2.27 (2) 3.091 (3) 158 (3) N9-H92···N6 ⁱⁱ 0.88 (1) 2.27 (1) 3.143 (3) 177 (3)	$N3 - H31 \cdots N5$	0.88 (1)	2.16 (1)	3.034 (3)	169 (4)
	$N6 - H61 \cdots N2$	0.88 (1)	2.23 (1)	3.094 (3)	168 (3)
	$N9 - H91 \cdots N8^{i}$	0.87 (1)	2.27 (2)	3.091 (3)	158 (3)
	$N9 - H92 \cdots N6^{ii}$	0.88 (1)	2.27 (1)	3.143 (3)	177 (3)

Z = 12Mo *K* α radiation

 $\mu = 5.44 \text{ mm}^{-1}$

 $0.13 \times 0.04 \times 0.02 \text{ mm}$

T = 100 K

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y, z - 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X*-*SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Université MohammedV-Agdal, Université Sidi Mohammed Ben Abdallah and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5659).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dwyer, M. P., Paruch, K., Alvarez, C., Doll, R. J., Keertikar, K., Duca, J., Fischmann, T. O., Hruza, A., Madison, V., Lees, E., Parry, D., Seghezzi, W., Sgambellone, N., Shanahan, F., Wiswell, D. & Guzi, T. J. (2007). *Bioorg. Med. Chem. Lett.* **17**, 6216–6219.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o2838 [doi:10.1107/S1600536811040177]

6-Bromoimidazo[1,2-a]pyridin-8-amine

Siham Dahmani, Youssef Kandri Rodi, Frederic Capet, El Mokhtar Essassi and Seik Weng Ng

S1. Comment

8-Amino-6-bromo-imidazo[1,2-*a*]pyridine (Scheme I) was recently evaluated for its as a cyclin-dependent kinase-2 (CDK2) inhibitor (Dwyer *et al.*, 2007). We have synthesized the compound for use in a similar study. The non-H atoms of the three independent molecules of $C_7H_6BrN_3$ are planar (Fig. 1). Their primary amino groups show pyramidal coordination, and adjacent molecules are linked by N–H…N hydrogen bonds to form a layer structure. For two independent molecules, their amino groups are each a hydrogen-bond donor to one acceptor atom whereas for the third independent molecule, its amino group is hydrogen-bond bond to two acceptor atoms (Table 1).

S2. Experimental

A mixture of chloroacetaldehyde (0.68 ml, 10.6 mmol), 5-bromo-2,3-diaminopyridine (1 g, 5.32 mmol) and sodium bicarbonate (0.44 g, 5.32 mmol) in ethanol (10 ml) was heated. The reaction was monitored by TLC. On completion of the reaction, the solution was extracted with dichloromethane and the organic layer was dried over anhydrous sodium sulfate. Evaporation of the solvent followed by recrystallization from hexane gave yellow crystals of the title compound.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C– 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of N–H 0.88 ± 0.01 Å.

The final difference Fourier map had a peak in the vicinity of Br1 and a hole in the vicinity of Br2.

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of the three independent molecules at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

6-Bromoimidazo[1,2-a]pyridin-8-amine

Crystal data	
C ₇ H ₆ BrN ₃	F(000) = 1248
$M_r = 212.06$	$D_{\rm x} = 1.890 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9878 reflections
a = 15.1378(5) Å	$\theta = 2.4 - 28.2^{\circ}$
b = 21.2006 (8) Å	$\mu = 5.44 \text{ mm}^{-1}$
c = 6.9744 (3) Å	T = 100 K
$\beta = 92.6106 \ (7)^{\circ}$	Prism, yellow
$V = 2235.97 (15) Å^3$	$0.13 \times 0.04 \times 0.02 \text{ mm}$
Z = 12	
Data collection	
Bruker APEX DUO	44729 measured reflections
diffractometer	5538 independent reflections
Radiation source: fine-focus sealed tube	4675 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
ωscans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -20 \rightarrow 20$
SADABS (Sheldrick, 1996)'	$k = -28 \rightarrow 28$
$T_{\min} = 0.538, \ T_{\max} = 0.899$	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.078$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
5538 reflections	and constrained refinement
322 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0398P)^2 + 2.2806P]$
6 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 1.15 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	1.107067 (18)	0.309517 (13)	0.81184 (4)	0.02396 (8)
Br2	0.248212 (17)	0.345125 (13)	0.22269 (4)	0.02332 (8)
Br3	0.930771 (17)	0.485358 (12)	-0.30860 (4)	0.01955 (7)
N1	0.93022 (14)	0.35309 (10)	0.3739 (3)	0.0147 (4)
N2	0.78304 (15)	0.35253 (10)	0.3158 (3)	0.0170 (4)
N3	0.76115 (15)	0.29900 (11)	0.6916 (3)	0.0179 (4)
N4	0.46555 (13)	0.23784 (10)	0.3560 (3)	0.0131 (4)
N5	0.61032 (14)	0.25193 (10)	0.4281 (3)	0.0153 (4)
N6	0.58767 (15)	0.38763 (10)	0.3737 (3)	0.0167 (4)
N7	0.75458 (14)	0.52802 (10)	0.0966 (3)	0.0144 (4)
N8	0.60864 (14)	0.52091 (10)	0.1372 (3)	0.0165 (4)
N9	0.58646 (14)	0.46594 (10)	-0.2438 (3)	0.0164 (4)
C1	1.00873 (17)	0.34402 (11)	0.4792 (4)	0.0174 (5)
H1	1.0643	0.3540	0.4290	0.021*
C2	1.00202 (17)	0.32018 (12)	0.6573 (4)	0.0168 (5)
C3	0.92127 (17)	0.30293 (11)	0.7364 (4)	0.0167 (5)
H3	0.9207	0.2850	0.8612	0.020*
C4	0.84294 (17)	0.31237 (11)	0.6302 (4)	0.0145 (5)
C5	0.84843 (16)	0.33958 (11)	0.4443 (4)	0.0142 (5)
C6	0.82481 (18)	0.37419 (12)	0.1590 (4)	0.0196 (5)
H6	0.7949	0.3870	0.0427	0.023*
C7	0.91483 (18)	0.37524 (13)	0.1893 (4)	0.0194 (5)
H7	0.9575	0.3884	0.1020	0.023*
C8	0.37957 (17)	0.25553 (12)	0.3112 (4)	0.0158 (5)
H8	0.3333	0.2254	0.2961	0.019*
C9	0.36455 (17)	0.31802 (12)	0.2898 (4)	0.0162 (5)
C10	0.43202 (17)	0.36433 (12)	0.3074 (4)	0.0157 (5)
H10	0.4183	0.4076	0.2870	0.019*
C11	0.51705 (17)	0.34614 (11)	0.3540 (3)	0.0144 (5)
C12	0.53420 (16)	0.28070 (11)	0.3834 (3)	0.0134 (5)
C13	0.58955 (18)	0.18878 (12)	0.4262 (4)	0.0173 (5)
H13	0.6312	0.1560	0.4528	0.021*
C14	0.50220 (18)	0.17886 (12)	0.3818 (4)	0.0171 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H14	0.4726	0.1394	0.3708	0.021*	
C15	0.83221 (16)	0.52183 (11)	0.0020 (4)	0.0154 (5)	
H15	0.8873	0.5358	0.0574	0.018*	
C16	0.82568 (16)	0.49497 (11)	-0.1733 (4)	0.0152 (5)	
C17	0.74557 (16)	0.47370 (11)	-0.2611 (4)	0.0142 (5)	
H17	0.7450	0.4540	-0.3835	0.017*	
C18	0.66754 (16)	0.48172 (11)	-0.1679 (4)	0.0135 (5)	
C19	0.67320 (16)	0.50949 (11)	0.0182 (4)	0.0131 (5)	
C20	0.65091 (18)	0.54752 (13)	0.2963 (4)	0.0206 (5)	
H20	0.6217	0.5610	0.4069	0.025*	
C21	0.73987 (18)	0.55214 (13)	0.2758 (4)	0.0183 (5)	
H21	0.7827	0.5686	0.3662	0.022*	
H31	0.7175 (18)	0.2903 (18)	0.608 (4)	0.045 (11)*	
H32	0.755 (3)	0.2726 (15)	0.787 (4)	0.047 (12)*	
H61	0.6413 (10)	0.3726 (14)	0.367 (4)	0.021 (8)*	
H62	0.581 (2)	0.4227 (9)	0.307 (4)	0.019 (8)*	
H91	0.5382 (13)	0.4706 (14)	-0.181 (4)	0.018 (8)*	
H92	0.586 (2)	0.4427 (14)	-0.348 (3)	0.033 (10)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01367 (13)	0.02313 (14)	0.03436 (16)	-0.00028 (10)	-0.00679 (11)	0.00462 (11)
Br2	0.01282 (13)	0.02352 (14)	0.03321 (16)	0.00291 (10)	-0.00335 (10)	0.00457 (11)
Br3	0.01248 (12)	0.02091 (13)	0.02567 (14)	-0.00039 (9)	0.00531 (9)	-0.00224 (10)
N1	0.0135 (10)	0.0149 (10)	0.0158 (10)	-0.0029 (8)	0.0020 (8)	-0.0011 (8)
N2	0.0168 (10)	0.0159 (10)	0.0182 (11)	-0.0023 (8)	-0.0023 (8)	0.0018 (8)
N3	0.0138 (11)	0.0231 (12)	0.0167 (11)	-0.0022 (9)	0.0012 (8)	0.0053 (9)
N4	0.0119 (10)	0.0138 (10)	0.0135 (10)	0.0000 (8)	-0.0009 (8)	0.0002 (8)
N5	0.0155 (10)	0.0162 (10)	0.0142 (10)	0.0002 (8)	-0.0006 (8)	0.0010 (8)
N6	0.0151 (11)	0.0132 (10)	0.0215 (11)	-0.0021 (8)	-0.0002 (9)	-0.0003 (8)
N7	0.0110 (10)	0.0150 (10)	0.0171 (10)	-0.0012 (8)	-0.0015 (8)	-0.0009 (8)
N8	0.0155 (10)	0.0158 (10)	0.0183 (11)	0.0003 (8)	0.0021 (8)	-0.0005 (8)
N9	0.0117 (10)	0.0190 (11)	0.0184 (11)	-0.0017 (8)	-0.0014 (8)	-0.0056 (9)
C1	0.0107 (11)	0.0159 (12)	0.0255 (14)	-0.0003 (9)	0.0009 (10)	-0.0034 (10)
C2	0.0121 (11)	0.0141 (11)	0.0240 (13)	0.0007 (9)	-0.0028 (10)	-0.0009 (10)
C3	0.0178 (13)	0.0122 (11)	0.0201 (13)	-0.0009 (9)	-0.0005 (10)	0.0007 (9)
C4	0.0140 (12)	0.0105 (10)	0.0190 (12)	-0.0007 (9)	0.0018 (9)	-0.0007 (9)
C5	0.0122 (11)	0.0119 (11)	0.0187 (12)	-0.0014 (9)	0.0021 (9)	-0.0018 (9)
C6	0.0210 (13)	0.0185 (12)	0.0188 (13)	-0.0054 (10)	-0.0037 (10)	0.0033 (10)
C7	0.0224 (13)	0.0198 (12)	0.0162 (12)	-0.0052 (10)	0.0022 (10)	0.0023 (10)
C8	0.0140 (12)	0.0176 (12)	0.0156 (12)	-0.0023 (9)	-0.0016 (9)	0.0005 (9)
С9	0.0123 (11)	0.0184 (12)	0.0177 (12)	0.0028 (9)	-0.0007 (9)	0.0000 (10)
C10	0.0183 (12)	0.0136 (11)	0.0153 (12)	0.0021 (9)	0.0008 (9)	-0.0009 (9)
C11	0.0166 (12)	0.0153 (11)	0.0113 (11)	0.0000 (9)	-0.0001 (9)	-0.0019 (9)
C12	0.0129 (11)	0.0159 (11)	0.0113 (11)	-0.0019 (9)	-0.0002 (9)	-0.0014 (9)
C13	0.0195 (13)	0.0156 (12)	0.0169 (12)	0.0023 (10)	0.0018 (10)	0.0028 (9)
C14	0.0220 (13)	0.0119 (11)	0.0177 (12)	0.0017 (10)	0.0030 (10)	0.0008 (9)

supporting information

C15	0.0104 (11)	0.0152 (11)	0.0204 (12)	-0.0015 (9)	-0.0002 (9)	0.0014 (10)
C16	0.0118 (11)	0.0125 (11)	0.0215 (13)	0.0010 (9)	0.0023 (9)	0.0024 (9)
C17	0.0141 (12)	0.0136 (11)	0.0149 (12)	0.0002 (9)	-0.0001 (9)	0.0003 (9)
C18	0.0133 (11)	0.0106 (10)	0.0164 (12)	0.0001 (9)	-0.0005 (9)	0.0022 (9)
C19	0.0113 (11)	0.0112 (11)	0.0168 (12)	0.0001 (9)	0.0009 (9)	0.0021 (9)
C20	0.0232 (14)	0.0213 (13)	0.0174 (13)	0.0005 (11)	0.0038 (10)	-0.0026 (10)
C21	0.0204 (13)	0.0207 (13)	0.0138 (12)	-0.0024 (10)	-0.0012 (10)	-0.0024 (10)

Geometric parameters (Å, °)

Br1—C2	1.893 (3)	C1—C2	1.350 (4)
Br2—C9	1.891 (3)	C1—H1	0.9500
Br3—C16	1.897 (3)	C2—C3	1.412 (4)
N1—C7	1.380 (3)	C3—C4	1.384 (4)
N1—C1	1.382 (3)	С3—Н3	0.9500
N1—C5	1.383 (3)	C4—C5	1.425 (3)
N2—C5	1.333 (3)	C6—C7	1.370 (4)
N2—C6	1.367 (3)	С6—Н6	0.9500
N3—C4	1.358 (3)	С7—Н7	0.9500
N3—H31	0.883 (10)	C8—C9	1.351 (4)
N3—H32	0.880 (10)	C8—H8	0.9500
N4	1.377 (3)	C9—C10	1.418 (4)
N4—C8	1.377 (3)	C10—C11	1.369 (4)
N4—C12	1.387 (3)	C10—H10	0.9500
N5-C12	1.328 (3)	C11—C12	1.425 (3)
N5-C13	1.375 (3)	C13—C14	1.361 (4)
N6—C11	1.386 (3)	С13—Н13	0.9500
N6—H61	0.875 (10)	C14—H14	0.9500
N6—H62	0.881 (10)	C15—C16	1.348 (4)
N7—C21	1.378 (3)	C15—H15	0.9500
N7—C15	1.380 (3)	C16—C17	1.408 (3)
N7—C19	1.382 (3)	C17—C18	1.385 (3)
N8—C19	1.333 (3)	C17—H17	0.9500
N8—C20	1.377 (3)	C18—C19	1.424 (3)
N9—C18	1.356 (3)	C20—C21	1.364 (4)
N9—H91	0.874 (10)	С20—Н20	0.9500
N9—H92	0.876 (10)	C21—H21	0.9500
C7—N1—C1	130.4 (2)	C9—C8—N4	116.4 (2)
C7—N1—C5	106.6 (2)	С9—С8—Н8	121.8
C1—N1—C5	123.0 (2)	N4—C8—H8	121.8
C5—N2—C6	104.5 (2)	C8—C9—C10	123.5 (2)
C4—N3—H31	120 (3)	C8—C9—Br2	118.4 (2)
C4—N3—H32	121 (3)	C10—C9—Br2	118.03 (18)
H31—N3—H32	105 (4)	C11—C10—C9	119.4 (2)
C14—N4—C8	130.4 (2)	C11—C10—H10	120.3
C14—N4—C12	106.4 (2)	C9—C10—H10	120.3
C8—N4—C12	123.2 (2)	C10-C11-N6	123.9 (2)

C12—N5—C13	104.4 (2)	C10—C11—C12	118.2 (2)
C11—N6—H61	118 (2)	N6-C11-C12	118.0 (2)
C11—N6—H62	114 (2)	N5—C12—N4	111.6 (2)
H61—N6—H62	112 (3)	N5—C12—C11	129.2 (2)
C21—N7—C15	130.2 (2)	N4—C12—C11	119.2 (2)
C21—N7—C19	106.6 (2)	C14—C13—N5	111.8 (2)
C15—N7—C19	123.2 (2)	C14—C13—H13	124.1
C19—N8—C20	104.4 (2)	N5—C13—H13	124.1
C18—N9—H91	123 (2)	C13—C14—N4	105.7 (2)
C18—N9—H92	116 (2)	C13—C14—H14	127.1
H91—N9—H92	120 (3)	N4—C14—H14	127.1
C2—C1—N1	116.3 (2)	C16—C15—N7	116.4 (2)
C2—C1—H1	121.9	C16—C15—H15	121.8
N1—C1—H1	121.9	N7—C15—H15	121.8
C1—C2—C3	124.0 (2)	C15—C16—C17	123.8 (2)
C1—C2—Br1	118.2 (2)	C15—C16—Br3	117.90 (19)
C3—C2—Br1	117.8 (2)	C17—C16—Br3	118.32 (19)
C4—C3—C2	119.3 (2)	C18—C17—C16	119.5 (2)
С4—С3—Н3	120.3	C18—C17—H17	120.2
С2—С3—Н3	120.3	C16—C17—H17	120.2
N3—C4—C3	124.9 (2)	N9—C18—C17	124.2 (2)
N3—C4—C5	117.6 (2)	N9—C18—C19	118.3 (2)
C3—C4—C5	117.5 (2)	C17—C18—C19	117.5 (2)
N2—C5—N1	111.6 (2)	N8—C19—N7	111.6 (2)
N2—C5—C4	128.5 (2)	N8—C19—C18	128.8 (2)
N1—C5—C4	119.8 (2)	N7—C19—C18	119.6 (2)
N2—C6—C7	112.0 (2)	C21—C20—N8	111.7 (2)
N2—C6—H6	124.0	C21—C20—H20	124.2
С7—С6—Н6	124.0	N8—C20—H20	124.2
C6—C7—N1	105.3 (2)	C20—C21—N7	105.6 (2)
С6—С7—Н7	127.4	C20—C21—H21	127.2
N1—C7—H7	127.4	N7—C21—H21	127.2
C7—N1—C1—C2	-178.7 (2)	C8—N4—C12—N5	179.0 (2)
C5—N1—C1—C2	0.7 (4)	C14—N4—C12—C11	176.1 (2)
N1-C1-C2-C3	1.9 (4)	C8—N4—C12—C11	-3.6 (4)
N1-C1-C2-Br1	-177.80 (17)	C10-C11-C12-N5	179.6 (2)
C1—C2—C3—C4	-2.1 (4)	N6-C11-C12-N5	-0.2 (4)
Br1-C2-C3-C4	177.53 (18)	C10-C11-C12-N4	2.7 (3)
C2—C3—C4—N3	-178.6 (2)	N6-C11-C12-N4	-177.1 (2)
C2—C3—C4—C5	-0.2 (4)	C12—N5—C13—C14	-0.2 (3)
C6—N2—C5—N1	0.7 (3)	N5-C13-C14-N4	-0.6 (3)
C6—N2—C5—C4	-176.3 (2)	C8—N4—C14—C13	-179.2 (2)
C7—N1—C5—N2	-0.6 (3)	C12—N4—C14—C13	1.1 (3)
C1—N1—C5—N2	179.8 (2)	C21—N7—C15—C16	178.8 (2)
C7—N1—C5—C4	176.6 (2)	C19—N7—C15—C16	-1.5 (4)
C1—N1—C5—C4	-3.0 (4)	N7—C15—C16—C17	0.1 (4)
N3—C4—C5—N2	-2.2 (4)	N7—C15—C16—Br3	-179.89 (17)

C3—C4—C5—N2	179.3 (2)	C15—C16—C17—C18	1.8 (4)
N3-C4-C5-N1	-178.9 (2)	Br3-C16-C17-C18	-178.21 (18)
C3-C4-C5-N1	2.6 (3)	C16—C17—C18—N9	176.5 (2)
C5—N2—C6—C7	-0.5 (3)	C16—C17—C18—C19	-2.3 (3)
N2-C6-C7-N1	0.1 (3)	C20—N8—C19—N7	-0.1 (3)
C1—N1—C7—C6	179.8 (2)	C20-N8-C19-C18	179.5 (2)
C5—N1—C7—C6	0.3 (3)	C21—N7—C19—N8	0.3 (3)
C14—N4—C8—C9	-178.1 (2)	C15—N7—C19—N8	-179.5 (2)
C12—N4—C8—C9	1.6 (4)	C21—N7—C19—C18	-179.3 (2)
N4—C8—C9—C10	1.3 (4)	C15—N7—C19—C18	0.9 (4)
N4—C8—C9—Br2	178.65 (17)	N9-C18-C19-N8	2.6 (4)
C8—C9—C10—C11	-2.0 (4)	C17—C18—C19—N8	-178.5 (2)
Br2	-179.38 (19)	N9—C18—C19—N7	-177.8 (2)
C9—C10—C11—N6	179.7 (2)	C17—C18—C19—N7	1.0 (3)
C9—C10—C11—C12	-0.1 (4)	C19—N8—C20—C21	-0.2 (3)
C13—N5—C12—N4	0.9 (3)	N8—C20—C21—N7	0.4 (3)
C13—N5—C12—C11	-176.2 (2)	C15—N7—C21—C20	179.3 (2)
C14—N4—C12—N5	-1.3 (3)	C19—N7—C21—C20	-0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
N3—H31…N5	0.88(1)	2.16(1)	3.034 (3)	169 (4)
N6—H61…N2	0.88 (1)	2.23 (1)	3.094 (3)	168 (3)
N9—H91…N8 ⁱ	0.87 (1)	2.27 (2)	3.091 (3)	158 (3)
N9—H92…N6 ⁱⁱ	0.88 (1)	2.27 (1)	3.143 (3)	177 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*, *y*, *z*-1.