

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-4-(2-chlorophenyl)-5-oxo-5.6.7.8-tetrahvdro-4H-chromene-3carbonitrile ethanol monosolvate

Yan Qiao,^a Linggian Kong,^{a,b}* Guifang Chen,^a Shengli Li^a and Zhiqing Gao^a

^aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: konglingqian08@163.com

Received 11 October 2011; accepted 21 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.082; wR factor = 0.230; data-to-parameter ratio = 13.7.

In the title compound, $C_{16}H_{13}ClN_2O_2 \cdot C_2H_6O$, the fused cyclohexene and pyran rings adopt envelope and flattened boat conformations, respectively. In the crystal, $N-H \cdots O$ and O-H···O hydrogen bonds link the chromene and ethanol solvent molecules into infinite chains along the c axis, and N-H···N hydrogen bonds link these chains into a threedimensional framework. Weak $C-H\cdots\pi$ interactions are also present.

Related literature

For the background, see: Lokaj et al. (1990); Marco et al. (1993). For crystal structures similar to the title compound, see: Tu et al. (2001).

CI CN CH₃CH₂OH NH_2

Experimental

Crystal data $C_{16}H_{13}CIN_2O_2 \cdot C_2H_6O$

 $M_{\rm r} = 346.80$

Triclinic, $P\overline{1}$ a = 8.7610 (8) Å b = 9.6281 (9) Å c = 10.7951 (11) Å $\alpha = 76.878 \ (1)^{\circ}$ $\beta = 83.028 (2)^{\circ}$ $\gamma = 77.632 \ (1)^{\circ}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T = -0.896 $T = -0.952$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.082$	1 restraint
$wR(F^2) = 0.230$	H-atom parameters constrained
S = 0.90	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
3003 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
219 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots N1^{i}$ $N2-H2B\cdots O3$ $O3-H3\cdots O1^{ii}$ $C14-H14B\cdots Cg^{iii}$	0.86 0.86 0.82 0.97	2.19 1.99 1.97 2.96	3.037 (5) 2.851 (5) 2.765 (5) 3.704 (5)	167 178 164 135

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, y, z + 1; (iii) x - 1, y, z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2312).

References

- Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788-791.
- Marco, J. L., Martin, G., Martin, N., Martinez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133-7144.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, 0358-0359.

 $V = 863.69 (14) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.47 \times 0.46 \times 0.21 \text{ mm}$

4606 measured reflections 3003 independent reflections

1428 reflections with $I > 2\sigma(I)$

 $\mu = 0.24 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.057$

7 - 2

supporting information

Acta Cryst. (2011). E67, o3099 [doi:10.1107/S1600536811043650]

2-Amino-4-(2-chlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile ethanol monosolvate

Yan Qiao, Lingqian Kong, Guifang Chen, Shengli Li and Zhiqing Gao

S1. Comment

The present investigation is a continuation of our work that includes syntheses and structural studies of polyfunctionalized substituted pyran derivatives, owing to their biological activities (Lokaj *et al.*, 1990; Marco *et al.*, 1993). We obtained the title compound, (I), and reported here its crystal structure in the paper.

In the crystal structure, it is observed that structure unit contains a substituted 5,6,7,8-tetrahydro-4H-chromene, a benzene ring and a ethanol solvate. The pyran ring adopts a sofa conformation, the dihedral angle between the (O2/C8-C11) plane and the C8/C7/C11 plane is 16.14 (4)°. Meanwhile, the (O2/C8-C11) plane forms an angle of 88.55 (13)° with the phenyl plane (C1-C6), which means that the pyran ring and the benzene ring is nearly perpendicular. In the crystal, the nitrile group is typical [N=C = 1.148 (5)Å] and the carbonyl group also is reasonable [C=O =1.223 (6)Å].

Moreover, the plane (C10-C15) also adopts an chair configuration in the compound, and the dihedral angle between the (C10-C15) plane and the (C13-C15) plane is 46.19 (5)°.

In (I) (Fig. 1), the bond lengths and angles of the main molecule are normal and correspond to those observed in 2-amino-7,7-dimethyl-5-oxo-4-phenyl- 5,6,7,8-tetra-hydro-4H-chromene-3-carbonitrile (Tu *et al.*, 2001).

In the crystal structure, there exist typical intermolecular N-H···N, N—H···O, O—H···O hydrogen bonds and weak C-H··· π interactions (Table 1.). Intermolecular N-H···O and O—H···O hydrogen bonds link the molecules and ethanol solvent into infinite chain along c-axis and intermolecular hydrogen bonds link these chains forming three-dimensional framework.

S2. Experimental

Malononitrile (5 mmol), 1,3-cyclohexanedione (5 mmol) and 2-chorobenzaldehyde (5 mmol) was dissolved in 20 ml DMF in a round-bottom flask. The mixture was warmed, with agitation, to 423 K over a period of 6 h. The resulting solution was cooled. Crystal of (I) suitable for X-ray diffraction analysis were obtained by recrystallized from ethanol.

S3. Refinement

All H atoms were placed in geometrically idealized positions (N-H 0.86, O-H 0.82 and C-H 0.93-0.98 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$ (C, O, N).

Figure 1

The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level.

Figure 2

The packing of the title compound. N-H…N, N-H…O and O-H…O interactions are represented with dashed lines.

2-Amino-4-(2-chlorophenyl)-5-oxo-5,6,7,8-tetrahydro- 4H-chromene-3-carbonitrile ethanol monosolvate

Crystal data

C₁₆H₁₃ClN₂O₂·C₂H₆O $M_r = 346.80$ Triclinic, *P*I Hall symbol: -P 1 a = 8.7610 (8) Å b = 9.6281 (9) Å c = 10.7951 (11) Å a = 76.878 (1)° $\beta = 83.028$ (2)° $\gamma = 77.632$ (1)° V = 863.69 (14) Å³

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.896, T_{\max} = 0.952$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.082$ $wR(F^2) = 0.230$ S = 0.903003 reflections 219 parameters 1 restraint Z = 2 F(000) = 364 $D_x = 1.334 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 821 reflections $\theta = 2.6-25.4^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 298 K Block, red $0.47 \times 0.46 \times 0.21 \text{ mm}$

4606 measured reflections 3003 independent reflections 1428 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 1.9^\circ$ $h = -10 \rightarrow 10$ $k = -9 \rightarrow 11$ $I = -12 \rightarrow 12$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.126P)^2]$	$\Delta ho_{ m max} = 0.36$ e Å ⁻³
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-2}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic or	equivalent isotropi	c displacement	parameters ($(Å^2)$
				P	· /

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.94359 (18)	0.32844 (18)	0.01378 (14)	0.0853 (6)
N1	1.0042 (5)	0.4987 (5)	0.3508 (4)	0.0694 (13)
N2	0.7142 (4)	0.3876 (4)	0.6036 (4)	0.0543 (11)
H2A	0.7912	0.4295	0.6051	0.065*
H2B	0.6527	0.3694	0.6711	0.065*
01	0.5581 (4)	0.2859 (5)	0.0845 (3)	0.0796 (12)
O2	0.5602 (3)	0.2879 (3)	0.5179 (3)	0.0531 (9)
O3	0.5099 (5)	0.3347 (6)	0.8285 (4)	0.1065 (16)
H3	0.5180	0.3377	0.9026	0.160*
C1	0.9531 (5)	0.1785 (6)	0.1361 (5)	0.0551 (13)
C2	1.0586 (6)	0.0538 (7)	0.1199 (6)	0.0659 (15)
H2	1.1212	0.0522	0.0441	0.079*
C3	1.0716 (6)	-0.0672 (7)	0.2153 (6)	0.0736 (16)
H3A	1.1434	-0.1508	0.2047	0.088*
C4	0.9784 (6)	-0.0667 (6)	0.3281 (6)	0.0707 (16)
H4	0.9861	-0.1494	0.3930	0.085*
C5	0.8745 (5)	0.0572 (5)	0.3432 (5)	0.0532 (12)
Н5	0.8139	0.0577	0.4201	0.064*
C6	0.8560 (4)	0.1819 (5)	0.2487 (4)	0.0443 (11)
C7	0.7362 (4)	0.3145 (5)	0.2726 (4)	0.0429 (11)
H7	0.7373	0.3918	0.1960	0.051*
C8	0.7721 (5)	0.3698 (5)	0.3836 (4)	0.0437 (11)
C9	0.6906 (5)	0.3513 (5)	0.4982 (4)	0.0437 (11)
C10	0.5007 (5)	0.2644 (5)	0.4148 (4)	0.0454 (11)
C11	0.5740 (5)	0.2806 (5)	0.2992 (4)	0.0433 (11)
C12	0.4933 (5)	0.2721 (6)	0.1923 (5)	0.0561 (13)
C13	0.3260 (5)	0.2516 (7)	0.2181 (5)	0.0745 (17)
H13A	0.3012	0.2056	0.1539	0.089*
H13B	0.2570	0.3459	0.2115	0.089*
C14	0.2971 (6)	0.1595 (6)	0.3488 (5)	0.0670 (15)
H14A	0.3567	0.0616	0.3523	0.080*
H14B	0.1868	0.1544	0.3640	0.080*

C15	0.3445 (5)	0.2227 (5)	0.4516 (5)	0.0541 (13)	
H15A	0.2668	0.3076	0.4644	0.065*	
H15B	0.3487	0.1515	0.5313	0.065*	
C16	0.8995 (5)	0.4412 (5)	0.3669 (4)	0.0489 (12)	
C17	0.3742 (7)	0.2814 (7)	0.8216 (6)	0.097 (2)	
H17A	0.3331	0.3234	0.7390	0.117*	
H17B	0.2949	0.3108	0.8865	0.117*	
C18	0.4070 (11)	0.1237 (8)	0.8401 (7)	0.136 (3)	
H18A	0.4878	0.0942	0.7776	0.204*	
H18B	0.3137	0.0910	0.8308	0.204*	
H18C	0.4412	0.0817	0.9240	0.204*	

Atomic displacement parameters $(Å^2)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1 0.044 (2) 0.100 (4) 0.076 (3) -0.036 (2) 0.001 (2) -0.025 (3)N2 0.046 (2) 0.078 (3) 0.050 (3) -0.029 (2) -0.0001 (18) -0.021 (2)O1 0.060 (2) 0.137 (4) 0.052 (2) -0.040 (2) -0.0035 (18) -0.023 (2)O2 0.0437 (17) 0.074 (2) 0.050 (2) -0.0305 (16) 0.0028 (14) -0.0154 (17)O3 0.096 (3) 0.183 (5) 0.057 (3) -0.070 (3) 0.008 (2) -0.025 (3)C1 0.041 (3) 0.071 (4) 0.062 (3) -0.020 (3) 0.003 (2) -0.026 (3)C2 0.048 (3) 0.086 (4) 0.075 (4) -0.018 (3) 0.009 (3) -0.041 (4)C3 0.050 (3) 0.074 (4) 0.101 (5) -0.003 (3) -0.005 (3) -0.036 (4)C4 0.058 (3) 0.069 (4) 0.084 (4) -0.008 (3) -0.010 (3) -0.014 (3)C5 0.037 (3) 0.061 (3) 0.061 (3) -0.018 (2) 0.0017 (19) -0.018 (2)C7 0.031 (2) 0.059 (3) 0.054 (3) -0.016 (2) 0.0002 (18) -0.008 (2)C8 0.033 (2) 0.054 (3) 0.047 (3) -0.017 (2) -0.0028 (19) -0.012 (2)C9 0.031 (2) 0.054 (3) 0.051 (3) -0.017 (2) -0.006 (2) -0.015 (2)C10 0.037 (2) 0.054 (3) 0.051 (3) -0.017 (2) -0.006 (2) -0.015 (2)C11 $0.$	Cl1	0.0840 (11)	0.0960 (12)	0.0676 (10)	-0.0272 (9)	0.0204 (7)	-0.0043 (8)
N2 $0.046(2)$ $0.078(3)$ $0.050(3)$ $-0.029(2)$ $-0.0001(18)$ $-0.021(2)$ O1 $0.060(2)$ $0.137(4)$ $0.052(2)$ $-0.040(2)$ $-0.0035(18)$ $-0.023(2)$ O2 $0.0437(17)$ $0.074(2)$ $0.050(2)$ $-0.0305(16)$ $0.0028(14)$ $-0.0154(17)$ O3 $0.096(3)$ $0.183(5)$ $0.057(3)$ $-0.070(3)$ $0.008(2)$ $-0.025(3)$ C1 $0.041(3)$ $0.071(4)$ $0.062(3)$ $-0.020(3)$ $0.003(2)$ $-0.026(3)$ C2 $0.048(3)$ $0.086(4)$ $0.075(4)$ $-0.018(3)$ $0.009(3)$ $-0.041(4)$ C3 $0.050(3)$ $0.074(4)$ $0.101(5)$ $-0.003(3)$ $-0.005(3)$ $-0.036(4)$ C4 $0.058(3)$ $0.069(4)$ $0.084(4)$ $-0.008(3)$ $-0.010(3)$ $-0.014(3)$ C5 $0.037(3)$ $0.061(3)$ $0.061(3)$ $-0.018(2)$ $0.0002(18)$ $-0.008(2)$ C7 $0.031(2)$ $0.059(3)$ $0.054(3)$ $-0.016(2)$ $0.0002(18)$ $-0.008(2)$ C8 $0.033(2)$ $0.056(3)$ $0.047(3)$ $-0.017(2)$ $-0.0028(19)$ $-0.012(2)$ C9 $0.031(2)$ $0.050(3)$ $0.053(3)$ $-0.015(2)$ $-0.0028(19)$ $-0.012(2)$ C10 $0.037(2)$ $0.054(3)$ $0.051(3)$ $-0.017(2)$ $-0.0028(19)$ $-0.012(2)$ C11 $0.036(2)$ $0.054(3)$ $0.057(3)$ $-0.010(2)$ $-0.002(3)$ C12 $0.045(3)$ $0.074(4)$ $0.057(3)$ $-0.0102(2)$ $-0.015(2)$ <t< td=""><td>N1</td><td>0.044 (2)</td><td>0.100 (4)</td><td>0.076 (3)</td><td>-0.036 (2)</td><td>0.001 (2)</td><td>-0.025 (3)</td></t<>	N1	0.044 (2)	0.100 (4)	0.076 (3)	-0.036 (2)	0.001 (2)	-0.025 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	0.046 (2)	0.078 (3)	0.050 (3)	-0.029 (2)	-0.0001 (18)	-0.021 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.060 (2)	0.137 (4)	0.052 (2)	-0.040 (2)	-0.0035 (18)	-0.023 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	0.0437 (17)	0.074 (2)	0.050(2)	-0.0305 (16)	0.0028 (14)	-0.0154 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3	0.096 (3)	0.183 (5)	0.057 (3)	-0.070 (3)	0.008 (2)	-0.025 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.041 (3)	0.071 (4)	0.062 (3)	-0.020 (3)	0.003 (2)	-0.026 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.048 (3)	0.086 (4)	0.075 (4)	-0.018 (3)	0.009 (3)	-0.041 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.050 (3)	0.074 (4)	0.101 (5)	-0.003 (3)	-0.005 (3)	-0.036 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.058 (3)	0.069 (4)	0.084 (4)	-0.008 (3)	-0.010 (3)	-0.014 (3)
C6 $0.027 (2)$ $0.059 (3)$ $0.054 (3)$ $-0.018 (2)$ $0.0017 (19)$ $-0.018 (2)$ C7 $0.031 (2)$ $0.051 (3)$ $0.049 (3)$ $-0.016 (2)$ $0.0002 (18)$ $-0.008 (2)$ C8 $0.033 (2)$ $0.056 (3)$ $0.047 (3)$ $-0.017 (2)$ $-0.0002 (19)$ $-0.013 (2)$ C9 $0.031 (2)$ $0.050 (3)$ $0.053 (3)$ $-0.013 (2)$ $-0.0028 (19)$ $-0.012 (2)$ C10 $0.037 (2)$ $0.054 (3)$ $0.051 (3)$ $-0.017 (2)$ $-0.006 (2)$ $-0.015 (2)$ C11 $0.036 (2)$ $0.054 (3)$ $0.045 (3)$ $-0.015 (2)$ $0.000 (2)$ $-0.017 (2)$ C12 $0.045 (3)$ $0.074 (4)$ $0.057 (3)$ $-0.019 (2)$ $-0.004 (2)$ $-0.020 (3)$ C13 $0.038 (3)$ $0.125 (5)$ $0.074 (4)$ $-0.027 (3)$ $-0.010 (2)$ $-0.026 (3)$ C14 $0.043 (3)$ $0.091 (4)$ $0.079 (4)$ $-0.032 (3)$ $-0.001 (2)$ $-0.026 (3)$ C15 $0.036 (3)$ $0.068 (3)$ $0.052 (3)$ $-0.014 (2)$ $-0.011 (2)$ $-0.018 (2)$ C16 $0.035 (2)$ $0.064 (3)$ $0.052 (3)$ $-0.014 (2)$ $-0.001 (2)$ $-0.018 (2)$	C5	0.037 (3)	0.061 (3)	0.061 (3)	-0.012 (2)	0.003 (2)	-0.014 (3)
C7 $0.031(2)$ $0.051(3)$ $0.049(3)$ $-0.016(2)$ $0.0002(18)$ $-0.008(2)$ C8 $0.033(2)$ $0.056(3)$ $0.047(3)$ $-0.017(2)$ $-0.0002(19)$ $-0.013(2)$ C9 $0.031(2)$ $0.050(3)$ $0.053(3)$ $-0.013(2)$ $-0.0028(19)$ $-0.012(2)$ C10 $0.037(2)$ $0.054(3)$ $0.051(3)$ $-0.017(2)$ $-0.006(2)$ $-0.015(2)$ C11 $0.036(2)$ $0.054(3)$ $0.045(3)$ $-0.015(2)$ $0.000(2)$ $-0.017(2)$ C12 $0.045(3)$ $0.074(4)$ $0.057(3)$ $-0.019(2)$ $-0.004(2)$ $-0.020(3)$ C13 $0.038(3)$ $0.125(5)$ $0.074(4)$ $-0.027(3)$ $-0.010(2)$ $-0.037(4)$ C14 $0.043(3)$ $0.091(4)$ $0.079(4)$ $-0.032(3)$ $-0.001(2)$ $-0.026(3)$ C15 $0.036(3)$ $0.068(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.015(3)$ C16 $0.035(2)$ $0.064(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.018(2)$	C6	0.027 (2)	0.059 (3)	0.054 (3)	-0.018 (2)	0.0017 (19)	-0.018 (2)
C8 $0.033(2)$ $0.056(3)$ $0.047(3)$ $-0.017(2)$ $-0.0002(19)$ $-0.013(2)$ C9 $0.031(2)$ $0.050(3)$ $0.053(3)$ $-0.013(2)$ $-0.0028(19)$ $-0.012(2)$ C10 $0.037(2)$ $0.054(3)$ $0.051(3)$ $-0.017(2)$ $-0.006(2)$ $-0.015(2)$ C11 $0.036(2)$ $0.054(3)$ $0.045(3)$ $-0.015(2)$ $0.000(2)$ $-0.017(2)$ C12 $0.045(3)$ $0.074(4)$ $0.057(3)$ $-0.019(2)$ $-0.004(2)$ $-0.020(3)$ C13 $0.038(3)$ $0.125(5)$ $0.074(4)$ $-0.027(3)$ $-0.010(2)$ $-0.037(4)$ C14 $0.043(3)$ $0.091(4)$ $0.079(4)$ $-0.032(3)$ $-0.001(2)$ $-0.026(3)$ C15 $0.036(3)$ $0.068(3)$ $0.062(3)$ $-0.020(2)$ $0.002(2)$ $-0.015(3)$ C16 $0.035(2)$ $0.064(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.018(2)$	C7	0.031 (2)	0.051 (3)	0.049 (3)	-0.016 (2)	0.0002 (18)	-0.008 (2)
C9 $0.031(2)$ $0.050(3)$ $0.053(3)$ $-0.013(2)$ $-0.0028(19)$ $-0.012(2)$ C10 $0.037(2)$ $0.054(3)$ $0.051(3)$ $-0.017(2)$ $-0.006(2)$ $-0.015(2)$ C11 $0.036(2)$ $0.054(3)$ $0.045(3)$ $-0.015(2)$ $0.000(2)$ $-0.017(2)$ C12 $0.045(3)$ $0.074(4)$ $0.057(3)$ $-0.019(2)$ $-0.004(2)$ $-0.020(3)$ C13 $0.038(3)$ $0.125(5)$ $0.074(4)$ $-0.027(3)$ $-0.010(2)$ $-0.037(4)$ C14 $0.043(3)$ $0.091(4)$ $0.079(4)$ $-0.032(3)$ $-0.001(2)$ $-0.026(3)$ C15 $0.036(3)$ $0.068(3)$ $0.062(3)$ $-0.020(2)$ $0.002(2)$ $-0.015(3)$ C16 $0.035(2)$ $0.064(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.018(2)$	C8	0.033 (2)	0.056 (3)	0.047 (3)	-0.017 (2)	-0.0002 (19)	-0.013 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.031 (2)	0.050 (3)	0.053 (3)	-0.013 (2)	-0.0028 (19)	-0.012 (2)
C11 $0.036(2)$ $0.054(3)$ $0.045(3)$ $-0.015(2)$ $0.000(2)$ $-0.017(2)$ C12 $0.045(3)$ $0.074(4)$ $0.057(3)$ $-0.019(2)$ $-0.004(2)$ $-0.020(3)$ C13 $0.038(3)$ $0.125(5)$ $0.074(4)$ $-0.027(3)$ $-0.010(2)$ $-0.037(4)$ C14 $0.043(3)$ $0.091(4)$ $0.079(4)$ $-0.032(3)$ $-0.001(2)$ $-0.026(3)$ C15 $0.036(3)$ $0.068(3)$ $0.062(3)$ $-0.020(2)$ $0.002(2)$ $-0.015(3)$ C16 $0.035(2)$ $0.064(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.018(2)$	C10	0.037 (2)	0.054 (3)	0.051 (3)	-0.017 (2)	-0.006 (2)	-0.015 (2)
C12 $0.045(3)$ $0.074(4)$ $0.057(3)$ $-0.019(2)$ $-0.004(2)$ $-0.020(3)$ C13 $0.038(3)$ $0.125(5)$ $0.074(4)$ $-0.027(3)$ $-0.010(2)$ $-0.037(4)$ C14 $0.043(3)$ $0.091(4)$ $0.079(4)$ $-0.032(3)$ $-0.001(2)$ $-0.026(3)$ C15 $0.036(3)$ $0.068(3)$ $0.062(3)$ $-0.020(2)$ $0.002(2)$ $-0.015(3)$ C16 $0.035(2)$ $0.064(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.018(2)$	C11	0.036 (2)	0.054 (3)	0.045 (3)	-0.015 (2)	0.000 (2)	-0.017 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.045 (3)	0.074 (4)	0.057 (3)	-0.019 (2)	-0.004 (2)	-0.020 (3)
C14 $0.043(3)$ $0.091(4)$ $0.079(4)$ $-0.032(3)$ $-0.001(2)$ $-0.026(3)$ C15 $0.036(3)$ $0.068(3)$ $0.062(3)$ $-0.020(2)$ $0.002(2)$ $-0.015(3)$ C16 $0.035(2)$ $0.064(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.018(2)$ C17 $0.068(4)$ $0.121(7)$ $0.085(5)$ $0.004(4)$ $0.002(2)$ $0.021(4)$	C13	0.038 (3)	0.125 (5)	0.074 (4)	-0.027 (3)	-0.010 (2)	-0.037 (4)
C15 $0.036(3)$ $0.068(3)$ $0.062(3)$ $-0.020(2)$ $0.002(2)$ $-0.015(3)$ C16 $0.035(2)$ $0.064(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.018(2)$ C17 $0.068(4)$ $0.121(7)$ $0.085(5)$ $0.004(4)$ $0.002(2)$ $0.021(4)$	C14	0.043 (3)	0.091 (4)	0.079 (4)	-0.032 (3)	-0.001 (2)	-0.026 (3)
C16 $0.035(2)$ $0.064(3)$ $0.052(3)$ $-0.014(2)$ $-0.001(2)$ $-0.018(2)$ C17 $0.068(4)$ $0.121(7)$ $0.085(5)$ $0.004(4)$ $0.002(2)$ $0.021(4)$	C15	0.036 (3)	0.068 (3)	0.062 (3)	-0.020 (2)	0.002 (2)	-0.015 (3)
C17 = 0.0(2, (4)) = 0.121(7) = 0.025(5) = 0.004(4) = 0.002(2) = 0.021(4)	C16	0.035 (2)	0.064 (3)	0.052 (3)	-0.014 (2)	-0.001 (2)	-0.018 (2)
C1/ $0.008(4)$ $0.131(7)$ $0.085(5)$ $-0.004(4)$ $0.002(5)$ $-0.021(4)$	C17	0.068 (4)	0.131 (7)	0.085 (5)	-0.004 (4)	0.002 (3)	-0.021 (4)
C18 0.203 (10) 0.088 (6) 0.102 (6) -0.006 (6) 0.011 (6) -0.020 (5)	C18	0.203 (10)	0.088 (6)	0.102 (6)	-0.006 (6)	0.011 (6)	-0.020 (5)

Geometric parameters (Å, °)

Cl1—C1	1.716 (5)	C6—CG	1.405 (4)
N1-C16	1.146 (5)	C6—C7	1.519 (6)
N2—C9	1.315 (5)	C7—C11	1.505 (5)
N2—H2A	0.8600	С7—С8	1.507 (6)
N2—H2B	0.8600	С7—Н7	0.9800
O1—C12	1.223 (5)	C8—C9	1.346 (6)

O2—C10	1.367 (5)	C8—C16	1.405 (6)
O2—C9	1.379 (5)	C10—C11	1.324 (6)
O3—C17	1.407 (7)	C10—C15	1.491 (6)
O3—H3	0.8200	C11—C12	1.450 (6)
C1—CG	1.373 (5)	C12—C13	1.505 (6)
C1—C2	1.381 (7)	C13—C14	1.511 (7)
C1—C6	1.399 (6)	C13—H13A	0.9700
C2—C3	1.363 (7)	C13—H13B	0.9700
C2—CG	1.376 (5)	C14—C15	1.518 (6)
C2—H2	0.9300	C14—H14A	0.9700
C3—CG	1.376 (6)	C14—H14B	0.9700
C3—C4	1.382 (8)	C15—H15A	0.9700
С3—НЗА	0.9300	C15—H15B	0.9700
C4—C5	1.366 (7)	C17—C18	1.455 (7)
C4—CG	1.380 (6)	C17—H17A	0.9700
C4—H4	0.9300	C17—H17B	0.9700
C5—CG	1.359 (5)	C18—H18A	0.9600
C5—C6	1.381 (6)	C18—H18B	0.9600
C5—H5	0.9300	C18—H18C	0.9600
			0.0000
C9—N2—H2A	120.0	C11—C10—C15	126.5 (4)
C9—N2—H2B	120.0	O2—C10—C15	110.5 (4)
H2A—N2—H2B	120.0	C10-C11-C12	119.2 (4)
C10—O2—C9	118.7 (3)	C10-C11-C7	122.6 (4)
С17—О3—Н3	109.5	C12—C11—C7	118.1 (4)
CG—C1—C2	60.0 (3)	O1—C12—C11	120.8 (4)
CG—C1—C6	60.9 (3)	O1—C12—C13	121.4 (4)
C2—C1—C6	120.8 (5)	C11—C12—C13	117.7 (4)
CG—C1—Cl1	178.0 (4)	C12—C13—C14	112.0 (4)
C2—C1—Cl1	118.1 (4)	С12—С13—Н13А	109.2
C6—C1—Cl1	121.1 (4)	C14—C13—H13A	109.2
C3—C2—CG	60.3 (3)	С12—С13—Н13В	109.2
C3—C2—C1	120.0 (5)	C14—C13—H13B	109.2
CG—C2—C1	59.7 (3)	H13A—C13—H13B	107.9
С3—С2—Н2	119.8	C13—C14—C15	110.9 (4)
CG—C2—H2	179.7	C13—C14—H14A	109.5
C1—C2—H2	120.1	C15—C14—H14A	109.5
C2—C3—CG	60.3 (3)	C13—C14—H14B	109.5
C2—C3—C4	120.4 (5)	C15—C14—H14B	109.5
CG—C3—C4	60.1 (3)	H14A—C14—H14B	108.1
С2—С3—НЗА	120.0	C10-C15-C14	110.6 (4)
СG—С3—НЗА	179.6	C10-C15-H15A	109.5
С4—С3—НЗА	119.6	C14—C15—H15A	109.5
C5—C4—CG	59.3 (3)	C10—C15—H15B	109.5
C5—C4—C3	119.1 (6)	C14—C15—H15B	109.5
CG—C4—C3	59.7 (4)	H15A—C15—H15B	108.1
С5—С4—Н4	120.3	N1—C16—C8	178.5 (5)
CG-C4-H4	179.5	O3—C17—C18	111.4 (6)

C3—C4—H4	120.6	O3—C17—H17A	109.3
CG—C5—C4	60.9 (3)	C18—C17—H17A	109.3
CG—C5—C6	61.7 (3)	O3—C17—H17B	109.3
C4—C5—C6	122.6 (5)	C18—C17—H17B	109.3
CG—C5—H5	179.0	H17A—C17—H17B	108.0
С4—С5—Н5	118.7	C17—C18—H18A	109.5
С6—С5—Н5	118.8	C17—C18—H18B	109.5
C5—C6—C1	117.0 (4)	H18A—C18—H18B	109.5
C5—C6—CG	58.4 (3)	C17—C18—H18C	109.5
C1—C6—CG	58.6 (3)	H18A—C18—H18C	109.5
C5—C6—C7	119.2 (4)	H18B—C18—H18C	109.5
C1—C6—C7	123.7 (4)	C5—CG—C1	120.4 (3)
CG—C6—C7	177.6 (4)	C5—CG—C3	120.0 (4)
C11—C7—C8	108.2 (3)	C1—CG—C3	119.7 (3)
С11—С7—С6	110.9 (3)	C5—CG—C2	179.3 (3)
C8—C7—C6	112.1 (3)	C1—CG—C2	60.3 (3)
С11—С7—Н7	108.5	C3—CG—C2	59.4 (3)
С8—С7—Н7	108.5	C5—CG—C4	59.8 (3)
С6—С7—Н7	108.5	C1—CG—C4	179.8 (3)
C9—C8—C16	118.6 (4)	C3—CG—C4	60.2 (3)
C9—C8—C7	123.3 (4)	C2—CG—C4	119.5 (3)
C16—C8—C7	118.0 (4)	C5—CG—C6	59.9 (3)
N2—C9—C8	129.3 (4)	C1—CG—C6	60.5 (3)
N2—C9—O2	109.7 (4)	C3—CG—C6	179.6 (3)
C8—C9—O2	121.0 (4)	C2—CG—C6	120.8 (3)
C11—C10—O2	123.0 (4)	C4—CG—C6	119.7 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H…A	$D^{\dots}A$	D—H···A
0.86	2.19	3.037 (5)	167
0.86	1.99	2.851 (5)	178
0.82	1.97	2.765 (5)	164
0.97	2.96	3.704 (5)	135
	<i>D</i> —H 0.86 0.86 0.82 0.97	D—H H···A 0.86 2.19 0.86 1.99 0.82 1.97 0.97 2.96	D—H H···A D···A 0.86 2.19 3.037 (5) 0.86 1.99 2.851 (5) 0.82 1.97 2.765 (5) 0.97 2.96 3.704 (5)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z+1; (iii) x-1, y, z.