Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido{N-[1-(pyrazin-2-yl)ethylidene- κN^1]ethane-1.2-diamine- $\kappa^2 N.N'$ }zinc

Jia-Cheng Liu,* Meng Li, Abedelwahed Saeed Mohammed Omer, Yun Wei and Guo-Zhe Guo

College of Chemistry and Chemical Engineering, Key Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: jcliu8@nwnu.edu.cn

Received 1 October 2011; accepted 12 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.071; data-to-parameter ratio = 15.5.

The Zn^{II} atom in the title complex, $[ZnCl_2(C_8H_{12}N_4)]$, is coordinated by two Cl atoms and three N atoms of the N-[1-(pyrazin-2-yl)ethylidene]ethane-1,2-diamine ligand, and displays a distorted square-pyramidal geometry with the apical position occupied by a Cl atom. In the crystal, intermolecular N-H···Cl and C-H···Cl hydrogen bonds link the molecules into a three-dimensional framework.

Related literature

For the use of dinucleating N-heterocyclic ligands in crystal engineering, see: Pascu et al. (2004). For metal complexes of Schiff base ligands in coordination chemictry, see: Coles et al. (1998); Gourbatsis et al. (1999).

Experimental

Crystal data $[ZnCl_2(C_8H_{12}N_4)]$

 $M_r = 300.49$

metal-organic compounds

Triclinic, $P\overline{1}$	V = 585.6 (6) Å ³
a = 7.106 (5) Å	Z = 2
b = 8.976 (6) Å	Mo $K\alpha$ radiation
c = 10.225 (6) Å	$\mu = 2.53 \text{ mm}^{-1}$
$\alpha = 69.566 \ (5)^{\circ}$	T = 296 K
$\beta = 73.434 \ (5)^{\circ}$	$0.23 \times 0.21 \times 0.19 \text{ mm}$
$\gamma = 83.056 \ (5)^{\circ}$	

Data collection

Bruker APEXII CCD	4159 measured reflections
diffractometer	2129 independent reflections
Absorption correction: multi-scan	1790 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2008)	$R_{\rm int} = 0.027$
$T_{\min} = 0.594, \ T_{\max} = 0.646$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	137 parameters
$wR(F^2) = 0.071$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
2129 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4-H4B\cdots Cl1^{i}$ $N4-H4A\cdots Cl2^{ii}$ $C2-H2\cdots Cl2^{iii}$ $C3-H3\cdots Cl2^{iv}$ $C6-H6B\cdots Cl1^{i}$	0.90	2.77	3.531 (4)	143
	0.90	2.81	3.534 (3)	139
	0.93	2.81	3.672 (4)	155
	0.93	2.80	3.704 (4)	164
	0.97	2.84	3.550 (4)	131

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x, -y + 1, -z + 2; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the NSFC (No. 20871099) and Natural Science Foundation of Gansu (No. the 0710RJZA113).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2386).

References

Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Coles, S. J., Hursthouse, M. B., Kelly, D. G., Toner, A. J. & Walker, N. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3489-3494.

Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18. 2369-2375.

Pascu, M., Tuna, F., Kolodziejczyk, E., Pascu, G. I., Clarkson, G. & Hannon, M. J. (2004). Dalton Trans. pp. 1546-1555.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m1555 [doi:10.1107/S1600536811042115]

Dichlorido{N-[1-(pyrazin-2-yl)ethylidene- κN^1]ethane-1,2-diamine- $\kappa^2 N, N'$ }zinc

Jia-Cheng Liu, Meng Li, Abedelwahed Saeed Mohammed Omer, Yun Wei and Guo-Zhe Guo

S1. Comment

Pyrazines themselves are well known dinucleating ligands and, as many dinucleating *N*-heterocyclic ligands, have attracted much attention from crystal engineers (Pascu *et al.*, 2004). On the other hand, Schiff base ligands have played an integral role in the development of coordination chemistry since the late 19 th century. The finding that metal complexes of these ligands are ubiquitous reflects their facile synthesis, wide applications and the accessibility to diverse structural modifications (Coles *et al.*, 1998; Gourbatsis *et al.*, 1999). Herein, we report on the synthesis of an asymmetric Schiff base using 2-acetylpyrazine as precursor and we report its Zn^{II} complex.

The molecular structure of the complex $[ZnCl_2(C_8H_{12}N_4)]$ is shown in Fig. 1. The complex is a mononuclear, fivecoordinate species. The central zinc ion is coordinated by two chloride and three N atoms. The Schiff base acts as a tridentate chelating ligand, giving two five-membered rings. The coordination geometry about zinc(II) is distorted squarepyramidal. Atoms N1, N3, N4 and Cl1 form the basal plane and atom Cl2 is in apical position. The effect of the chelate rings is clearly observed in the N1—Zn1—N3 and N3—Zn1—N4 bond angles, which deviate by 16.7 and 12.0°, respectively, from the ideal value (90°). As a result, the N1—Zn1—N4 axis is not linear [145.43 (10)°], significantly deviated from the ideal value of 180°. The Zn—N distances in the basal plane are 2.122 (3), 2.245 (2), and 2.117 (3) Å.

In the crystal packing (Fig. 2), N—H···Cl and C—H···Cl hydrogen bonds link the molecules into sheets, which interact weakly to form a 3D framework.

S2. Experimental

To 0.2 mmol (0.0328 g) of *N*-[1-(pyrazin-2-yl)ethylidene]ethane-1,2-diamine in 15 ml of methanol was added 0.2 mmol (0.0272 g) of $ZnCl_2$ in 10 ml of methanol, and the mixture was stirred at 333 K for 0.5 h. Upon free evaporation, single crystals suitable for XRD analysis were collected by filtration within two weeks (yield: 69%).

S3. Refinement

All H atoms were included in calculated positions, with C—H distances ranging from 0.93 to 0.97 Å, and N—H distances of 0.90 Å. They were refined in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier C,N})$ or $U_{iso}(H) = 1.5U_{eq}(C \text{ methyl})$.

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Figure 2

The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Dichlorido{*N*-[1-(pyrazin-2-yl)ethylidene- κN^1]ethane-1,2- diamine- $\kappa^2 N, N'$ }zinc

Z = 2

F(000) = 304

 $\theta = 2.2 - 26.4^{\circ}$

 $\mu = 2.53 \text{ mm}^{-1}$

Block, colourless

 $0.23 \times 0.21 \times 0.19 \text{ mm}$

4159 measured reflections

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

2129 independent reflections

1790 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.027$

 $h = -8 \rightarrow 8$

 $k = -9 \rightarrow 10$

 $l = -12 \rightarrow 12$

 $D_{\rm x} = 1.704 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1862 reflections

Crystal data

 $\begin{bmatrix} \text{ZnCl}_2(\text{C}_8\text{H}_{12}\text{N}_4) \end{bmatrix} \\ M_r = 300.49 \\ \text{Triclinic, } P1 \\ \text{Hall symbol: -P 1} \\ a = 7.106 (5) \text{ Å} \\ b = 8.976 (6) \text{ Å} \\ c = 10.225 (6) \text{ Å} \\ a = 69.566 (5)^{\circ} \\ \beta = 73.434 (5)^{\circ} \\ \gamma = 83.056 (5)^{\circ} \\ V = 585.6 (6) \text{ Å}^3 \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.594, T_{\max} = 0.646$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.031$ Hydrogen site location: inferred from $wR(F^2) = 0.071$ neighbouring sites S = 1.08H-atom parameters constrained 2129 reflections $w = 1/[\sigma^2(F_0^2) + (0.032P)^2]$ 137 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$ 0 constraints Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.31700 (5)	0.62496 (4)	0.82328 (3)	0.03108 (13)	
C1	0.6706 (5)	0.5945 (4)	0.5517 (3)	0.0429 (8)	
H1	0.6344	0.4897	0.5783	0.051*	
C2	0.8103 (5)	0.6600 (4)	0.4227 (3)	0.0478 (9)	
H2	0.8639	0.5976	0.3645	0.057*	
C3	0.7916 (4)	0.8893 (4)	0.4693 (3)	0.0348 (7)	
Н3	0.8318	0.9926	0.4442	0.042*	
C4	0.6524 (4)	0.8264 (3)	0.5984 (3)	0.0271 (6)	
C5	0.5617 (4)	0.9145 (3)	0.7031 (3)	0.0281 (6)	
C6	0.3104 (4)	0.9118 (3)	0.9186 (3)	0.0343 (7)	
H6A	0.2748	1.0230	0.8787	0.041*	
H6B	0.3952	0.9032	0.9804	0.041*	

C7	0.1281 (5)	0.8162 (4)	1.0050 (3)	0.0425 (8)	
H7A	0.0788	0.8336	1.0974	0.051*	
H7B	0.0269	0.8504	0.9533	0.051*	
C8	0.6519 (5)	1.0628 (4)	0.6874 (4)	0.0496 (9)	
H8A	0.5599	1.1201	0.7425	0.074*	
H8B	0.6865	1.1277	0.5874	0.074*	
H8C	0.7678	1.0363	0.7222	0.074*	
Cl1	0.37658 (13)	0.35645 (9)	0.88661 (9)	0.0501 (2)	
Cl2	0.07883 (12)	0.68599 (9)	0.70197 (9)	0.0431 (2)	
N1	0.5878 (3)	0.6794 (3)	0.6377 (2)	0.0322 (6)	
N2	0.8705 (4)	0.8072 (3)	0.3791 (3)	0.0438 (7)	
N3	0.4131 (3)	0.8493 (3)	0.8015 (2)	0.0285 (5)	
N4	0.1750 (4)	0.6466 (3)	1.0283 (3)	0.0460 (7)	
H4A	0.0645	0.5900	1.0682	0.055*	
H4B	0.2545	0.6102	1.0879	0.055*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Zn1	0.0306 (2)	0.0258 (2)	0.0363 (2)	-0.00363 (14)	-0.00618 (14)	-0.01066 (15)
C1	0.0433 (19)	0.0373 (19)	0.054 (2)	-0.0035 (15)	-0.0081 (16)	-0.0252 (16)
C2	0.047 (2)	0.057 (2)	0.047 (2)	0.0034 (17)	-0.0056 (16)	-0.0320 (18)
C3	0.0337 (17)	0.0355 (18)	0.0349 (16)	-0.0028 (13)	-0.0075 (13)	-0.0118 (14)
C4	0.0207 (14)	0.0295 (16)	0.0344 (16)	0.0014 (12)	-0.0101 (12)	-0.0130 (13)
C5	0.0256 (15)	0.0276 (16)	0.0315 (15)	0.0008 (12)	-0.0089 (12)	-0.0096 (13)
C6	0.0387 (17)	0.0318 (17)	0.0327 (16)	-0.0005 (13)	-0.0035 (13)	-0.0158 (13)
C7	0.0397 (19)	0.044 (2)	0.0408 (18)	-0.0042 (15)	0.0049 (14)	-0.0212 (16)
C8	0.049 (2)	0.046 (2)	0.055 (2)	-0.0185 (17)	0.0033 (17)	-0.0267 (17)
Cl1	0.0558 (6)	0.0267 (4)	0.0641 (6)	0.0026 (4)	-0.0167 (4)	-0.0108 (4)
Cl2	0.0419 (5)	0.0377 (5)	0.0505 (5)	-0.0055 (3)	-0.0203 (4)	-0.0077 (4)
N1	0.0312 (13)	0.0299 (14)	0.0373 (13)	-0.0033 (11)	-0.0055 (11)	-0.0150 (11)
N2	0.0402 (16)	0.0513 (18)	0.0404 (15)	-0.0058 (13)	-0.0001 (12)	-0.0225 (14)
N3	0.0296 (13)	0.0262 (13)	0.0313 (13)	0.0009 (10)	-0.0064 (11)	-0.0128 (11)
N4	0.0535 (18)	0.0400 (17)	0.0384 (15)	-0.0155 (14)	0.0007 (13)	-0.0111 (13)

Geometric parameters (Å, °)

Zn1—N4	2.117 (3)	C5—N3	1.266 (3)	
Zn1—N3	2.122 (3)	C5—C8	1.485 (4)	
Zn1—N1	2.245 (2)	C6—N3	1.467 (3)	
Zn1—Cl2	2.2807 (14)	C6—C7	1.510 (4)	
Zn1—Cl1	2.2862 (16)	C6—H6A	0.9700	
C1—N1	1.329 (4)	С6—Н6В	0.9700	
C1—C2	1.387 (4)	C7—N4	1.468 (4)	
C1—H1	0.9300	C7—H7A	0.9700	
C2—N2	1.320 (4)	C7—H7B	0.9700	
С2—Н2	0.9300	C8—H8A	0.9600	
C3—N2	1.337 (4)	C8—H8B	0.9600	

C3—C4	1.381 (4)	C8—H8C	0.9600
С3—Н3	0.9300	N4—H4A	0.9000
C4—N1	1.335 (3)	N4—H4B	0.9000
C4—C5	1.505 (4)		
N4—Zn1—N3	77.98 (9)	N3—C6—H6B	110.0
N4—Zn1—N1	145.43 (10)	С7—С6—Н6В	110.0
N3—Zn1—N1	73.32 (8)	H6A—C6—H6B	108.4
N4—Zn1—Cl2	104.77 (9)	N4—C7—C6	109.6 (2)
N3—Zn1—Cl2	104.26 (7)	N4—C7—H7A	109.8
N1—Zn1—Cl2	100.68 (8)	С6—С7—Н7А	109.8
N4—Zn1—Cl1	100.56 (8)	N4—C7—H7B	109.8
N3—Zn1—Cl1	146.85 (7)	С6—С7—Н7В	109.8
N1—Zn1—Cl1	93.29 (7)	H7A—C7—H7B	108.2
Cl2—Zn1—Cl1	108.03 (3)	С5—С8—Н8А	109.5
N1—C1—C2	120.9 (3)	C5—C8—H8B	109.5
N1—C1—H1	119.5	H8A—C8—H8B	109.5
С2—С1—Н1	119.5	С5—С8—Н8С	109.5
N2—C2—C1	122.8 (3)	H8A—C8—H8C	109.5
N2—C2—H2	118.6	H8B—C8—H8C	109.5
С1—С2—Н2	118.6	C1—N1—C4	117.2 (2)
N2—C3—C4	122.5 (3)	C1—N1—Zn1	128.1 (2)
N2—C3—H3	118.7	C4—N1—Zn1	113.90 (17)
С4—С3—Н3	118.7	C2—N2—C3	115.7 (3)
N1—C4—C3	120.8 (2)	C5—N3—C6	122.9 (2)
N1—C4—C5	115.2 (2)	C5—N3—Zn1	121.79 (19)
C3—C4—C5	124.0 (3)	C6—N3—Zn1	114.89 (17)
N3—C5—C8	125.8 (3)	C7—N4—Zn1	106.93 (18)
N3—C5—C4	114.5 (2)	C7—N4—H4A	110.3
C8—C5—C4	119.6 (2)	Zn1—N4—H4A	110.3
N3—C6—C7	108.4 (2)	C7—N4—H4B	110.3
N3—C6—H6A	110.0	Zn1—N4—H4B	110.3
С7—С6—Н6А	110.0	H4A—N4—H4B	108.6
N1—C1—C2—N2	0.9 (5)	C1—C2—N2—C3	1.6 (5)
N2-C3-C4-N1	-1.1 (4)	C4—C3—N2—C2	-1.5 (4)
N2—C3—C4—C5	179.4 (3)	C8—C5—N3—C6	-1.6 (5)
N1-C4-C5-N3	-11.6 (4)	C4—C5—N3—C6	176.5 (2)
C3—C4—C5—N3	167.8 (3)	C8—C5—N3—Zn1	-173.7 (2)
N1-C4-C5-C8	166.6 (3)	C4—C5—N3—Zn1	4.4 (3)
C3—C4—C5—C8	-13.9 (4)	C7—C6—N3—C5	173.4 (3)
N3—C6—C7—N4	43.0 (3)	C7—C6—N3—Zn1	-13.9 (3)
C2-C1-N1-C4	-3.5 (5)	N4—Zn1—N3—C5	162.1 (2)
C2-C1-N1-Zn1	165.3 (2)	N1—Zn1—N3—C5	1.6 (2)
C3—C4—N1—C1	3.6 (4)	Cl2—Zn1—N3—C5	-95.5 (2)
C5-C4-N1-C1	-176.9 (3)	Cl1—Zn1—N3—C5	71.1 (3)
C3—C4—N1—Zn1	-166.8 (2)	N4—Zn1—N3—C6	-10.6 (2)
C5-C4-N1-Zn1	12.7 (3)	N1—Zn1—N3—C6	-171.1 (2)

supporting information

N4—Zn1—N1—C1	147.8 (3)	Cl2—Zn1—N3—C6	91.80 (19)
N3—Zn1—N1—C1	-177.1 (3)	Cl1—Zn1—N3—C6	-101.6 (2)
Cl2—Zn1—N1—C1	-75.2 (3)	C6—C7—N4—Zn1	-51.8 (3)
Cl1—Zn1—N1—C1	33.8 (3)	N3—Zn1—N4—C7	33.3 (2)
N4—Zn1—N1—C4	-43.1 (3)	N1—Zn1—N4—C7	67.6 (3)
N3—Zn1—N1—C4	-8.02 (18)	Cl2—Zn1—N4—C7	-68.5 (2)
Cl2—Zn1—N1—C4	93.82 (19)	Cl1—Zn1—N4—C7	179.54 (19)
Cl1—Zn1—N1—C4	-157.14 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N4—H4 <i>B</i> ···Cl1 ⁱ	0.90	2.77	3.531 (4)	143
N4—H4A···Cl2 ⁱⁱ	0.90	2.81	3.534 (3)	139
C2—H2···Cl2 ⁱⁱⁱ	0.93	2.81	3.672 (4)	155
C3—H3···Cl2 ^{iv}	0.93	2.80	3.704 (4)	164
C6—H6B···Cl1 ⁱ	0.97	2.84	3.550 (4)	131

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1.