Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-3-{4-[(4-Nitrobenzylidene)amino]-3phenyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1-yl}-1,3-diphenylpropan-1one

Wei Wang,^{a,b}* Yan Gao,^b Chao Xu,^b Wen-peng Wu^b and Qing-lei Liu^a

^aSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China, and ^bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China

Correspondence e-mail: zhao_submit@yahoo.com.cn

Received 6 August 2011; accepted 29 August 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.131; data-to-parameter ratio = 18.1.

In the title molecule, $C_{30}H_{23}N_5O_3S$, the 1,2,4-triazole ring is approximately planar (r.m.s. deviation = 0.006 Å), and forms dihedral angles of 66.0 (2), 65.1 (2), 30.1 (2) and 28.1 (2)° with the four phenyl rings. The phenyl ring of the benzyl group directly attached to the triazole ring is almost perpendicular to the nitrophenyl ring, making a dihedral angle of 84.9 $(2)^{\circ}$.

Related literature

For the crystal structures of related 1,2,4-triazole-5(4H)thione derivatives, see: Al-Tamimi et al. (2010); Fun et al. (2009); Gao et al. (2011); Tan et al. (2010); Wang et al. (2011); Zhao et al. (2010).

27241 measured reflections 6372 independent reflections 5124 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.040$

Experimental

Crystal data

C ₃₀ H ₂₃ N ₅ O ₃ S	V = 2672.2 (4) Å ³
$M_r = 533.59$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.3303 (13) Å	$\mu = 0.16 \text{ mm}^{-1}$
b = 21.832 (2) Å	$T = 113 { m K}$
c = 9.2773 (9) Å	$0.20 \times 0.18 \times 0.12$ mm
$\beta = 98.213 \ (3)^{\circ}$	

Data collection

Rigaku Saturn CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(CrystalClear; Rigaku/MSC,	
2005)	
$T_{\min} = 0.968, \ T_{\max} = 0.981$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	352 parameters
$wR(F^2) = 0.131$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
6372 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge support of this study by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2140).

References

- Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.
- Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Crvst. E65. 0495-0496.
- Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, 01794.
- Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, 02224.
- Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269. Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.

supporting information

Acta Cryst. (2011). E67, o2727 [https://doi.org/10.1107/S1600536811035197]

rac-3-{4-[(4-Nitrobenzylidene)amino]-3-phenyl-5-sulfanylidene-4,5-dihydro-1*H*-1,2,4-triazol-1-yl}-1,3-diphenylpropan-1-one

Wei Wang, Yan Gao, Chao Xu, Wen-peng Wu and Qing-lei Liu

S1. Comment

In a continuation of the structural study by our group of Mannich base derivatives synthesized by the reaction of amino heterocycles and aromatic aldehydes (Wang *et al.*, 2011), we present here the crystal structure of the title compound, $C_{30}H_{23}N_5O_3S$.

In this compound the bond lengths and angles are comparable with those reported in the related 1,2,4-triazole-5(4*H*)thione derivatives (Al-Tamimi *et al.*, 2010; Fun *et al.*, 2009; Tan *et al.*, 2010; Wang *et al.*, 2011). The 1,2,4-triazole ring is planar with an r.m.s 0.0055 (2) Å and a maximium deviation of 0.0083 (2) Å for atom N3. The C1 and C2 atoms of the 1,2,4-triazole ring show distorted C_{sp}^2 hybridization states with bond angles of 102.69 (13)° (N1—C1—N3); 131.16 (12)° (N3—C1—S1); 110.38 (13)° (N2—C2—N3) and 126.98 (14)° (N3—C2—C25), which are similar to those in the other reported triazole derivatives (Zhao *et al.*, 2010; Gao *et al.*, 2011). The 1,2,4-triazole ring forms dihedral angles of 114.0 (2), 114.9 (2), 151.9 (2)° and 149.9 (2)° with the phenyl rings C6—C11, C12—C17 and C25—C30 and the nitrophenyl ring C19—C24. The phenyl ring of the benzyl group attached to atom N1 of the triazole ring (C12—C17) is almost perpendicular to the nitrophenyl ring, with a dihedral angle of 95.1 (2)°.

S2. Experimental

The title compound was synthesized in the reaction of 4-nitrobenzaldehyde (2.0 mmol) and 3-(4-amino-3-phenyl-5-thioxo-4,5- dihydro-1*H*-1,2,4-triazol-1-yl)-1,3-diphenylpropan-1-one (2.0 mmol), by refluxing in ethanol. The reaction progress was monitored *via* TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as a colorless solid in 66% yield. Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform–ethanol (1:1).

S3. Refinement

Hydrogen atoms were positioned geometrically and refined as riding (C—H = 0.95-1.00 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

A view of a molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level.

F(000) = 1112

 $\theta = 1.5 - 27.9^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$

Prism, colorless

 $0.20\times0.18\times0.12~mm$

T = 113 K

 $D_{\rm x} = 1.326 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 8592 reflections

rac-3-{4-[(4-Nitrobenzylidene)amino]-3-phenyl-5-sulfanylidene- 4,5-dihydro-1*H*-1,2,4-triazol-1-yl}-1,3-diphenylpropan-1-one

Crystal data

C₃₀H₂₃N₅O₃S $M_r = 533.59$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 13.3303 (13) Å b = 21.832 (2) Å c = 9.2773 (9) Å $\beta = 98.213 (3)^{\circ}$ $V = 2672.2 (4) \text{ Å}^{3}$ Z = 4

Data collection

Rigaku Saturn CCD area-detector	27241 measured reflections
diffractometer	6372 independent reflections
Radiation source: rotating anode	5124 reflections with $I > 2\sigma(I)$
Multilayer monochromator	$R_{\rm int} = 0.040$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}, \theta_{\rm min} = 1.5^{\circ}$
φ and ω scans	$h = -15 \rightarrow 17$
Absorption correction: multi-scan	$k = -27 \rightarrow 28$
(CrystalClear; Rigaku/MSC, 2005)	$l = -12 \rightarrow 12$
$T_{\min} = 0.968, \ T_{\max} = 0.981$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.131$	neighbouring sites
S = 1.10	H-atom parameters constrained
6372 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0667P)^2 + 0.1147P]$
352 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S 1	0.40778 (3)	0.258871 (19)	0.46718 (5)	0.03324 (14)
01	0.33880 (9)	0.08657 (5)	0.76721 (14)	0.0346 (3)
O2	-0.05157 (12)	0.41949 (7)	-0.22517 (19)	0.0649 (5)
O3	-0.07948 (10)	0.33342 (7)	-0.34027 (17)	0.0545 (4)
N1	0.41855 (9)	0.13669 (6)	0.49993 (14)	0.0250 (3)
N2	0.37677 (10)	0.08227 (6)	0.44644 (15)	0.0273 (3)
N3	0.30586 (9)	0.16063 (6)	0.32011 (14)	0.0265 (3)
N4	0.23159 (10)	0.18795 (7)	0.22006 (15)	0.0305 (3)
N5	-0.03993 (11)	0.36460 (8)	-0.23724 (19)	0.0440 (4)
C1	0.37777 (12)	0.18629 (7)	0.42770 (17)	0.0258 (3)
C2	0.30761 (12)	0.09772 (7)	0.33837 (18)	0.0268 (4)
C3	0.49357 (11)	0.13916 (7)	0.63312 (17)	0.0244 (3)
H3	0.4677	0.1679	0.7033	0.029*
C4	0.50513 (11)	0.07593 (7)	0.70349 (17)	0.0252 (3)
H4A	0.5231	0.0462	0.6307	0.030*
H4B	0.5621	0.0772	0.7846	0.030*
C5	0.41174 (12)	0.05325 (7)	0.76135 (17)	0.0255 (3)
C6	0.41222 (11)	-0.01130 (7)	0.81389 (16)	0.0246 (3)
C7	0.50162 (12)	-0.04455 (7)	0.84342 (17)	0.0264 (3)
H7	0.5640	-0.0265	0.8279	0.032*
C8	0.50025 (13)	-0.10395 (7)	0.89538 (18)	0.0306 (4)
H8	0.5617	-0.1265	0.9151	0.037*
С9	0.40986 (13)	-0.13060 (8)	0.91858 (19)	0.0332 (4)
Н9	0.4091	-0.1715	0.9534	0.040*
C10	0.32011 (14)	-0.09748 (8)	0.89083 (19)	0.0342 (4)

H10	0.2580	-0.1155	0.9079	0.041*
C11	0.32128 (12)	-0.03833 (8)	0.83847 (18)	0.0305 (4)
H11	0.2598	-0.0159	0.8190	0.037*
C12	0.59542 (11)	0.16257 (7)	0.60266 (17)	0.0244 (3)
C13	0.64074 (12)	0.14022 (8)	0.48742 (18)	0.0305 (4)
H13	0.6057	0.1114	0.4219	0.037*
C14	0.73711 (13)	0.15985 (8)	0.4674 (2)	0.0363 (4)
H14	0.7679	0.1442	0.3888	0.044*
C15	0.78809 (13)	0.20224 (8)	0.5621 (2)	0.0358 (4)
H15	0.8536	0.2160	0.5482	0.043*
C16	0.74310 (13)	0.22440 (8)	0.67691 (19)	0.0335 (4)
H16	0.7783	0.2532	0.7424	0.040*
C17	0.64733 (12)	0.20516 (7)	0.69740 (18)	0.0291 (4)
H17	0.6169	0.2210	0.7761	0.035*
C18	0.23453 (13)	0.24544 (9)	0.1994 (2)	0.0375 (4)
H18	0.2862	0.2696	0.2532	0.045*
C19	0.15729 (12)	0.27428 (9)	0.0914 (2)	0.0363 (4)
C20	0.09104 (13)	0.24006 (8)	-0.0091 (2)	0.0359 (4)
H20	0.0912	0.1966	-0.0037	0.043*
C21	0.02564 (13)	0.26954 (9)	-0.1159 (2)	0.0368 (4)
H21	-0.0185	0.2469	-0.1858	0.044*
C22	0.02605 (12)	0.33251 (8)	-0.1185 (2)	0.0356 (4)
C23	0.08666 (13)	0.36786 (9)	-0.0181 (2)	0.0427 (5)
H23	0.0828	0.4113	-0.0206	0.051*
C24	0.15371 (13)	0.33767 (9)	0.0872 (2)	0.0422 (5)
H24	0.1974	0.3608	0.1568	0.051*
C25	0.24185 (12)	0.05265 (8)	0.25380 (19)	0.0321 (4)
C26	0.22312 (14)	-0.00168 (8)	0.3235 (2)	0.0435 (5)
H26	0.2505	-0.0077	0.4227	0.052*
C27	0.16458 (16)	-0.04698 (9)	0.2484 (3)	0.0564 (6)
H27	0.1526	-0.0843	0.2959	0.068*
C28	0.12366 (15)	-0.03807 (10)	0.1051 (3)	0.0564 (6)
H28	0.0829	-0.0691	0.0544	0.068*
C29	0.14132 (14)	0.01515 (10)	0.0354 (2)	0.0497 (6)
H29	0.1124	0.0210	-0.0633	0.060*
C30	0.20157 (13)	0.06087 (9)	0.1082 (2)	0.0394 (5)
H30	0.2151	0.0974	0.0589	0.047*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0366 (3)	0.0258 (2)	0.0356 (3)	0.00011 (17)	-0.00091 (18)	0.00255 (18)
01	0.0319 (6)	0.0328 (6)	0.0388 (7)	0.0046 (5)	0.0042 (5)	0.0019 (5)
02	0.0617 (10)	0.0478 (9)	0.0783 (12)	0.0076 (8)	-0.0139 (8)	0.0202 (8)
O3	0.0449 (8)	0.0643 (10)	0.0487 (9)	0.0034 (7)	-0.0129 (7)	0.0094 (7)
N1	0.0259 (7)	0.0233 (7)	0.0240 (7)	0.0000 (5)	-0.0030 (5)	-0.0019 (5)
N2	0.0260 (7)	0.0266 (7)	0.0273 (7)	-0.0003 (5)	-0.0034(5)	-0.0049 (6)
N3	0.0228 (7)	0.0326 (8)	0.0226 (7)	0.0029 (5)	-0.0017 (5)	0.0005 (6)

supporting information

						0.0046.60
N4	0.0257 (7)	0.0405 (8)	0.0237 (7)	0.0052 (6)	-0.0020 (5)	0.0046 (6)
N5	0.0315 (8)	0.0484 (10)	0.0501 (11)	0.0016 (7)	-0.0006 (7)	0.0160 (8)
C1	0.0236 (8)	0.0310 (9)	0.0221 (8)	0.0022 (6)	0.0015 (6)	0.0023 (6)
C2	0.0232 (8)	0.0315 (9)	0.0251 (8)	0.0021 (6)	0.0010 (6)	-0.0042 (7)
C3	0.0258 (8)	0.0240 (8)	0.0217 (8)	-0.0005 (6)	-0.0020 (6)	-0.0011 (6)
C4	0.0259 (8)	0.0253 (8)	0.0230 (8)	-0.0001 (6)	-0.0017 (6)	0.0005 (6)
C5	0.0275 (8)	0.0259 (8)	0.0213 (8)	0.0014 (6)	-0.0027 (6)	-0.0023 (6)
C6	0.0281 (8)	0.0258 (8)	0.0191 (8)	-0.0018 (6)	0.0009 (6)	-0.0032 (6)
C7	0.0287 (8)	0.0267 (8)	0.0232 (8)	-0.0023 (6)	0.0018 (6)	-0.0020 (6)
C8	0.0348 (9)	0.0290 (8)	0.0274 (9)	0.0017 (7)	0.0026 (7)	-0.0002 (7)
C9	0.0447 (10)	0.0267 (8)	0.0278 (9)	-0.0052 (7)	0.0041 (7)	0.0005 (7)
C10	0.0352 (9)	0.0357 (9)	0.0321 (10)	-0.0100 (7)	0.0055 (7)	-0.0012 (8)
C11	0.0273 (8)	0.0347 (9)	0.0288 (9)	-0.0013 (7)	0.0019 (7)	-0.0030 (7)
C12	0.0269 (8)	0.0221 (8)	0.0225 (8)	0.0005 (6)	-0.0026 (6)	0.0025 (6)
C13	0.0334 (9)	0.0311 (9)	0.0255 (9)	-0.0055 (7)	-0.0004 (7)	-0.0050 (7)
C14	0.0378 (10)	0.0422 (10)	0.0298 (9)	-0.0041 (8)	0.0085 (7)	-0.0060 (8)
C15	0.0314 (9)	0.0401 (10)	0.0359 (10)	-0.0073 (8)	0.0049 (7)	0.0011 (8)
C16	0.0332 (9)	0.0298 (9)	0.0360 (10)	-0.0072 (7)	-0.0003 (7)	-0.0045 (7)
C17	0.0316 (9)	0.0283 (8)	0.0268 (8)	-0.0016 (7)	0.0015 (7)	-0.0048 (7)
C18	0.0290 (9)	0.0465 (11)	0.0358 (10)	0.0001 (8)	0.0003 (7)	0.0075 (8)
C19	0.0250 (9)	0.0456 (11)	0.0376 (10)	0.0017 (7)	0.0023 (7)	0.0116 (8)
C20	0.0309 (9)	0.0395 (10)	0.0368 (10)	0.0007 (7)	0.0029 (7)	0.0073 (8)
C21	0.0254 (9)	0.0463 (11)	0.0384 (10)	0.0004 (8)	0.0034 (7)	0.0045 (8)
C22	0.0217 (8)	0.0459 (11)	0.0384 (10)	0.0008 (7)	0.0014 (7)	0.0124 (8)
C23	0.0324 (10)	0.0420 (11)	0.0523 (12)	-0.0025 (8)	0.0010 (8)	0.0139 (9)
C24	0.0327 (10)	0.0443 (11)	0.0464 (12)	-0.0056 (8)	-0.0054 (8)	0.0087 (9)
C25	0.0236 (8)	0.0375 (10)	0.0331 (9)	0.0050 (7)	-0.0031 (7)	-0.0122 (8)
C26	0.0400 (11)	0.0356 (10)	0.0498 (12)	0.0003 (8)	-0.0109 (9)	-0.0092 (9)
C27	0.0500 (13)	0.0375 (11)	0.0750 (16)	-0.0032 (9)	-0.0141 (11)	-0.0136 (11)
C28	0.0390 (11)	0.0530 (13)	0.0705 (16)	0.0023 (10)	-0.0148 (10)	-0.0310 (12)
C29	0.0320 (10)	0.0686 (15)	0.0441 (12)	0.0096 (10)	-0.0092 (8)	-0.0259 (11)
C30	0.0292 (9)	0.0521 (11)	0.0348 (10)	0.0064 (8)	-0.0034 (7)	-0.0142 (9)
						. /

Geometric parameters (Å, °)

S1—C1	1.6622 (16)	C12—C17	1.394 (2)
O1—C5	1.2218 (18)	C13—C14	1.392 (2)
O2—N5	1.215 (2)	C13—H13	0.9500
O3—N5	1.229 (2)	C14—C15	1.386 (2)
N1-C1	1.3466 (19)	C14—H14	0.9500
N1—N2	1.3745 (17)	C15—C16	1.382 (2)
N1—C3	1.4754 (18)	C15—H15	0.9500
N2-C2	1.3058 (19)	C16—C17	1.383 (2)
N3—C2	1.383 (2)	C16—H16	0.9500
N3—N4	1.3911 (17)	C17—H17	0.9500
N3—C1	1.3984 (19)	C18—C19	1.471 (2)
N4—C18	1.271 (2)	C18—H18	0.9500
N5—C22	1.483 (2)	C19—C24	1.385 (3)

C2—C25	1.468 (2)	C19—C20	1.405 (2)
C3—C12	1.515 (2)	C20—C21	1.382 (2)
C3—C4	1.525 (2)	С20—Н20	0.9500
С3—Н3	1.0000	C21—C22	1.375 (2)
C4—C5	1.508 (2)	C21—H21	0.9500
C4—H4A	0.9900	C22—C23	1.379 (3)
C4—H4B	0.9900	C23—C24	1.392 (2)
C5—C6	1.491 (2)	C23—H23	0.9500
C6—C7	1.389 (2)	C24—H24	0.9500
C6—C11	1 396 (2)	C_{25} C_{26}	1 390 (3)
C7—C8	1 385 (2)	C_{25} C_{20} C_{30}	1.390(2) 1.392(2)
C7—H7	0.9500	$C_{25} = C_{50}$	1.392(2) 1 384(3)
$C_{1}^{2} = C_{1}^{2}$	1 382 (2)	$C_{20} = C_{27}$	0.0500
	0.0500	$C_{20} = 1120$	1.377(3)
$C_0 = C_{10}$	1,200 (2)	$C_{27} = C_{28}$	1.377(3)
C_{9}	1.390 (2)	$C_2/-H_2/$	0.9300
	0.9500	C28-C29	1.367 (3)
	1.381 (2)	C28—H28	0.9500
C10—H10	0.9500	C29—C30	1.394 (3)
C11—H11	0.9500	C29—H29	0.9500
C12—C13	1.389 (2)	С30—Н30	0.9500
C1—N1—N2	113.68 (12)	С12—С13—Н13	119.8
C1—N1—C3	124.37 (13)	C14—C13—H13	119.8
N2—N1—C3	121.68 (12)	C15—C14—C13	119.95 (16)
C2—N2—N1	105.02 (12)	C15—C14—H14	120.0
C2—N3—N4	120.35 (12)	C13—C14—H14	120.0
C2—N3—C1	108.21 (12)	C16—C15—C14	119.68 (16)
N4—N3—C1	130.87 (13)	C16—C15—H15	120.2
C18—N4—N3	119.33 (14)	C14—C15—H15	120.2
02-N5-03	124 84 (16)	C_{15} C_{16} C_{17}	120.68 (15)
02 - N5 - C22	117 86 (17)	C_{15} $-C_{16}$ $-H_{16}$	1197
03 - N5 - C22	117.30(17)	C17 - C16 - H16	119.7
N1-C1-N3	102 69 (13)	C_{16} C_{17} C_{12}	120.07 (16)
N1 C1 S1	102.09(13) 126.13(12)	C_{16} C_{17} H_{17}	120.07 (10)
$N_3 - C_1 - S_1$	120.15(12) 131.16(12)	C12 - C17 - H17	120.0
$N_2 C_2 N_3$	110.38(12)	$N_{12} = C_{11} = M_{11}$	110.45 (16)
$N_2 = C_2 = N_3$	110.36(13) 122.62(15)	N4 - C18 - C19	119.45 (10)
$N_2 = C_2 = C_{25}$	122.03(13) 126.08(14)	$N4 - C_{10} - H_{10}$	120.3
N3-C2-C25	120.98 (14)	C19—C18—H18	120.3
NI = C3 = C12	111.99 (12)	C_{24} C_{19} C_{20} C_{24} C_{19} C_{20}	119.79 (16)
NI-C3-C4	109.89 (12)	C24—C19—C18	117.69 (16)
C12—C3—C4	110.29 (12)	C20—C19—C18	122.47 (17)
N1—C3—H3	108.2	C21—C20—C19	120.06 (17)
С12—С3—Н3	108.2	C21—C20—H20	120.0
C4—C3—H3	108.2	C19—C20—H20	120.0
C5—C4—C3	114.30 (13)	C22—C21—C20	118.34 (17)
C5—C4—H4A	108.7	C22—C21—H21	120.8
C3—C4—H4A	108.7	C20—C21—H21	120.8
C5—C4—H4B	108.7	C21—C22—C23	123.43 (16)

C3—C4—H4B	108.7	C21—C22—N5	118.82 (16)
H4A—C4—H4B	107.6	C23—C22—N5	117.74 (16)
O1—C5—C6	120.97 (15)	C22—C23—C24	117.70 (18)
O1—C5—C4	121.53 (14)	С22—С23—Н23	121.2
C6—C5—C4	117.49 (13)	С24—С23—Н23	121.2
C7—C6—C11	119.18 (15)	C19—C24—C23	120.59 (17)
C7—C6—C5	121.46 (14)	C19—C24—H24	119.7
C11—C6—C5	119.33 (14)	C23—C24—H24	119.7
C8—C7—C6	120.30 (15)	C26—C25—C30	119.43 (16)
C8—C7—H7	119.8	$C_{26} = C_{25} = C_{2}$	117.15 (16)
C6—C7—H7	119.8	$C_{30} - C_{25} - C_{2}$	$123 \ 37 \ (17)$
C9-C8-C7	120 23 (16)	C_{27} C_{26} C_{25} C_{25}	120.37(17) 120.1(2)
C9-C8-H8	119.9	$C_{27} = C_{26} = H_{26}$	120.1 (2)
C7-C8-H8	119.9	C_{25} C_{26} H_{26}	120.0
C_{8} C_{9} C_{10}	119.9	$C_{23}^{23} = C_{27}^{27} = C_{26}^{26}$	120.0 120.1(2)
$C_8 - C_9 - H_9$	120.0	$C_{28} = C_{27} = C_{20}$	110.0
C_{10} C_{9} H_{9}	120.0	$C_{26} = C_{27} = H_{27}$	119.9
$C_{10} - C_{2} - C_{10} - C_{2}$	120.0 110.02(16)	$C_{20} = C_{27} = H_{27}$	119.9
$C_{11} = C_{10} = C_{9}$	119.95 (10)	$C_{29} = C_{28} = C_{27}$	120.39 (19)
C_{10} C_{10} H_{10}	120.0	$C_{29} = C_{20} = H_{20}$	119.0
$C_{10} = C_{10} = C_{10}$	120.0	$C_{27} = C_{20} = C_{20}$	119.8
$C_{10} = C_{11} = C_{0}$	120.44 (10)	$C_{20} = C_{20} = C_{30}$	120.30 (19)
	119.8	$C_{20} = C_{20} = H_{20}$	119.8
	119.8	C30—C29—H29	119.8
C13 - C12 - C17	119.23 (15)	$C_{25} = C_{30} = C_{29}$	119.60 (19)
C13 - C12 - C3	121.66 (13)	C25—C30—H30	120.2
C17—C12—C3	119.01 (14)	С29—С30—Н30	120.2
C12—C13—C14	120.38 (15)		
C1 - N1 - N2 - C2	-0.32(18)	N1—C3—C12—C17	136 38 (14)
C_{3} N1 N2 C_{2}	173 93 (14)	C4-C3-C12-C17	-100.89(16)
$C_2 = N_3 = N_4 = C_{18}$	-17627(16)	C17 - C12 - C13 - C14	04(2)
C1 - N3 - N4 - C18	13 5 (3)	C_{3} C_{12} C_{13} C_{14}	-176.07(15)
$N_2 N_1 C_1 N_3$	-0.65(17)	C_{12} C_{13} C_{14} C_{15}	-0.4(3)
$C_3 N_1 C_1 N_3$	-17472(13)	$C_{12} = C_{13} = C_{14} = C_{15} = C_{16}$	0.7(3)
$N_2 N_1 C_1 S_1$	177.81(12)	C_{14} C_{15} C_{16} C_{17}	-0.6(3)
$C_3 $ N1 $C_1 $ S1	37(2)	$C_{15} = C_{16} = C_{17} = C_{17}$	0.0(3)
$C_2 = N_1 - C_1 - S_1$	3.7(2) 1 33 (17)	$C_{13} = C_{10} = C_{17} = C_{12}$	-0.5(2)
N_{1} N_{2} C_{1} N_{1}	1.55(17) 172.40(15)	$C_{13}^{2} = C_{12}^{12} = C_{17}^{17} = C_{16}^{16}$	176.08(14)
$C_2 = N_3 = C_1 = N_1$	-177.02(14)	$N_3 = N_4 = C_{12} = C_{10} = C_{10}$	170.03(14) 178.74(15)
$N_{1} = N_{2} = 0$	-50(3)	$N_{4} = C_{18} = C_{19}$	170.74(13)
$N_1 = N_2 = C_1 = S_1$	3.9(3)	N4 - C18 - C19 - C24	-110(2)
$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}$	-17776(15)	C_{24} C_{10} C_{20} C_{21}	11.7(3)
$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}$	-172 01 (12)	$C_{17} = C_{17} = C_{20} = C_{21}$	2.7(3) -17462(17)
$\frac{1}{1} - \frac{1}{1} - \frac{1}{2} - \frac{1}$	-1.65(10)	$C_{10} = C_{19} = C_{20} = C_{21}$	1/4.02(17) -1.2(2)
$1 - 1 \sqrt{2} - 1 \sqrt{2}$	1.03(19)	$C_{17} - C_{20} - C_{21} - C_{22}$	1.3(3)
104 - 103 - 0.2 - 0.25	3.0(2)	$C_{20} = C_{21} = C_{22} = C_{23}$	-1.0(3)
$C_1 = 105 = 0.02 = 0.025$	1/1.24(10)	$C_{20} = C_{21} = C_{22} = C_{21}$	1/0.03(10)
CI - NI - CS - CI2	-09.01(19)	02 - 103 - 022 - 021	108.08 (18)
$N_2 - N_1 - C_3 - C_{12}$	110.//(13)	US-NS-U22-U21	-11.4 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 167.44\ (14)\\ -6.2\ (2)\\ -65.96\ (17)\\ 170.10\ (12)\\ -8.9\ (2)\\ 172.12\ (13)\\ -163.09\ (15)\\ 15.9\ (2)\\ 14.8\ (2)\\ -166.23\ (14)\\ 0.6\ (2)\\ 178.48\ (15)\\ -0.1\ (2)\\ -0.5\ (3)\\ 0.8\ (3)\\ -0.4\ (3)\\ -0.3\ (2)\\ \end{array}$	$\begin{array}{c} 02 & - N5 & - C22 & - C23 \\ 03 & - N5 & - C22 & - C23 \\ C21 & - C22 & - C23 & - C24 \\ N5 & - C22 & - C23 & - C24 \\ C20 & - C19 & - C24 & - C23 \\ C18 & - C19 & - C24 & - C23 \\ C22 & - C23 & - C24 & - C19 \\ N2 & - C2 & - C25 & - C26 \\ N3 & - C2 & - C25 & - C26 \\ N3 & - C2 & - C25 & - C30 \\ N3 & - C2 & - C25 & - C30 \\ C30 & - C25 & - C26 & - C27 \\ C2 & - C25 & - C26 & - C27 \\ C25 & - C26 & - C27 & - C28 \\ C26 & - C27 & - C28 & - C29 \\ C27 & - C28 & - C29 & - C30 \\ C26 & - C25 & - C30 & - C29 \\ \end{array}$	$\begin{array}{c} -13.4 (3) \\ 167.13 (17) \\ 2.8 (3) \\ -175.60 (17) \\ -1.6 (3) \\ 176.04 (18) \\ -1.2 (3) \\ 26.7 (2) \\ -152.10 (18) \\ -150.80 (17) \\ 30.4 (3) \\ -0.2 (3) \\ -177.80 (17) \\ -0.8 (3) \\ 0.7 (3) \\ 0.4 (3) \\ 1.4 (3) \end{array}$
C7-C6-C11-C10 C5-C6-C11-C10 N1-C3-C12-C13 C4-C3-C12-C13	-0.4 (3) -0.3 (2) -178.26 (15) -47.16 (19) 75.57 (18)	C26-C25-C30-C29 C2-C25-C30-C29 C28-C29-C30-C25	1.4 (3) 178.79 (16) -1.5 (3)