metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$\{N'-[1-(2-Pvridyl)ethylidene-\kappa N]$ benzohvdrazidato- $\kappa^2 N'.O$ $\{N'-[1-(2-pvridv])$ ethylidene- κN]benzohydrazide- $\kappa^2 N', O$ }copper(II) trichloroacetate

Amitabha Datta,^a Nien-Tsu Chuang,^a Yun-Sheng Wen,^b Jui-Hsien Huang^a and Shiann-Cherng Sheu^{b,c}*

^aDepartment of Chemistry, National Changhua University of Education, Changhua, 50058, Taiwan, ^bInstitute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, and ^cDepartment of Occupational Health and Safety, Chang Jung Christian University, Tainan City, 71101, Taiwan

Correspondence e-mail: scschem@mail.cjcu.edu.tw

Received 22 August 2011; accepted 8 September 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.059; wR factor = 0.189; data-to-parameter ratio = 15.5.

In the title complex, $[Cu(C_{14}H_{13}N_3O)(C_{14}H_{12}N_3O)](CCl_3-$ COO), the central Cu(II) ion exhibits a distorted octahedral geometry with the two ligands coordinating in an meridional format. The N₄O₂ ligand environment is defined by two benzoyl O atoms, two pyridyl N atoms and imino N atoms. As evidenced by the bond lengths, the two benzohydrazone ligands exist in distinctively different forms, one of them as a regular neutral ligand and the other as an anionic enolate arising from deprotonation. The much longer Cu-O bond and longer Cu-N bond lengths in the neutral benzohydrazone ligand imply weak ligation in comparison with the anionic enolate form. The acute angles of the five-membered rings cause a significant deviation from a regular octahedral geometry.

Related literature

For related complexes of the same precursor ligand, see: Patole et al. (2003); Sen et al. (2005, 2007a,b); Ray et al. (2008); Datta et al. (2010).

Experimental

Crystal data

$C_{\rm e}(C, \mathbf{H}, \mathbf{N}, \mathbf{O})(C, \mathbf{H}, \mathbf{N}, \mathbf{O})$	0 102 541 (1)0
$Cu(C_{14}H_{13}N_3O)(C_{14}H_{12}N_3O)]$ -	$\beta = 102.541 (1)^{\circ}$
$(C_2Cl_3O_2)$	$\gamma = 95.259 \ (1)^{\circ}$
$M_r = 703.45$	V = 1601.3 (2) Å ³
Friclinic, P1	Z = 2
a = 8.3341 (6) Å	Mo $K\alpha$ radiation
p = 13.0470 (9) Å	$\mu = 0.98 \text{ mm}^{-1}$
c = 16.0729 (12) Å	T = 295 K
$x = 107.737 (1)^{\circ}$	$0.30 \times 0.27 \times 0.22$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.799, T_{\max} = 0.875$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	1 restraint
$wR(F^2) = 0.189$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 1.16 \text{ e } \text{\AA}^{-3}$
6180 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
399 parameters	

 \times 0.25 mm

9034 measured reflections

 $R_{\rm int} = 0.016$

6180 independent reflections

4962 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Cu-N1	2.046 (3)	Cu-N5	2.088 (3)
Cu-N2	1.938 (3)	Cu-O1	1.996 (3)
Cu-N4	2.196 (3)	Cu-O2	2.420 (2)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Council of Taiwan for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2027).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Datta, A., Chuang, N.-T., Sie, M.-H., Huang, J.-H. & Lee, H. M. (2010). Acta Crvst. E66. m359
- Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51-55.
- Ray, A., Banerjee, S., Sen, S., Butcher, R. J., Rosair, G. M., Garland, M. T. & Mitra, S. (2008). Struct. Chem. 19, 209-217.
- Sen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007a). Inorg. Chim. Acta, 360, 4085-4092.
- Sen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007b). Polyhedron, 26, 1740-1744.
- Sen, S., Talukder, P., Rosair, G. M. & Mitra, S. (2005). Struct. Chem. 16, 605-610.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, m1388 [https://doi.org/10.1107/S1600536811036592]

$\{N'-[1-(2-Pyridyl)ethylidene-\kappa N]$ benzohydrazidato- $\kappa^2 N', O\}\{N'-[1-(2-pyridyl)-ethylidene-\kappa N]$ benzohydrazide- $\kappa^2 N', O\}$ copper(II) trichloroacetate

Amitabha Datta, Nien-Tsu Chuang, Yun-Sheng Wen, Jui-Hsien Huang and Shiann-Cherng Sheu

S1. Comment

The title complex is consisted of two tridentate benzohydrazone ligands oriented in a meridional fashion. One ligand coordinates in the deprotonated enolate form and acts as a monoanion. The other ligand coordinates in the regular neutral form. The nonequivalent coordination of these two ligands is proved by the bond distances surrounding the cuprous ion. The Cu—O distance for neutral ligand (2.420 (2) Å) is much longer than that of deprotonated ligand, 1.996 (3) Å. Contrarily, the C—O bond distance of the neutral ligand (1.228 (4) Å) is shorter than that of the deprotonated enolate form (1.280 (4) Å). The Cu—N bond distances of the enolate ligand (2.046 (3) and 1.938 (3) Å) are also shorter than those of the neutral ligand (2.196 (3) and 2.088 (3) Å). Nevertheless, the Cu—O and Cu—N bond distances (Table 1) are comparable with the literature reported complexes under the same ligand mode(Patole *et al.*, 2003, Sen *et al.*, 2005, 2007*a*,b, Ray *et al.*, 2008. Datta *et al.*, 2010). The distortion from regular octahedral symmetry is relatively large considering that the bond angles surrounding cuprous ion lie between 71.3 (1) and 163.0 (1)°. The equatorial plane can be defined by O1, N1, N2 and N5 atoms and, accordingly, the axial sites are occupied by O2 and N4 atoms. The Cu(II) ion deviates from the equatorial plane towards the axial N4 atom by 0.1421 (4) Å. The dihedral angles between two pyridine rings and two benzene rings are 86.1 (2)° and 81.7 (2)°, respectively.

S2. Experimental

The ligand precursor, $[C_6H_5C(O)NHN=C(CH_3)C_5H_4N]$ was prepared according to a literature procedure (Sen *et al.*, 2005). To the ligand (2 mmol), methanolic solution (20 ml) of anhydrous copper trichloroacetate (0.388 g, 1 mmol) was added with constant stirring and was kept at room temperature yielding light green square-shaped crystals suitable for X-ray diffraction after few days. Crystals were filtered and were air-dried.

S3. Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with C_{aryl} —H = 0.93, C_{methyl} —H = 0.96 Å, while Uiso(H) = 1.5 Ueq(C) for the methyl H atoms and 1.2 Ueq(C) for all the other H atoms are used in the final refinement. A disagreeable reflection with delta(F2)/ e.s.d. >10 was omitted.

Figure 1

The molecular structure of the title complex, showing 30% displacement ellipsoids.

 $\{N'-[1-(2-\text{pyridyl})\text{ethylidene}-\kappa N]$ benzohydrazidato- $\kappa^2 N', O\}\{N'-[1-(2-\text{pyridyl})\text{ethylidene}-\kappa N]$ benzohydrazide- $\kappa^2 N', O$ copper(II) trichloroacetate

Crystal data

V = 1601.3 (2) Å³ $[Cu(C_{14}H_{13}N_{3}O)(C_{14}H_{12}N_{3}O)](C_{2}Cl_{3}O_{2})$ Z = 2 $M_r = 703.45$ Triclinic, P1F(000) = 718Hall symbol: -P 1 $D_{\rm x} = 1.459 {\rm Mg m^{-3}}$ a = 8.3341 (6) Å *b* = 13.0470 (9) Å $\mu = 0.98 \text{ mm}^{-1}$ T = 295 Kc = 16.0729 (12) Å $\alpha = 107.737 (1)^{\circ}$ Square, green $\beta = 102.541 (1)^{\circ}$ $\gamma = 95.259 (1)^{\circ}$ Data collection Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $R_{\rm int} = 0.016$ phi and ω scans $h = -10 \rightarrow 10$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $k = -15 \rightarrow 16$ $T_{\rm min} = 0.799, T_{\rm max} = 0.875$ $l = -17 \rightarrow 19$ Refinement Refinement on F^2 1 restraint Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ direct methods

 $wR(F^2) = 0.189$ *S* = 1.03 6180 reflections 399 parameters

Mo *K* α radiation, $\lambda = 0.71073$ Å $0.30 \times 0.27 \times 0.25 \text{ mm}$

9034 measured reflections 6180 independent reflections 4962 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 26.0^\circ, \, \theta_{\rm min} = 2.5^\circ$

Primary atom site location: structure-invariant Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.1266P)^2 + 0.7166P]$	$\Delta \rho_{\rm max} = 1.16 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{ m min} = -0.52 { m e} { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8662 (5)	0.7231 (4)	0.8172 (3)	0.0642 (10)	
H1	0.9207	0.7952	0.8428	0.077*	
C2	0.8171 (6)	0.6703 (5)	0.8729 (3)	0.0779 (12)	
H2	0.8365	0.7069	0.9346	0.094*	
C3	0.7401 (6)	0.5639 (5)	0.8359 (4)	0.0810 (14)	
H3	0.7067	0.5271	0.8722	0.097*	
C4	0.7121 (5)	0.5114 (4)	0.7440 (3)	0.0707 (12)	
H4	0.6604	0.4387	0.7180	0.085*	
C5	0.7614 (4)	0.5676 (3)	0.6908 (3)	0.0524 (8)	
C6	0.7387 (4)	0.5210 (3)	0.5918 (3)	0.0521 (8)	
C7	0.6495 (6)	0.4074 (3)	0.5377 (3)	0.0740 (12)	
H7A	0.6098	0.4019	0.4755	0.111*	
H7B	0.5568	0.3907	0.5606	0.111*	
H7C	0.7247	0.3567	0.5422	0.111*	
C8	0.8707 (4)	0.6479 (3)	0.4554 (2)	0.0478 (7)	
C9	0.8752 (4)	0.6359 (3)	0.3610 (2)	0.0501 (8)	
C10	1.0003 (5)	0.7006 (3)	0.3449 (3)	0.0596 (9)	
H10	1.0787	0.7523	0.3933	0.072*	
C11	1.0075 (6)	0.6879 (4)	0.2581 (3)	0.0723 (11)	
H11	1.0934	0.7292	0.2479	0.087*	
C12	0.8891 (7)	0.6145 (4)	0.1860 (3)	0.0810 (13)	
H12	0.8925	0.6080	0.1272	0.097*	
C13	0.7658 (7)	0.5509 (4)	0.2012 (3)	0.0834 (14)	
H13	0.6871	0.5002	0.1524	0.100*	
C14	0.7575 (5)	0.5614 (3)	0.2868 (3)	0.0642 (10)	
H14	0.6723	0.5183	0.2960	0.077*	
C15	1.2778 (5)	0.7146 (3)	0.7063 (3)	0.0568 (9)	
H15	1.2450	0.6421	0.6691	0.068*	
C16	1.4413 (5)	0.7497 (4)	0.7564 (3)	0.0677 (11)	
H16	1.5173	0.7016	0.7527	0.081*	
C17	1.4910 (5)	0.8573 (4)	0.8123 (3)	0.0693 (11)	
H17	1.6000	0.8826	0.8478	0.083*	

G10	1 2 7 4 4 (7)			0.0(00.(1.0)
C18	1.3744 (5)	0.9265 (3)	0.8142 (3)	0.0622 (10)
HI8	1.4044	0.9996	0.8505	0.075*
C19	1.2123 (4)	0.8857 (3)	0.7613 (2)	0.0490 (8)
C20	1.0801 (4)	0.9549 (3)	0.7556 (3)	0.0533 (8)
C21	1.1254 (6)	1.0762 (3)	0.8015 (4)	0.0950 (19)
H21A	1.2375	1.1002	0.8011	0.142*
H21B	1.1173	1.0944	0.8628	0.142*
H21C	1.0503	1.1118	0.7700	0.142*
C22	0.6592 (4)	0.9005 (3)	0.6336 (2)	0.0445 (7)
C23	0.5230 (4)	0.9641 (3)	0.6162 (2)	0.0428 (7)
C24	0.3589 (4)	0.9092 (3)	0.5859 (2)	0.0496 (8)
H24	0.3367	0.8353	0.5785	0.060*
C25	0.2288 (5)	0.9639 (3)	0.5669 (3)	0.0595 (9)
H25	0.1193	0.9275	0.5484	0.071*
C26	0.2622 (5)	1.0744 (3)	0.5757 (3)	0.0634 (10)
H26	0.1751	1.1113	0.5622	0.076*
C27	0.4247 (5)	1.1279 (3)	0.6045 (3)	0.0624 (10)
H27	0.4472	1.2013	0.6105	0.075*
C28	0.5548 (5)	1.0737 (3)	0.6245 (3)	0.0520 (8)
H28	0.6641	1.1107	0.6437	0.062*
C29	0.3176 (6)	0.7394 (4)	0.0606 (3)	0.0661 (10)
C30	0.2374 (6)	0.8395 (4)	0.1034 (4)	0.0753 (12)
N1	0.8380 (4)	0.6743 (3)	0.7289 (2)	0.0526 (7)
N2	0.8012 (3)	0.5880(2)	0.5580 (2)	0.0468 (6)
N3	0.7924 (4)	0.5618 (2)	0.4679 (2)	0.0521 (7)
N4	1.1651 (3)	0.7807 (2)	0.7093 (2)	0.0478 (6)
N5	0.9358 (3)	0.9034 (2)	0.70525 (19)	0.0456 (6)
N6	0.8058 (3)	0.9593 (2)	0.6930 (2)	0.0500 (7)
H6	0.8162	1.0281	0.7214	0.060*
01	0.9407 (3)	0.73837 (19)	0.51784 (18)	0.0564 (6)
O2	0.6418 (3)	0.80149 (19)	0.59581 (19)	0.0558 (6)
03	0.2322 (5)	0.8536 (3)	0.1794 (3)	0.1018 (12)
O4	0.1930 (14)	0.8931 (8)	0.0589 (6)	0.261 (5)
Cu	0.90049 (5)	0.73603 (3)	0.63528 (3)	0.05047 (18)
C11	0.16329 (19)	0.61979 (11)	0.01824 (10)	0.0956 (4)
C12	0.4774 (2)	0.71845 (14)	0.14101 (15)	0.1265 (7)
C13	0.3983 (5)	0.7551 (2)	-0.02666 (19)	0.1990 (15)
	× /	× /		< - /

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.057 (2)	0.068 (2)	0.061 (2)	0.0066 (18)	0.0097 (18)	0.017 (2)
C2	0.078 (3)	0.097 (4)	0.063 (3)	0.021 (3)	0.013 (2)	0.034 (3)
C3	0.081 (3)	0.096 (4)	0.087 (3)	0.021 (3)	0.023 (3)	0.059 (3)
C4	0.071 (3)	0.067 (3)	0.091 (3)	0.017 (2)	0.024 (2)	0.047 (2)
C5	0.0419 (17)	0.0469 (18)	0.074 (2)	0.0123 (14)	0.0144 (16)	0.0269 (17)
C6	0.0478 (18)	0.0364 (17)	0.070(2)	0.0089 (14)	0.0104 (16)	0.0179 (16)
C7	0.085 (3)	0.0380 (19)	0.088 (3)	-0.0057 (19)	0.010 (2)	0.018 (2)

C8	0.0435 (17)	0.0360 (16)	0.059 (2)	0.0079 (13)	0.0117 (15)	0.0091 (14)
C9	0.0549 (19)	0.0355 (16)	0.057 (2)	0.0135 (14)	0.0140 (16)	0.0098 (14)
C10	0.064 (2)	0.0476 (19)	0.066 (2)	0.0114 (17)	0.0211 (19)	0.0144 (17)
C11	0.087 (3)	0.065 (3)	0.074 (3)	0.018 (2)	0.036 (2)	0.024 (2)
C12	0.110 (4)	0.077 (3)	0.064 (3)	0.024 (3)	0.034 (3)	0.025 (2)
C13	0.103 (4)	0.069 (3)	0.057 (3)	0.011 (3)	0.005 (2)	0.003 (2)
C14	0.066 (2)	0.052 (2)	0.064 (2)	0.0067 (18)	0.0079 (19)	0.0127 (18)
C15	0.056 (2)	0.0482 (19)	0.071 (2)	0.0183 (16)	0.0217 (18)	0.0201 (18)
C16	0.054 (2)	0.068 (3)	0.088 (3)	0.0254 (19)	0.021 (2)	0.031 (2)
C17	0.044 (2)	0.077 (3)	0.082 (3)	0.0107 (19)	0.0065 (19)	0.026 (2)
C18	0.0436 (19)	0.060 (2)	0.072 (2)	0.0040 (16)	0.0085 (17)	0.0109 (19)
C19	0.0405 (17)	0.0453 (18)	0.058 (2)	0.0058 (13)	0.0128 (14)	0.0125 (15)
C20	0.0430 (18)	0.0400 (17)	0.065 (2)	0.0068 (14)	0.0089 (16)	0.0049 (16)
C21	0.056 (2)	0.045 (2)	0.143 (5)	0.0061 (18)	0.001 (3)	-0.008 (3)
C22	0.0430 (16)	0.0393 (16)	0.0497 (18)	0.0053 (13)	0.0122 (14)	0.0132 (14)
C23	0.0410 (16)	0.0403 (16)	0.0454 (17)	0.0072 (12)	0.0109 (13)	0.0121 (13)
C24	0.0452 (17)	0.0432 (17)	0.058 (2)	0.0037 (14)	0.0114 (15)	0.0161 (15)
C25	0.0426 (18)	0.060 (2)	0.072 (2)	0.0059 (16)	0.0120 (17)	0.0183 (19)
C26	0.058 (2)	0.062 (2)	0.069 (2)	0.0254 (18)	0.0090 (19)	0.020 (2)
C27	0.069 (2)	0.0408 (18)	0.074 (3)	0.0121 (17)	0.008 (2)	0.0217 (18)
C28	0.0500 (19)	0.0409 (17)	0.058 (2)	0.0009 (14)	0.0075 (15)	0.0135 (15)
C29	0.077 (3)	0.059 (2)	0.062 (2)	0.008 (2)	0.025 (2)	0.0147 (19)
C30	0.086 (3)	0.066 (3)	0.082 (3)	0.024 (2)	0.022 (3)	0.030 (2)
N1	0.0419 (15)	0.0540 (17)	0.0612 (18)	0.0060 (12)	0.0107 (13)	0.0206 (14)
N2	0.0452 (15)	0.0338 (13)	0.0583 (17)	0.0058 (11)	0.0126 (12)	0.0118 (12)
N3	0.0571 (17)	0.0368 (14)	0.0568 (17)	0.0048 (12)	0.0127 (14)	0.0099 (12)
N4	0.0423 (14)	0.0393 (14)	0.0611 (17)	0.0074 (11)	0.0156 (13)	0.0143 (13)
N5	0.0413 (14)	0.0385 (14)	0.0512 (15)	0.0087 (11)	0.0106 (12)	0.0073 (12)
N6	0.0418 (14)	0.0362 (14)	0.0612 (17)	0.0111 (11)	0.0069 (12)	0.0043 (12)
01	0.0632 (15)	0.0387 (12)	0.0574 (15)	-0.0042 (11)	0.0175 (12)	0.0046 (11)
O2	0.0510(13)	0.0346 (12)	0.0705 (16)	0.0058 (10)	0.0059 (12)	0.0087 (11)
O3	0.109 (3)	0.096 (3)	0.079 (2)	0.042 (2)	0.023 (2)	-0.008(2)
O4	0.395 (13)	0.307 (10)	0.265 (9)	0.269 (10)	0.187 (9)	0.224 (9)
Cu	0.0526 (3)	0.0376 (3)	0.0532 (3)	-0.00343 (18)	0.0129 (2)	0.00748 (19)
Cl1	0.0939 (9)	0.0706 (8)	0.0948 (9)	-0.0064 (6)	0.0015 (7)	0.0103 (7)
Cl2	0.0788 (9)	0.0975 (11)	0.1661 (17)	0.0305 (8)	-0.0130 (10)	0.0181 (11)
C13	0.336 (4)	0.1402 (18)	0.171 (2)	0.017 (2)	0.189 (3)	0.0433 (16)

Geometric parameters (Å, °)

Cu—N1	2.046 (3)	C14—H14	0.9300
N2—N3	1.367 (4)	C15—N4	1.330 (4)
Cu—N2	1.938 (3)	C15—C16	1.378 (6)
Cu—N4	2.196 (3)	C15—H15	0.9300
N5—N6	1.373 (4)	C16—C17	1.383 (6)
Cu—N5	2.088 (3)	C16—H16	0.9300
N6—H6	0.8600	C17—C18	1.385 (6)
Cu—O1	1.996 (3)	C17—H17	0.9300

Cu—O2	2.420(2)	C18—C19	1.388 (5)
C1—N1	1.324 (5)	C18—H18	0.9300
C1—C2	1.389 (6)	C19—N4	1.338 (4)
С1—Н1	0.9300	C19—C20	1.493 (5)
C2—C3	1.364 (7)	C20—N5	1.285 (4)
C2—H2	0.9300	C20—C21	1.500 (5)
C3—C4	1 383 (7)	C21—H21A	0.9600
C3—H3	0.9300	C21—H21B	0.9600
C4-C5	1 385 (6)	C_{21} H21D	0.9600
C4 - H4	0.9300	$C^{22} = 0^{2}$	1.228(4)
C5 N1	1 367 (5)	C22_02	1.220(4) 1.367(4)
C_{5}	1.307(3) 1.481(6)	C_{22}	1.307(4)
C_{5}	1.481 (0)	$C_{22} = C_{23}$	1.494 (4)
$C_0 - N_2$	1.289 (3)	$C_{23} = C_{28}$	1.390(3)
	1.490 (3)	$C_{23} = C_{24}$	1.393 (3)
С/—Н/А С7 Ц7Р	0.9600	C_{24} C_{25} C_{24} C_{25}	1.382 (5)
С/—Н/В	0.9600	C24—H24	0.9300
C/-H/C	0.9600	C25—C26	1.400 (6)
OI-C8	1.280 (4)	C25—H25	0.9300
C8—N3	1.338 (4)	C26—C27	1.376 (6)
C8—C9	1.485 (5)	C26—H26	0.9300
C9—C14	1.393 (5)	C27—C28	1.381 (5)
C9—C10	1.398 (5)	C27—H27	0.9300
C10—C11	1.370 (6)	C28—H28	0.9300
C10—H10	0.9300	C29—C30	1.561 (6)
C11—C12	1.374 (7)	C29—C13	1.738 (4)
C11—H11	0.9300	C29—Cl2	1.747 (5)
C12—C13	1.370 (7)	C29—C11	1.777 (5)
C12—H12	0.9300	C30—O4	1.173 (7)
C13—C14	1.360 (7)	C30—O3	1.189 (6)
С13—Н13	0.9300		
N1—C1—C2	122.2 (4)	C20—C21—H21C	109.5
N1—C1—H1	118.9	H21A—C21—H21C	109.5
C2—C1—H1	118.9	H21B—C21—H21C	109.5
C3—C2—C1	119.1 (5)	O2—C22—N6	121.8 (3)
С3—С2—Н2	120.5	O2—C22—C23	122.1 (3)
C1—C2—H2	120.5	N6—C22—C23	116.1 (3)
$C_{2}-C_{3}-C_{4}$	119.4 (4)	C_{28} — C_{23} — C_{24}	119.3 (3)
С2—С3—Н3	120.3	$C_{28} - C_{23} - C_{22}$	122.4(3)
C4—C3—H3	120.3	C_{24} C_{23} C_{22}	1182(3)
$C_{3} - C_{4} - C_{5}$	119.6 (4)	$C_{25} - C_{24} - C_{23}$	120.3(3)
$C_3 - C_4 - H_4$	120.2	$C_{25} = C_{24} = H_{24}$	119.9
C5-C4-H4	120.2	C_{23} C_{24} H_{24}	110.0
N1 - C5 - C4	120.2	$C_{23} = C_{24} = 1124$	120.0 (3)
N1_C5_C6	120.3(7) 114.8(3)	$C_{24} = C_{25} = C_{26}$	120.0 (3)
C4 - C5 - C6	117.0(3) 125 0(4)	$C_{24} = C_{25} = H_{25}$	120.0
$N_{1} = C_{2} = C_{3}$	123.0(+) 113 $A(2)$	$C_{20} = C_{20} = 1125$	120.0 110.5(2)
$N_2 = C_0 = C_3$	113.4(3) 124.2(4)	$C_{27} = C_{20} = C_{23}$	117.5 (3)
112	127.2(4)	027 - 020 - 1120	120.5

C5—C6—C7	122.4 (3)	C25—C26—H26	120.3
С6—С7—Н7А	109.5	C26—C27—C28	120.7 (3)
С6—С7—Н7В	109.5	C26—C27—H27	119.7
H7A—C7—H7B	109.5	C28—C27—H27	119.7
С6—С7—Н7С	109.5	C27—C28—C23	120.3 (3)
H7A—C7—H7C	109.5	C27—C28—H28	119.9
H7B—C7—H7C	109.5	C23—C28—H28	119.9
O1—C8—N3	125.2 (3)	C30—C29—C13	111.7 (3)
01	118.4 (3)	C30-C29-C12	111.6 (3)
N3-C8-C9	1164(3)	C_{13} C_{29} C_{12}	108.5(3)
$C_{14} - C_{9} - C_{10}$	110.1(3) 118.2(4)	C_{30} C_{29} C_{11}	108.9(3)
C14-C9-C8	110.2(1) 1219(3)	C_{13} C_{29} C_{11}	100.9(3) 1094(3)
C_{10} C_{9} C_{8}	121.9(3)	C12 - C29 - C11	109.4(3) 106.7(2)
$C_{10} = C_{10} = C_{00}$	119.9(5) 120.1(4)	$O_1 = O_2 = O_1$	100.7(2) 127.5(6)
$C_{11} = C_{10} = C_{3}$	120.1 (4)	$04 - C_{30} - C_{30}$	127.5(0)
$C_{11} = C_{10} = H_{10}$	119.9	$O_{4} = C_{30} = C_{29}$	117.3(0) 115.0(4)
C_{9} C_{10} C_{11} C_{12}	119.9	$C_{1} = C_{2} = C_{2}$	113.0(4)
	120.0 (4)	CI = NI = CS	119.5 (3)
	119.7	CI—NI—Cu	128.5 (3)
	119.7	C5—NI—Cu	112.0 (2)
C13—C12—C11	119.7 (5)	C6-N2-N3	122.9 (3)
С13—С12—Н12	120.2	C6—N2—Cu	119.6 (3)
C11—C12—H12	120.2	N3—N2—Cu	117.4 (2)
C14—C13—C12	120.7 (5)	C8—N3—N2	107.9 (3)
C14—C13—H13	119.7	C15—N4—C19	119.1 (3)
C12—C13—H13	119.7	C15—N4—Cu	126.5 (2)
C13—C14—C9	120.7 (4)	C19—N4—Cu	114.4 (2)
C13—C14—H14	119.6	C20—N5—N6	120.0 (3)
C9—C14—H14	119.6	C20—N5—Cu	120.5 (2)
N4-C15-C16	122.4 (4)	N6—N5—Cu	119.4 (2)
N4—C15—H15	118.8	C22—N6—N5	116.8 (3)
C16—C15—H15	118.8	C22—N6—H6	121.6
C15—C16—C17	119.2 (4)	N5—N6—H6	121.6
C15—C16—H16	120.4	C8—O1—Cu	109.8 (2)
C17—C16—H16	120.4	C22—O2—Cu	110.6 (2)
C16—C17—C18	118.4 (4)	N2—Cu—O1	79.25 (11)
C16—C17—H17	120.8	N2—Cu—N1	80.17 (12)
C18—C17—H17	120.8	O1—Cu—N1	159.01 (12)
C17—C18—C19	119.2 (4)	N2-Cu-N5	162.98 (12)
C17—C18—H18	120.4	O1—Cu—N5	100.25 (11)
C19—C18—H18	120.4	N1— Cu — $N5$	100.64 (12)
N4-C19-C18	120.1 121.7(3)	N2-Cu-N4	122 15 (11)
N4-C19-C20	121.7(3) 1152(3)	01— Cu —N4	94 88 (11)
C18-C19-C20	123.1(3)	N1— Cu — $N4$	92 52 (11)
N5_C20_C19	125.1(5) 115 0 (3)	N5 - Cu - N4	74.87(11)
N5 $C20 C19$	125 A (2)	N2 Cu O2	(10)
10 - 0.20 - 0.21	123.4(3) 110 Λ (2)	$\Omega_1 = \Omega_1 = \Omega_2$	91.71(10) 88 22 (11)
$C_{1} = C_{2} = C_{2} = C_{2}$	117.4 (3)	$V_1 = C_1 = O_2$	06.33(11)
C_{20} C_{21} H_{21} H_{21}	109.3	NI = Cu = O2	70.41(11)
U20-U21-H21B	109.3	N_{2} U_{1} U_{2} U_{2}	/1.28(9)

H21A—C21—H21B	109 5	N4— Cu — $O2$	146.02 (9)
1121A-021-1121D	107.5	NH Cu O2	140.02(7)