Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Chlorophenyl)-8-methyl-2-oxo-1,2,5,6,7,8-hexahydroguinoline-3-carbonitrile

Abdullah M. Asiri,^{a,b} Abdulrahman O. Al-Youbi,^a Hassan M. Faidallah,^a Khadija O. Badahdah^a and Seik Weng Ng^{c,a}*

^bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, ^aCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 5 September 2011; accepted 5 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.065; wR factor = 0.187; data-to-parameter ratio = 15.5.

The six-membered N-heterocyclic ring of the title compound, $C_{17}H_{15}ClN_2O$, is fused with a methyl-substituted cyclohexene ring. The approximately planar nitrogen-bearing ring (r.m.s. deviation 0.019 Å) is aromatic, and the N atom shows a trigonal-planar coordination; its benzene substituent is aligned at 77.1 (1) °. The cyclohexene ring adopts a half-chair conformation. In the crystal, inversion-related molecules are linked by pairs of N-H···O hydrogen bonds, generating dimers.

Related literature

For a related compound, see: Asiri et al. (2011).

CN

Crystal data

N

a

C17H15CIN2O
$M_r = 298.76$
Aonoclinic, $C2/c$
= 18.6304 (4) Å
= 18.7399 (4) Å
= 8.5209 (2) Å
$B = 90.229 \ (2)^{\circ}$

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\min} = 0.550, T_{\max} = 0.935$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	H atoms treated by a mixture of
$wR(F^2) = 0.187$	independent and constrained
S = 1.03	refinement
3014 reflections	$\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$
194 parameters	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

 $V = 2974.89 (11) \text{ Å}^3$

 $0.30 \times 0.03 \times 0.03$ mm

10387 measured reflections

3014 independent reflections 2682 reflections with $I > 2\sigma(I)$

Cu Ka radiation $\mu = 2.27 \text{ mm}^{-1}$

Z = 8

T = 100 K

 $R_{\rm int} = 0.025$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O1^i$	0.91 (4)	1.84 (4)	2.744 (3)	174 (4)
Symmetry code: (i) -	-x + 1, -v + 1,	-z + 1.		

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5320).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Asiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2468.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o2596 [https://doi.org/10.1107/S1600536811036142]

4-(4-Chlorophenyl)-8-methyl-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile

Abdullah M. Asiri, Abdulrahman O. Al-Youbi, Hassan M. Faidallah, Khadija O. Badahdah and Seik Weng Ng

S1. Comment

We have reported the synthesis of 2-oxo-4-phenyl-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile by using the reaction of benzaldehyde, 1-tetralone and ethyl cyanoacetate. The last reactant is incorporated into the product to form a part of the six-membered nitrogen-bearing ring, which is now endowed with an exocyclic cyanide group (Asiri *et al.*, 2011). In the present study, the use of 2-methylcyclohexane leads to the formation of the analogous compound with a cyclohexene ring fused with the six-membered nitrogen-bearing ring (Scheme I). The planar nitrogen-bearing ring (r.m.s. deviation 0.019 Å) is aromatic, and the N atom shows trigonal planar coordination; its benzene substituent is aligned at 77.1 (1) °. The cyclohexene ring adopts a half-chair conformation (Fig. 1). Two molecules are linked about a center-of-inversion by an N–H…O hydrogen bond to generate a dimer (Table 1).

S2. Experimental

4-Chlorobenzaldehyde (1.4 g, 10 mmol), 2-methylcyclohexanone (1.2 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) were heated in ethanol (50 ml) for 6 h. The solid product was collected, washed with water and then recrystallized from ethanol.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C-H 0.95–0.99 Å; U_{iso} (H) 1.2–1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map and was freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{17}H_{15}ClN_2O$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

4-(4-Chlorophenyl)-8-methyl-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile

Crystal data

C₁₇H₁₅ClN₂O $M_r = 298.76$ Monoclinic, C2/c Hall symbol: -C 2yc a = 18.6304 (4) Å b = 18.7399 (4) Å c = 8.5209 (2) Å $\beta = 90.229$ (2)° V = 2974.89 (11) Å³ Z = 8 F(000) = 1248 $D_x = 1.334 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4602 reflections $\theta = 3.3-74.1^{\circ}$ $\mu = 2.27 \text{ mm}^{-1}$ T = 100 KPrism, colorless $0.30 \times 0.03 \times 0.03 \text{ mm}$ Data collection

Agilent SuperNova Dual diffractometer with Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010)	$T_{\min} = 0.550, T_{\max} = 0.935$ 10387 measured reflections 3014 independent reflections 2682 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$ $\theta_{\text{max}} = 74.3^{\circ}, \theta_{\text{min}} = 3.4^{\circ}$ $h = -22 \rightarrow 23$ $k = -12 \rightarrow 23$ $l = -10 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.187$ S = 1.03 3014 reflections 194 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0973P)^2 + 6.1309P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.79$ e Å ⁻³ $\Delta\rho_{min} = -0.40$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	0.03066 (4)	0.40727 (4)	1.04897 (10)	0.0561 (3)
01	0.43887 (13)	0.55097 (12)	0.6145 (3)	0.0732 (8)
N1	0.43862 (13)	0.43226 (13)	0.5593 (3)	0.0513 (6)
N2	0.28356 (14)	0.58993 (14)	0.8353 (3)	0.0520 (6)
C1	0.41066 (14)	0.36551 (15)	0.5654 (4)	0.0448 (6)
C2	0.44737 (15)	0.31216 (15)	0.4544 (4)	0.0458 (6)
H2	0.4536	0.3360	0.3503	0.055*
C3	0.52222 (16)	0.29166 (17)	0.5165 (4)	0.0531 (7)
H3A	0.5514	0.3348	0.5291	0.080*
H3B	0.5455	0.2594	0.4418	0.080*
H3C	0.5175	0.2677	0.6182	0.080*
C4	0.39803 (15)	0.24814 (15)	0.4311 (3)	0.0461 (6)
H4A	0.4254	0.2088	0.3818	0.055*
H4B	0.3584	0.2615	0.3590	0.055*
C5	0.36656 (18)	0.22215 (15)	0.5866 (3)	0.0498 (7)
H5A	0.4062	0.2102	0.6598	0.060*
H5B	0.3382	0.1783	0.5679	0.060*
C6	0.31816 (16)	0.27916 (15)	0.6619 (4)	0.0480 (7)
H6A	0.2711	0.2795	0.6074	0.058*
H6B	0.3097	0.2664	0.7731	0.058*
C7	0.35036 (15)	0.35264 (14)	0.6542 (3)	0.0425 (6)
C8	0.31531 (15)	0.41183 (14)	0.7254 (3)	0.0402 (6)
С9	0.34494 (15)	0.47924 (15)	0.7151 (3)	0.0453 (6)
C10	0.41041 (17)	0.49152 (16)	0.6296 (4)	0.0532 (7)

C11	0.31115 (15)	0.54044 (16)	0.7834 (3)	0.0451 (6)	
C12	0.24447 (15)	0.40529 (14)	0.8035 (3)	0.0396 (6)	
C13	0.23840 (17)	0.38018 (16)	0.9559 (3)	0.0480 (7)	
H13	0.2797	0.3628	1.0093	0.058*	
C14	0.17279 (18)	0.38018 (16)	1.0307 (3)	0.0512 (7)	
H14	0.1688	0.3630	1.1352	0.061*	
C15	0.11297 (16)	0.40541 (14)	0.9520 (3)	0.0436 (6)	
C16	0.11705 (16)	0.43002 (17)	0.8006 (4)	0.0504 (7)	
H16	0.0753	0.4465	0.7474	0.060*	
C17	0.18293 (16)	0.43036 (18)	0.7268 (3)	0.0502 (7)	
H17	0.1865	0.4479	0.6225	0.060*	
H1	0.481 (2)	0.439 (2)	0.508 (5)	0.078 (12)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0605 (5)	0.0437 (4)	0.0642 (5)	-0.0013 (3)	0.0181 (4)	0.0010 (3)
O1	0.0666 (14)	0.0474 (13)	0.106 (2)	-0.0271 (11)	0.0384 (14)	-0.0337 (13)
N1	0.0412 (13)	0.0416 (13)	0.0711 (17)	-0.0104 (10)	0.0060 (12)	-0.0181 (12)
N2	0.0544 (14)	0.0540 (15)	0.0478 (13)	-0.0066 (11)	0.0023 (11)	-0.0180 (11)
C1	0.0362 (13)	0.0401 (14)	0.0580 (16)	-0.0042 (11)	-0.0058 (11)	-0.0078 (12)
C2	0.0416 (14)	0.0358 (13)	0.0599 (17)	-0.0031 (11)	0.0022 (12)	0.0042 (12)
C3	0.0464 (16)	0.0499 (17)	0.0631 (18)	-0.0040 (13)	0.0025 (13)	0.0048 (14)
C4	0.0467 (14)	0.0404 (14)	0.0510 (16)	-0.0046 (12)	0.0032 (12)	-0.0013 (12)
C5	0.0692 (19)	0.0329 (13)	0.0472 (15)	-0.0062 (12)	0.0010 (13)	0.0046 (11)
C6	0.0484 (15)	0.0383 (14)	0.0573 (16)	-0.0057 (11)	-0.0037 (12)	0.0050 (12)
C7	0.0445 (14)	0.0358 (13)	0.0472 (14)	-0.0024 (11)	-0.0113 (11)	-0.0001 (11)
C8	0.0444 (14)	0.0418 (14)	0.0342 (12)	-0.0054 (11)	-0.0083 (10)	-0.0001 (10)
C9	0.0460 (14)	0.0415 (14)	0.0484 (15)	-0.0097 (11)	0.0036 (11)	-0.0107 (11)
C10	0.0494 (15)	0.0440 (16)	0.0662 (19)	-0.0134 (12)	0.0103 (14)	-0.0193 (14)
C11	0.0469 (14)	0.0465 (15)	0.0420 (13)	-0.0132 (12)	0.0047 (11)	-0.0088 (12)
C12	0.0454 (14)	0.0373 (13)	0.0361 (12)	-0.0066 (10)	-0.0032 (10)	-0.0020 (10)
C13	0.0568 (16)	0.0489 (16)	0.0383 (14)	0.0081 (13)	-0.0004 (12)	0.0069 (12)
C14	0.0665 (18)	0.0461 (16)	0.0411 (14)	0.0045 (14)	0.0054 (13)	0.0093 (12)
C15	0.0534 (16)	0.0318 (13)	0.0457 (14)	-0.0067 (11)	0.0066 (12)	-0.0018 (10)
C16	0.0467 (15)	0.0563 (17)	0.0480 (15)	-0.0107 (13)	-0.0080 (12)	0.0046 (13)
C17	0.0463 (15)	0.0670 (19)	0.0374 (13)	-0.0133 (14)	-0.0068 (11)	0.0082 (13)

Geometric parameters (Å, °)

Cl1—C15	1.745 (3)	C5—H5B	0.9900
O1-C10	1.241 (4)	C6—C7	1.503 (4)
N1-C1	1.356 (4)	C6—H6A	0.9900
N1-C10	1.368 (4)	C6—H6B	0.9900
N1—H1	0.91 (4)	C7—C8	1.424 (4)
N2-C11	1.150 (4)	C8—C9	1.382 (4)
C1—C7	1.378 (4)	C8—C12	1.486 (4)
C1—C2	1.539 (4)	C9—C11	1.433 (4)

supporting information

C_{2} C_{4}	1 524 (4)	C0 C10	1 442 (4)
C2—C4	1.524 (4)	C9-C10	1.442 (4)
C2—C3	1.538 (4)	C12—C13	1.386 (4)
C2—H2	1.0000	C12—C17	1.399 (4)
С3—НЗА	0.9800	C13—C14	1.381 (4)
С3—Н3В	0.9800	С13—Н13	0.9500
С3—Н3С	0.9800	C14—C15	1.382 (4)
C4—C5	1 531 (4)	C14—H14	0.9500
C4—H4A	0.9900	C_{15}	1373(4)
CA HAB	0.9900	C_{16} C_{17}	1.373(4)
C5 C6	1.540(4)	C_{16} U_{16}	0.0500
C5—C6	1.340 (4)		0.9300
С5—Н5А	0.9900	С1/—Н1/	0.9500
C1—N1—C10	125.7 (3)	С5—С6—Н6В	109.1
C1—N1—H1	118 (3)	H6A—C6—H6B	107.8
C10—N1—H1	116 (3)	C1—C7—C8	118.3 (2)
N1-C1-C7	1198(3)	C1 - C7 - C6	120.7(3)
N1 C1 C2	113.8(2)	C^{8} C^{7} C^{6}	120.7(3)
11 - 01 - 02	115.0(2) 126.1(2)	C_{0}	120.7(3)
C/-CI-C2	120.1(2)	$C_{9} = C_{8} = C_{12}$	120.1(3)
C4 - C2 - C1	108.8 (2)	C9—C8—C12	117.4 (2)
C4—C2—C3	113.2 (2)	C/C8C12	122.4 (2)
C1—C2—C3	110.8 (2)	C8—C9—C11	122.0 (3)
С4—С2—Н2	108.0	C8—C9—C10	121.1 (3)
C1—C2—H2	108.0	C11—C9—C10	116.8 (2)
С3—С2—Н2	108.0	O1—C10—N1	121.2 (3)
С2—С3—НЗА	109.5	O1—C10—C9	124.0 (3)
С2—С3—Н3В	109.5	N1—C10—C9	114.8 (2)
НЗА—СЗ—НЗВ	109.5	N2—C11—C9	178.6 (3)
С2—С3—Н3С	109.5	C13—C12—C17	118.8 (3)
H_{3A} $-C_{3}$ $-H_{3C}$	109.5	C_{13} C_{12} C_{8}	121.6(2)
H3B-C3-H3C	109.5	C_{17} C_{12} C_{8}	121.0(2) 1194(2)
$C_2 C_4 C_5$	1117(2)	C_{14} C_{13} C_{12}	120.5(3)
$C_2 = C_4 = C_3$	111.7 (2)	$C_{14} = C_{13} = C_{12}$	120.3(3)
$C_2 - C_4 - H_4 A$	109.3	C12 - C12 - H12	119.7
C3—C4—H4A	109.3		119.7
C2—C4—H4B	109.3	C13—C14—C15	119.3 (3)
C5—C4—H4B	109.3	C13—C14—H14	120.3
H4A—C4—H4B	107.9	C15—C14—H14	120.3
C4—C5—C6	111.5 (2)	C16—C15—C14	121.6 (3)
C4—C5—H5A	109.3	C16—C15—Cl1	119.4 (2)
С6—С5—Н5А	109.3	C14—C15—Cl1	119.0 (2)
С4—С5—Н5В	109.3	C15—C16—C17	118.8 (3)
С6—С5—Н5В	109.3	C15—C16—H16	120.6
H5A—C5—H5B	108.0	C17—C16—H16	120.6
C7—C6—C5	112.5 (2)	C16—C17—C12	120.9 (3)
C7—C6—H6A	109.1	С16—С17—Н17	119.5
C5—C6—H6A	109.1	C12—C17—H17	119.5
C7_C6_H6B	100.1		117.5
	107.1		
C10—N1—C1—C7	-3.1 (5)	C7—C8—C9—C10	1.6 (4)

C10 N1 C1 C2	1710(3)	C12 $C8$ $C9$ $C10$	-174.6(3)
CI_{0} CI_{1} CI_{1} CI_{2} CI_{4}	1/1.0(3)	C12 - C0 - C9 - C10	174.0(3)
N1 - C1 - C2 - C4	-101.8 (3)	CI = NI = CI0 = OI	-1/8.3(3)
C7—C1—C2—C4	11.8 (4)	C1—N1—C10—C9	-0.6(5)
N1—C1—C2—C3	73.2 (3)	C8—C9—C10—O1	178.9 (3)
C7—C1—C2—C3	-113.2 (3)	C11—C9—C10—O1	1.0 (5)
C1—C2—C4—C5	-45.4 (3)	C8—C9—C10—N1	1.3 (4)
C3—C2—C4—C5	78.3 (3)	C11—C9—C10—N1	-176.6 (3)
C2—C4—C5—C6	63.7 (3)	C9—C8—C12—C13	-102.5 (3)
C4—C5—C6—C7	-43.5 (3)	C7—C8—C12—C13	81.5 (3)
N1—C1—C7—C8	5.8 (4)	C9—C8—C12—C17	72.3 (3)
C2C1C7C8	-167.5 (3)	C7—C8—C12—C17	-103.8 (3)
N1—C1—C7—C6	179.6 (3)	C17—C12—C13—C14	-0.2 (4)
C2—C1—C7—C6	6.3 (4)	C8—C12—C13—C14	174.5 (3)
C5-C6-C7-C1	9.8 (4)	C12—C13—C14—C15	0.1 (5)
C5—C6—C7—C8	-176.5 (2)	C13—C14—C15—C16	0.5 (4)
C1—C7—C8—C9	-5.1 (4)	C13—C14—C15—Cl1	-178.4 (2)
C6—C7—C8—C9	-178.9 (3)	C14—C15—C16—C17	-1.0 (4)
C1—C7—C8—C12	170.9 (2)	Cl1—C15—C16—C17	178.0 (2)
C6—C7—C8—C12	-2.9 (4)	C15—C16—C17—C12	0.8 (5)
C7—C8—C9—C11	179.3 (3)	C13—C12—C17—C16	-0.2 (4)
C12—C8—C9—C11	3.1 (4)	C8-C12-C17-C16	-175.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.91 (4)	1.84 (4)	2.744 (3)	174 (4)

Symmetry code: (i) -x+1, -y+1, -z+1.