Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

7-Aminoheptylazanium iodide

Guido J. Reiss

Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D40225 Düsseldorf, Germany
Correspondence e-mail: reissg@uni-duesseldorf.de

Received 5 September 2011; accepted 13 September 2011

Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.017 ; ~ w R$ factor $=0.039$; data-to-parameter ratio $=20.8$.

The absolute structure of the title compound, $\left[\mathrm{H}_{3} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{7^{-}}\right.$ $\left.\mathrm{NH}_{2}\right] \mathrm{I}$, has been determined from the diffraction experiment, the Flack parameter refining to -0.02 (2). In the crystal, adjacent symmetry-related cations are connected by head-totail $R^{\prime} \mathrm{H}_{2} \mathrm{~N}^{+}-\mathrm{H} \cdots \mathrm{NH}_{2} R$ hydrogen bonds, forming chains along [010]. The remaining four H atoms attached to the amino and the azanium group form weak hydrogen bonds to neighbouring iodide anions, producing a three-dimensional hydrogen-bonded network. The amino group and the aliphatic chain of the 7 -aminoheptylazanium cation show an exact alltrans conformation, within experimental uncertainties. The azanium group, to fulfill the needs of hydrogen bonding, is twisted out of the plane defined by the C atoms of the aliphatic chain, the $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle being $-65.4(4)^{\circ}$.

Related literature

For the crystal structures of α-azaniumyl- ω-aminoalkanes, see: Luciawati et al. (2011); Pienack et al. (2007); Natarajan et al. (1996); Qian et al. (2007). For α, ω-diazaniumylalkanecontaining compounds, see: Frank \& Graf (2004); Jiang et al. (2010); Reiss (2010); Reiss \& Engel (2002); Reiss \& Engel (2004); Seidlhofer et al. (2010); Takeoka et al. (2005); Vizi et al. (2006). For dye-sensitized solar cells, see: Yang et al. (2011); Gorlov \& Kloo (2008); Grätzel (2004). For graph-set analysis, see: Etter et al. (1990). For the profile fit on the powder diffraction data, see: Kraus \& Nolze (2000). For background to hydrogen bonds, see: Steiner (2002).

Experimental

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{19} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{I}^{-}$	$a=5.53418(8) \AA$
$M_{r}=258.14$	$b=18.7308(3) \AA$
Monoclinic, $P 2_{1}$	$c=5.51570(8) \AA$

$\begin{array}{ll}\beta=95.2195(14)^{\circ} & \mu=2.76 \mathrm{~mm}^{-1} \\ V=569.39(2) \AA^{3} & T=290 \mathrm{~K}\end{array}$
$V=569.39(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
Data collection
Oxford Diffraction Xcalibur Eos diffractometer
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.039$
$S=1.03$
2331 reflections
112 parameters
6 restraints
$T=290 \mathrm{~K}$
$0.77 \times 0.41 \times 0.24 \mathrm{~mm}$
model based on expressions derived by Clark \& Reid (1995)]
$T_{\text {min }}=0.227, T_{\text {max }}=0.543$
31566 measured reflections
2331 independent reflections
2325 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.33 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1130 Friedel pairs
Flack parameter: -0.02 (2)

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 11 \cdots \mathrm{I} 1$	$0.88(2)$	$2.98(4)$	$3.738(4)$	$145(5)$
$\mathrm{N} 1-\mathrm{H} 12 \cdots \mathrm{I} 1^{\mathrm{i}}$	$0.90(2)$	$2.88(3)$	$3.706(3)$	$153(3)$
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.90(2)$	$1.87(3)$	$2.740(4)$	$164(5)$
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{I} 1^{\text {ii }}$	$0.87(2)$	$2.72(2)$	$3.579(3)$	$170(3)$
$\mathrm{N} 2-\mathrm{H} 23 \cdots \mathrm{I} 1^{\mathrm{i}}$	$0.90(2)$	$2.83(2)$	$3.646(3)$	$152(2)$

Symmetry codes: (i) $x, y, z+1$; (ii) $-x+2, y+\frac{1}{2},-z+1$; (iii) $-x+1, y+\frac{1}{2},-z$; (iv)
$-x+1, y+\frac{1}{2},-z+1$.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

I thank E. Hammes and S. Joergens for technical support.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: WN2452).

References

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Frank, W. \& Graf, J. (2004). Z. Anorg. Allg. Chem. 630, 1894-1902.
Gorlov, M. \& Kloo, L. (2008). Dalton Trans. pp. 2655-2666.
Grätzel, M. (2004). J. Photochem. Photobiol. A Chem. 164, 3-14.
Jiang, J., Yu, J. \& Corma, A. (2010). Angew. Chem. Int. Ed. 49, 1521-3773.
Kraus, W. \& Nolze, G. (2000). PowderCell for Windows. Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany.
Luciawati, F., Higham, L. T., Strauss, C. R. \& Scott, J. L. (2011). CrystEngComm, 13, 167-176.
Natarajan, S., Gabriel, J.-C. P. \& Cheetham, A. K. (1996). Chem. Commun. pp. 1415-1416.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England

organic compounds

Pienack, N., Möller, K., Näther, C. \& Bensch, W. (2007). Solid State Sci. 9, 1110-1114
Qian, H.-F., Wang, L., Huang, W. \& Yao, C. (2007). Acta Cryst. E63, o817o818.
Reiss, G. J. (2010). Private communication (deposition number: CCDC 789354). CCDC, Cambridge, England.

Reiss, G. J. \& Engel, J. S. (2002). CrystEngComm, 4, 155-161.
Reiss, G. J. \& Engel, J. S. (2004). Z. Naturforsch. Teil B, 59, 1114-1117.
Seidlhofer, B., Pienack, N. \& Bensch, W. (2010). Z. Naturforsch. Teil B, 65, 937-975.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Takeoka, Y., Fukasawa, M., Matsui, T., Kikuchi, K., Rikukawa, M. \& Sanui, K. (2005). Chem. Commun. pp. 378-380.

Vizi, M. Z., Knobler, C. B., Owen, J. J., Khan, M. I. \& Schubert, D. M. (2006). Cryst. Growth Des. 6, 538-545.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yang, Y., Sun, R., Shi, C., Wu, Y. \& Xia, M. (2011). Int. J. Photoenergy, Article ID 986869, 5 pages.

supporting information

Acta Cryst. (2011). E67, o2684-o2685 [https://doi.org/10.1107/S1600536811037329]

7-Aminoheptylazanium iodide

Guido J. Reiss

S1. Comment

There is general interest in diazanium iodides because it is well documented that they have a significant influence on the $\mathrm{I}_{3} / / \mathrm{I}^{-}$redox system in binary ionic liquids, which are used as electrolytes for dye-sensitized solar cells (Yang et al., 2011; Gorlov \& Kloo, 2008; Grätzel, 2004). Most structures reported in the α, ω-diaminoalkane/HX system are composed of α, ω-diazaniumylalkane dications and complex counteranions. Salts of α, ω-diazaniumylalkanes represent an interesting class of organic-inorganic hybride materials, with a number of different structure design examples: hydrogen-bonded frameworks as host systems for unusual species (Frank \& Graf); layered materials (Takeoka et al., 2005), large-pore zeolites (Jiang et al., 2010); non-metal frameworks (e.g. Vizi et al., 2006) and metal-frameworks (Seidlhofer et al., 2010).
Our longstanding interest in the structural chemistry of α, ω-diazaniumylalkanes is focused on their versatility as templates for the synthesis of new polyiodides (Reiss \& Engel, 2002; Reiss \& Engel, 2004; Reiss, 2010). However, only a limited number of high-quality crystal structure determinations on α-azaniumyl- ω-aminoalkane salts have been described (Luciawati et al., 2011; Pienack et al., 2007). Furthermore, the positions of the hydrogen atoms of the hydrogen bond donating groups are not well resolved in all cases (Natarajan et al., 1996, Qian et al., 2007).
This contribution presents a rare example of a crystal structure of an α-azaniumyl- ω-aminoalkane without any disorder. The asymmetric unit of the title compound consists of one 7 -aminoheptylazanium cation and one iodide anion. The bond lengths and angles within the organic cation are, with $\mathrm{C}-\mathrm{C}$ bond lengths between 1.497 (5) \AA to 1.517 (4) \AA and slightly shorter $\mathrm{C}-\mathrm{N}$ distances, 1.462 (4) \AA and 1.481 (4) \AA, as expected. The azanium group, to fulfill the needs of hydrogen bonding, is twisted out of the plane defined by the carbon atoms of the all-trans conformation aliphatic chain, the C5-C6-C7-N2 torsion angle being -65.4 (4) ${ }^{\circ}$ (Fig. 1 and Fig. 3)

Cations are connected to symmetry-related units by head-to-tail $R^{\prime} \mathrm{H}_{2} \mathrm{~N}^{+}-\mathrm{H}^{\cdots} \mathrm{NH}_{2} \mathrm{R}$ hydrogen bonds. As a result of this primary connection, one-dimensional zigzag chains along [010] are formed (Fig. 1). According to a generally accepted classification (Steiner, 2002), these $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds can be described as medium strong. Both hydrogen atoms of the amino group and two of the three hydrogen atoms of the azaniumyl group form hydrogen bonds with neighbouring iodide anions. These weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds (Table 1) connect the above-mentioned chains into a threedimensional framework (Fig. 2 and 3). This framework can be classified by graph sets (Etter et al. 1990) as built of two smaller ring motifs $\left[R^{2}{ }_{4}(8)\right.$ and $R_{6}^{4}(12)$; (Fig. 2)] in the hydrophilic region of the structure and a ring motif $R^{2}{ }_{4}(24)$ that includes the alkyl chains (Fig. 3).

S2. Experimental

7-Aminoheptylazanium iodide, $\left(\mathrm{H}_{3} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{NH}_{2}\right)$ I was prepared by dissolving $1.77 \mathrm{mmol}(0.23 \mathrm{~mL})$ 1,7-diaminoheptane in 1 ml concentrated (57\%) hydroiodic acid at room temperature. From this solution crystalline raw material was obtained by evaporation within a few days at room temperature. Recrystallization from fresh hydroiodic acid (57\%) yielded block-shaped, almost colourless crystals.

Depending on the reaction conditions, the title compound is sometimes contaminated with a small amount of the darkcoloured α, ω-diazaniumylheptane tetraiodide, $\left(\mathrm{H}_{3} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{NH}_{3}\right) \mathrm{I}_{4}$ (Reiss, 2010). To verify the purity of the synthesized material, powder diffraction data of a representive part of the bulk phase were collected on a Huber G600 diffractometer (transmission, $\mathrm{Cu} K \alpha 1$, step width: $0.03^{\circ}, 20 \mathrm{sec} . / \mathrm{step}$). A profile fit (Kraus \& Nolze, 2000) on the powder diffraction data based on the structure model obtained from the single-crystal experiment proved the identity of the bulk phase with the investigated single-crystal (Fig. 4). This finding is supported by the Raman spectrum collected which does not show the $\mathrm{I}_{4}{ }^{2-}$-specific absorption band at $175 \mathrm{~cm}^{-1}$.

S3. Refinement

All hydrogen atoms were located from a difference Fourier synthesis. The positional parameters of hydrogen atoms of the NH_{2} and the NH_{3} group were refined with soft $\mathrm{N}-\mathrm{H}$ distance restraints; the final range of $\mathrm{N}-\mathrm{H}$ distances is 0.87 (2) 0.90 (2) \AA. All hydrogen atoms of the CH_{2} groups were refined using a riding model; $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$. Anisotropic displacement parameters of all non-hydrogen atoms and individual isotropic displacement parameters for all hydrogen atoms involved in the hydrogen bonds were refined unrestrictedly. The Flack parameter refined to -0.02 (2).

Figure 1

The structure of the asymmetric unit, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry-related neighbouring atoms are drawn with arbitrary radius and dashed lines indicate hydrogen bonds. Symmetry codes $:^{\prime}=2-x, 1 / 2+y, 1-z,{ }^{\prime \prime}=2-x, 1 / 2+y, 1-z$.

Figure 2
Hydrogen bonding ring motifs. Graph-sets: $R^{2}{ }_{4}(8)$ and $\left.R^{4}{ }_{6}(12)\right)$ of the hydrophilic part of the structure are shown.
Symmetry codes: ' $=1-x, 1 / 2+y,-z,{ }^{\prime \prime}=1-x, 1 / 2+y, 1-z$.

Figure 3
Hydrogen bonding motif of neighboring 7-aminoheptylazanium connected by iodide anions, graph set $R^{2}{ }_{4}(24)$. Symmetry codes: ' $=1-x, 1 / 2+y, 2-z,{ }^{\prime \prime}=x, 1+y, 1+z$.

Figure 4
Powder diffraction diagram of the title compound (black line: experimental; red line: profile fit).

7-Aminoheptylazanium iodide

Crystal data	
$\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{2}{ }_{2} \cdot \mathrm{I}^{-}$	$F(000)=256$
$M_{r}=258.14$	$D_{\mathrm{x}}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1}$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Hall symbol: P 2 yb	Cell parameters from 29947 reflections
$a=5.53418(8) \AA$	$\theta=3.3-32.6^{\circ}$
$b=18.7308(3) \AA$	$\mu=2.76 \mathrm{~mm}^{-1}$
$c=5.51570(8) \AA$	$T=290 \mathrm{~K}$
$\beta=95.2195(14)^{\circ}$	Block, colourless
$V=569.39(2) \AA^{3}$	$0.77 \times 0.41 \times 0.24 \mathrm{~mm}$
$Z=2$	

Data collection

Oxford Diffraction Xcalibur Eos
diffractometer
Radiation source: fine-focus sealed tube Equatorial mounted graphite monochromator
Detector resolution: 16.2711 pixels mm^{-1}
ω scans

```
Absorption correction: analytical
    [CrysAlis PRO (Oxford Diffraction, 2009);
    analytical numeric absorption correction using a
    multifaceted crystal model based on expressions
    derived by Clark \& Reid (1995)]
\(T_{\text {min }}=0.227, T_{\text {max }}=0.543\)
31566 measured reflections
2331 independent reflections
2325 reflections with \(I>2 \sigma(I)\)
\(R_{\text {int }}=0.028\)
\(\theta_{\text {max }}=26.5^{\circ}, \theta_{\text {min }}=4.9^{\circ}\)
\(h=-6 \rightarrow 6\)
\(k=-23 \rightarrow 23\)
\(l=-6 \rightarrow 6\)
```


Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.039$
$S=1.03$
2331 reflections
112 parameters
6 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.010 P)^{2}+0.450 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0965 (15)
Absolute structure: Flack (1983), 1130 Friedel pairs
Absolute structure parameter: - 0.02 (2)

Special details

Experimental. The Raman spectrum was measured using a Bruker MULTIRAM spectrometer (Nd:YAG-Laser at 1064 nm; RT-InGaAs-detector); 4000-70 $\mathrm{cm}^{-1}: 3326(\mathrm{w}), 3259(\mathrm{w}), 2958(\mathrm{~m}), 2896(\mathrm{~s}), 2882(\mathrm{~s}), 2850(\mathrm{~s}), 2761$ (w), 1590(w), $1542(\mathrm{w}), 1479(\mathrm{~m}), 1466(\mathrm{~m}), 1445(\mathrm{~s}), 1347(\mathrm{w}), 1304(\mathrm{~m}), 1067(\mathrm{~m}), 1039(\mathrm{~m}), 961(\mathrm{w}), 913(\mathrm{w}), 858(\mathrm{w}), 838(\mathrm{w}), 340(\mathrm{w})$, 286(w), 253(w), 109(s). IR spectroscopic data were collected on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000-560 $\mathrm{cm}^{-1}: 3321(\mathrm{~m}), 3258(\mathrm{~m}), 3021(\mathrm{~m}, \mathrm{br})$, 2923(s), 2853(s), 1645(m, sh), 1568(m, br), 1487(m), 1465(m), 1384(m), 1359(w), 1334(m, sh), 1302(m), 1244(w), 1156(w), 929(w, br), 817(w), 723(w).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.09785(3)$	$0.252871(19)$	$0.24986(3)$	$0.06035(9)$
N1	$0.4322(6)$	$0.34300(16)$	$0.7843(6)$	$0.0548(7)$
H11	$0.330(8)$	$0.342(3)$	$0.653(6)$	$0.108(19)^{*}$

H12	$0.335(7)$	$0.337(2)$	$0.905(6)$	$0.075(12)^{*}$
C1	$0.5909(7)$	$0.40516(19)$	$0.8220(7)$	$0.0524(8)$
H1A	0.7136	0.3956	0.9550	0.063^{*}
H1B	0.4962	0.4458	0.8673	0.063^{*}
C2	$0.7123(7)$	$0.42306(16)$	$0.5974(7)$	$0.0486(7)$
H2A	0.5885	0.4340	0.4667	0.058^{*}
H2B	0.8003	0.3814	0.5490	0.058^{*}
C3	$0.8869(7)$	$0.48553(17)$	$0.6285(7)$	$0.0515(8)$
H3A	0.7997	0.5269	0.6806	0.062^{*}
H3B	1.0128	0.4742	0.7567	0.062^{*}
C4	$1.0042(7)$	$0.50457(18)$	$0.4032(7)$	$0.0527(8)$
H4A	0.8785	0.5151	0.2739	0.063^{*}
H4B	1.0945	0.4636	0.3528	0.063^{*}
C5	$1.1744(6)$	$0.56805(17)$	$0.4352(7)$	$0.0488(7)$
H5A	1.0862	0.6083	0.4939	0.059^{*}
H5B	1.3049	0.5565	0.5586	0.059^{*}
C6	$1.2828(7)$	$0.58973(17)$	$0.2052(7)$	$0.0533(8)$
H6A	1.1515	0.5989	0.0803	0.064^{*}
H6B	1.3756	0.5498	0.1506	0.064^{*}
C7	$1.4460(7)$	$0.65486(18)$	$0.2270(7)$	$0.0517(8)$
H7A	1.5742	0.6471	0.3563	0.062^{*}
H7B	1.5210	0.6612	0.0763	0.062^{*}
N2	$1.3108(5)$	$0.72044(13)$	$0.2795(5)$	$0.0463(6)$
H21	$1.416(6)$	$0.755(2)$	$0.249(6)$	$0.087(12)^{*}$
H22	$1.196(5)$	$0.7290(18)$	$0.164(5)$	$0.066(12)^{*}$
H23	$1.253(5)$	$0.7189(16)$	$0.427(4)$	$0.047(8)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.06054(12)$	$0.07533(14)$	$0.04638(11)$	$-0.01293(14)$	$0.01147(7)$	$0.00061(17)$
N1	$0.0556(17)$	$0.0441(14)$	$0.067(2)$	$-0.0089(14)$	$0.0171(17)$	$0.0002(13)$
C1	$0.061(2)$	$0.0411(17)$	$0.0565(19)$	$-0.0083(15)$	$0.0117(17)$	$-0.0083(14)$
C2	$0.0564(19)$	$0.0362(15)$	$0.055(2)$	$-0.0084(13)$	$0.0130(16)$	$-0.0013(13)$
C3	$0.057(2)$	$0.0381(16)$	$0.060(2)$	$-0.0103(14)$	$0.0082(17)$	$-0.0036(14)$
C4	$0.0567(19)$	$0.0385(15)$	$0.064(2)$	$-0.0104(14)$	$0.0097(19)$	$-0.0037(16)$
C5	$0.0537(19)$	$0.0380(16)$	$0.0556(19)$	$-0.0085(13)$	$0.0102(16)$	$-0.0005(13)$
C6	$0.062(2)$	$0.0372(16)$	$0.063(2)$	$-0.0075(15)$	$0.0138(18)$	$-0.0065(14)$
C7	$0.0499(18)$	$0.0391(16)$	$0.068(2)$	$-0.0047(14)$	$0.0155(17)$	$-0.0021(14)$
N2	$0.0582(16)$	$0.0370(11)$	$0.0448(14)$	$0.0007(12)$	$0.0106(12)$	$0.0018(10)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 1$	$1.462(4)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{~N} 1-\mathrm{H} 11$	$0.877(19)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.508(5)$
$\mathrm{N} 1-\mathrm{H} 12$	$0.898(19)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	$1.500(5)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700	$\mathrm{C} 6-\mathrm{C} 7$	$1.516(5)$

C1-H1B	0.9700	C6-H6A	0.9700
C2-C3	1.517 (4)	C6-H6B	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	C7-N2	1.481 (4)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700	C7-H7A	0.9700
C3-C4	1.496 (5)	C7-H7B	0.9700
C3-H3A	0.9700	N2-H21	0.90 (2)
C3-H3B	0.9700	N2-H22	0.871 (18)
C4-C5	1.517 (4)	N2-H23	0.901 (18)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700		
C1-N1-H11	118 (4)	H4A-C4-H4B	107.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 12$	112 (3)	C6-C5-C4	113.8 (3)
$\mathrm{H} 11-\mathrm{N} 1-\mathrm{H} 12$	103 (4)	C6-C5-H5A	108.8
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	111.6 (3)	C4-C5-H5A	108.8
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3	C6-C5-H5B	108.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3	C4-C5-H5B	108.8
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.3	H5A-C5-H5B	107.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.3	C5-C6-C7	115.4 (3)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.0	C5-C6-H6A	108.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	114.1 (3)	C7-C6-H6A	108.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7	C5-C6-H6B	108.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7	C7-C6-H6B	108.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	H6A-C6-H6B	107.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	N2-C7-C6	112.0 (3)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6	N2-C7-H7A	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	114.2 (3)	C6-C7-H7A	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.7	N2-C7-H7B	109.2
C2-C3-H3A	108.7	C6-C7-H7B	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.7	H7A-C7-H7B	107.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.7	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 21$	102 (3)
H3A-C3-H3B	107.6	C7-N2-H22	111 (2)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	113.7 (3)	H21-N2-H22	100 (3)
C3-C4-H4A	108.8	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 23$	112.1 (19)
C5-C4-H4A	108.8	H21-N2-H23	119 (3)
C3-C4-H4B	108.8	H22-N2-H23	112 (3)
C5-C4-H4B	108.8		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-177.8 (3)	C3-C4-C5-C6	-177.0 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-178.7 (3)	C4-C5-C6-C7	177.6 (3)
C2-C3-C4-C5	178.8 (3)	C5-C6-C7-N2	-65.4 (4)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 11 \cdots \mathrm{I} 1$	$0.88(2)$	$2.98(4)$	$3.738(4)$	$145(5)$
$\mathrm{N} 1 — \mathrm{H} 12 \cdots \mathrm{I}^{\mathrm{i}}$	$0.90(2)$	$2.88(3)$	$3.706(3)$	$153(3)$
$\mathrm{N} 2 — \mathrm{H} 21 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.90(2)$	$1.87(3)$	$2.740(4)$	$164(5)$

supporting information

$\mathrm{N} 2 — \mathrm{H} 22 \cdots \mathrm{I} 1^{\mathrm{iii}}$	$0.87(2)$	$2.72(2)$	$3.579(3)$	$170(3)$
$\mathrm{N} 2 — \mathrm{H} 23 \cdots \mathrm{I} 1^{\text {iv }}$	$0.90(2)$	$2.83(2)$	$3.646(3)$	$152(2)$

Symmetry codes: (i) $x, y, z+1$; (ii) $-x+2, y+1 / 2,-z+1$; (iii) $-x+1, y+1 / 2,-z$; (iv) $-x+1, y+1 / 2,-z+1$.

