metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Disodium diaquabis(methylenediphosphonato- $\kappa^2 O, O'$)cobaltate(II) dihydrate

Kina van der Merwe,* Hendrik G. Visser and Johan A. Venter

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9330, South Africa

Correspondence e-mail: vandermerwe@gmail.com

Received 5 August 2011; accepted 20 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (P–C) = 0.001 Å; R factor = 0.019; wR factor = 0.055; data-to-parameter ratio = 13.0.

In the title compound, Na₂[Co(CH₄O₆P₂)₂(H₂O)₂]·2H₂O, the asymmetric unit is composed of one methylenediphosphonate ligand and one water molecule, which both are coordinated to a Co^{II} atom, as well as a non-coordinated water molecule and a sodium cation. The Co^{II} atom occupies a special position on a crystallographic inversion centre. The slightly distorted Co^{II}O₆ octahedral coordination environment is composed of two bidentate methylenediphosphonate ligands and two coordinated water molecules in *trans* positions. The sodium ion is octahedrally coordinated to six O atoms with Na–O distances ranging from 2.3149 (12) to 2.6243 (12) Å. An extensive three-dimensional network of intermolecular as well as intramolecular O–H···O and C–H···O hydrogen bonding interacions is present.

Related literature

For general background to organic diphosphonic acids, see: Vega *et al.* (1996). For related structures, see: Bon *et al.* (2010); DeLaMatter *et al.* (1973); Harmony *et al.* (1984); Jurisson *et al.* (1983); Van der Merwe *et al.* (2010). For bond lengths and angles in related structures, see: Bao *et al.* (2003); Cao *et al.* (2007); Gong *et al.* (2006); Van der Merwe *et al.* (2009); Visser *et al.* (2010); Yin *et al.* (2003).

Experimental

Crystal data

Na₂[Co(CH₄O₆P₂)₂(H₂O)₂]·2H₂O $M_r = 524.94$ Monoclinic, $P2_1/c$ a = 6.8694 (2) Å b = 13.2860 (4) Å c = 8.3541 (3) Å $\beta = 91.375$ (1)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS, Bruker, 2007) $T_{\rm min} = 0.474, T_{\rm max} = 0.863$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	7 restraints
$vR(F^2) = 0.055$	All H-atom parameters refined
S = 1.13	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
901 reflections	$\Delta \rho_{\rm min} = -0.57 \text{ e} \text{ Å}^{-3}$
46 parameters	

V = 762.23 (4) Å³

Mo $K\alpha$ radiation

 $0.52 \times 0.24 \times 0.09 \text{ mm}$

8742 measured reflections

1901 independent reflections

1838 reflections with $I > 2\sigma(I)$

 $\mu = 1.69 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.022$

Z = 2

Table 1

Selected bond lengths (Å).

-01 -07	2.0886 (10) 2.0900 (10)	Co1-O2 ⁱ	2.1141 (10)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2

Co

Co

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O8−H6···O7	0.86 (1)	1.88 (1)	2.7154 (15)	164 (2)
$C1 - H4 \cdot \cdot \cdot O1^{1}$	0.92 (2)	2.54 (2)	3.1449 (17)	123.9 (15)
C1−H3···O4 ⁱⁱ	0.92(2)	2.53 (2)	3.4366 (17)	168.4 (17)
O3−H2···O2 ⁱⁱ	0.81 (3)	1.84 (3)	2.6394 (14)	176 (3)
$O1-H1A\cdots O6^{iii}$	0.83 (2)	1.98 (2)	2.8008 (14)	173 (2)
O8−H7···O1 ⁱⁱⁱ	0.83 (1)	2.57 (2)	3.2763 (15)	143 (2)
$O1 - H1B \cdots O4^{iv}$	0.83 (2)	1.84 (2)	2.6634 (15)	175 (2)
$O5-H5\cdots O6^{v}$	0.82 (2)	1.81 (2)	2.6272 (14)	177 (3)
Symmetry codes:	(i) $-x + 1$,	-y + 1, -z + 1;	(ii) $x, -y +$	$\frac{1}{2}, z - \frac{1}{2};$ (iii)

Symmetry codes: (1) -x + 1, -y + 1, -z + 1; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2};$ (iii) -x, -y + 1, -z + 1; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2};$ (v) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The University of the Free State and Professor A. Roodt are gratefully acknowledged for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2520).

References

- Bao, S., Zheng, L., Liu, Y., Xu, W. & Feng, S. (2003). *Inorg. Chem.* 42, 5037–5039.
- Bon, V. V., Dudko, A. V., Kozachkova, A. N., Pekhnyo, V. I. & Tsaryk, N. V. (2010). Acta Cryst. E66, m537–m538.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2007). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, D., Li, Y. & Zheng, L. (2007). Inorg. Chem. 46, 7571-7578.
- DeLaMatter, D., McCullough, J. J. & Calvo, C. (1973). J. Phys. Chem. 77, 1146– 1148.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gong, Y., Tang, W., Hou, W., Zha, Z. & Hu, C. (2006). Inorg. Chem. 45, 4987–4995.

- Harmony, T. P., Knight, W. B., Dunaway-Mariano, D. & Sundaralingam, M. (1984). Inorg. Chem. 23, 2412–2415.
- Jurisson, S. S., Benedict, J. J., Elder, R. C., Whittle, R. & Deutsch, E. (1983). Inorg. Chem. 22, 1332–1338.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Van der Merwe, K. A., Visser, H. G. & Venter, J. A. (2009). Acta Cryst. E65, m1394.
- Van der Merwe, K., Visser, H. G. & Venter, J. A. (2010). Acta Cryst. E66, m1011-m1012.
- Vega, D., Baggio, R. & Garland, M. T. (1996). Acta Cryst. C52, 2198-2201.
- Visser, H. G., Venter, J. A. & Van der Merwe, K. A. (2010). Acta Cryst. E66, m159.
- Yin, P., Gao, S., Zheng, L. & Xin, X. (2003). Chem. Mater. 15, 3233-3236.

Acta Cryst. (2011). E67, m1468–m1469 [https://doi.org/10.1107/S1600536811038530]

Disodium diaquabis(methylenediphosphonato- $\kappa^2 O, O'$)cobaltate(II) dihydrate

Kina van der Merwe, Hendrik G. Visser and Johan A. Venter

S1. Comment

The title compound forms part of an ongoing study involving methylene diphosphonate, and its coordination to various metal cores.

In the past 20 years numerous diphosphonate compounds have undergone intensive pharmacological studies primarily because of their possible use in treating bone diseases. This can be attributed to the fact that bisphosphonic acids are excellent anti-hypercalcemics and have a high affinity for bone tissue (Vega *et al.*, 1996).

In the title compound, $Na_2[Co(CH_4O_6P_2)_2(H_2O)_2]\cdot 2H_2O$, (Fig. 1, Table 1), the asymmetric unit is composed of one methylene diphosphonate ligand and one aqueous molecule which are coordinated to a Co(II) atom, as well as a non-coordinated aqueous solvent molecule and a sodium cation. The Co(II) atom occupies a special position on a crystallographic inversion centre. The sodium ion is octahedrally coordinated to six oxygen atoms with Na—O distances ranging from 2.3149 (12) to 2.6243 (12) Å. The octahedral geometry around the Co^{II} metal center is slightly distorted with O—Co—O angles ranging between 86.63 (4) ° and 93.14 (4) °. The Co—O bond lengths vary between 2.0886 (10) and 2.1141 (10) Å. These distances correspond to literature values (Bao *et al.* (2003); Cao *et al.* (2007); Gong *et al.* (2006); Yin *et al.* (2003); Van der Merwe *et al.* (2009); Visser *et al.* (2010).

A three-dimensional network is provided by numerous C—H–O and O—H–O hydrogen bonds (Figs. 2, 3 and Table 2).

S2. Experimental

 $CoCl_2 GH_2O$ (0,1696 g, 0,00071 mol) and methylene diphosphonate (0,3726 g, 0,00212 mol) were dissolved in distilled water (5 cm³). Sodium hydroxide (3 cm³, 1 *M*) was gradually added to the solution mixture which was heated for three days at 413 K. The final pH of the solution was adjusted to 1.23 with hydrochloric acid. Pink crystals, suitable for X-ray diffraction, were obtained. (Yield: 27.6%)

S3. Refinement

All H atoms were located from difference Fourier maps and were refined isotropically without further restraints. The highest residual electron density was located 0.78 Å from C1.

Figure 1

Representation of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1-x, 1-y, -z].

Figure 2

The crystal packing of the title compound viewed along the *a* axis. Green dashed lines are employed to represent intermolecular hydrogen bonding and an orange dashed line was used to displace the intramolecular hydrogen bonding.

Figure 3

The packing diagram of the title compound viewed along the b axis. Green dashed lines are utilized to display the extensive intermolecular hydrogen bonding.

Disodium diaquabis (methylenediphosphonato- $\kappa^2 O, O'$) cobaltate (II) dihydrate

Crystal data

Na ₂ [Co(CH ₄ O ₆ P ₂) ₂ (H ₂ O) ₂]·2H ₂ O $M_r = 524.94$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.8694 (2) Å b = 13.2860 (4) Å c = 8.3541 (3) Å $\beta = 91.375$ (1)° V = 762.23 (4) Å ³ Z = 2	F(000) = 530 $D_x = 2.287 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6202 reflections $\theta = 2.9-28.4^{\circ}$ $\mu = 1.69 \text{ mm}^{-1}$ T = 100 K Plate, pink $0.52 \times 0.24 \times 0.09 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> , Bruker, 2007) $T_{\min} = 0.474, T_{\max} = 0.863$ 8742 measured reflections	1901 independent reflections 1838 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 9$ $k = -17 \rightarrow 16$ $l = -11 \rightarrow 8$

Refinement

Refinement on F^2	7 restraints
Least-squares matrix: full	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.019$	$w = 1/[\sigma^2(F_o^2) + (0.0289P)^2 + 0.4299P]$
$wR(F^2) = 0.055$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} = 0.001$
1901 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
146 parameters	$\Delta ho_{ m min}$ = -0.57 e Å ⁻³
Special details	

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.5	0.5	0.5	0.00488 (8)
P1	0.43774 (5)	0.30632 (3)	0.26142 (4)	0.00528 (9)
P2	0.17626 (5)	0.48657 (3)	0.20454 (4)	0.00578 (9)
Na1	0.06611 (8)	0.75775 (4)	0.22722 (7)	0.01006 (13)
01	0.33424 (15)	0.45566 (8)	0.69412 (12)	0.0092 (2)
O2	0.52678 (14)	0.35119 (7)	0.41366 (11)	0.00758 (19)
O3	0.61219 (15)	0.25484 (8)	0.17312 (12)	0.0084 (2)
O4	0.27445 (14)	0.23364 (8)	0.28565 (12)	0.0087 (2)
O5	0.17550 (15)	0.58645 (8)	0.10142 (12)	0.0091 (2)
O6	-0.02026 (14)	0.43517 (8)	0.18700 (11)	0.00828 (19)
07	0.23609 (15)	0.51625 (8)	0.37290 (12)	0.0081 (2)
O8	0.02069 (15)	0.67436 (8)	0.47388 (12)	0.0114 (2)
C1	0.3604 (2)	0.40539 (10)	0.12696 (15)	0.0072 (2)
H1A	0.241 (3)	0.4908 (15)	0.722 (3)	0.025 (6)*
H1B	0.321 (3)	0.3969 (13)	0.726 (3)	0.029 (6)*
H2	0.582 (4)	0.225 (2)	0.093 (3)	0.037 (7)*
Н3	0.320 (3)	0.3732 (15)	0.035 (2)	0.015 (5)*
H4	0.469 (3)	0.4420 (15)	0.103 (2)	0.012 (4)*
Н5	0.131 (4)	0.5780 (19)	0.011 (2)	0.038 (7)*
H6	0.092 (3)	0.6221 (13)	0.461 (3)	0.035 (5)*
H7	-0.091 (2)	0.6498 (18)	0.474 (3)	0.035 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.00514 (14)	0.00495 (14)	0.00451 (13)	-0.00021 (8)	-0.00063 (9)	-0.00021 (8)
P1	0.00519 (16)	0.00539 (17)	0.00524 (15)	0.00033 (12)	-0.00009 (11)	-0.00059 (11)
P2	0.00623 (17)	0.00582 (17)	0.00523 (17)	0.00061 (12)	-0.00118 (12)	-0.00022 (11)
Na1	0.0087 (3)	0.0113 (3)	0.0102 (3)	0.0003 (2)	-0.0008 (2)	0.0009 (2)
01	0.0100 (5)	0.0072 (5)	0.0105 (4)	0.0011 (4)	0.0035 (4)	0.0019 (4)
02	0.0107 (5)	0.0061 (5)	0.0059 (4)	0.0008 (4)	-0.0019 (3)	-0.0008(3)
O3	0.0068 (5)	0.0104 (5)	0.0081 (4)	0.0017 (4)	-0.0002 (4)	-0.0032 (4)

				/		
04	0.0072 (5)	0.0074 (5)	0.0116 (4)	-0.0008(4)	0.0001 (3)	0.0000 (4)
05	0.0121 (5)	0.0067 (5)	0.0084 (4)	0.0001 (4)	-0.0035 (4)	0.0013 (4)
06	0.0071 (4)	0.0094 (5)	0.0083 (4)	-0.0004 (4)	-0.0013 (3)	-0.0002 (4)
O7	0.0080 (5)	0.0098 (5)	0.0064 (4)	0.0021 (4)	-0.0021 (3)	-0.0015 (3)
08	0.0091 (5)	0.0141 (5)	0.0109 (5)	0.0018 (4)	0.0006 (4)	-0.0003 (4)
C1	0.0076 (6)	0.0077 (6)	0.0061 (6)	0.0001 (5)	0.0000 (5)	0.0000 (5)

Geometric parameters (Å, °)

<u> </u>	a and (1 a)		a a 4a 4 (1 a)
Col—Ol	2.0886 (10)	Nal—O3 ^m	2.3431 (12)
Col—Ol ¹	2.0886 (10)	Nal—O4 ^{IV}	2.3612 (11)
Co1—07	2.0900 (10)	Na1—O6 ^{iv}	2.4860 (12)
Col—O7	2.0900 (10)	Nal—O5	2.6243 (12)
Co1—O7 ⁱ	2.0900 (10)	O1—H1A	0.831 (16)
Co1—O2	2.1141 (10)	O1—H1B	0.830 (16)
Co1—O2 ⁱ	2.1141 (10)	O3—Na1 ^v	2.3431 (12)
P1—O4	1.4975 (10)	O3—H2	0.81 (3)
P1—O2	1.5198 (10)	O4—Na1 ^{vi}	2.3612 (11)
P1—O3	1.5781 (10)	O5—H5	0.815 (16)
P1—C1	1.8021 (14)	O6—Na1 ^{vi}	2.4860 (12)
P2—O7	1.5083 (10)	O8—Na1 ^{vii}	2.3149 (12)
P2—O7	1.5083 (10)	O8—H6	0.856 (13)
P2—O6	1.5169 (10)	O8—H7	0.834 (13)
P2—O5	1.5820 (10)	С1—Н3	0.92 (2)
P2—C1	1.7954 (14)	C1—H4	0.92 (2)
Na1—O8 ⁱⁱ	2.3149 (12)		
01-Co1-O1 ⁱ	180	O5—P2—C1	107.49 (6)
O1—Co1—O7	86.63 (4)	O8 ⁱⁱ —Na1—O3 ⁱⁱⁱ	115.88 (4)
O1 ⁱ Co1O7	93.37 (4)	O8 ⁱⁱ —Na1—O4 ^{iv}	84.24 (4)
O1—Co1—O7	86.63 (4)	O3 ⁱⁱⁱ —Na1—O4 ^{iv}	159.88 (4)
O1 ⁱ Co1O7	93.37 (4)	O8 ⁱⁱ —Na1—O6 ^{iv}	83.04 (4)
01—Co1—O7 ⁱ	93.37 (4)	O3 ⁱⁱⁱ —Na1—O6 ^{iv}	92.19 (4)
O1 ⁱ —Co1—O7 ⁱ	86.63 (4)	O4 ^{iv} —Na1—O6 ^{iv}	90.55 (4)
O7—Co1—O7 ⁱ	180	O8 ⁱⁱ —Na1—O5	90.31 (4)
O7—Co1—O7 ⁱ	180	O3 ⁱⁱⁱ —Na1—O5	81.45 (4)
O1—Co1—O2	93.14 (4)	O4 ^{iv} —Na1—O5	99.03 (4)
O1 ⁱ Co1O2	86.86 (4)	O6 ^{iv} —Na1—O5	167.75 (4)
O7—Co1—O2	90.28 (4)	Col—Ol—H1A	119.7 (16)
O7—Co1—O2	90.28 (4)	Co1—O1—H1B	125.4 (16)
O7 ⁱ —Co1—O2	89.73 (4)	H1A—O1—H1B	110 (2)
O1—Co1—O2 ⁱ	86.86 (4)	P1-O2-Co1	128.01 (6)
O1 ⁱ —Co1—O2 ⁱ	93.14 (4)	P1—O3—Na1 ^v	123.17 (6)
O7—Co1—O2 ⁱ	89.72 (4)	P1—O3—H2	114.8 (19)
O7—Co1—O2 ⁱ	89.72 (4)	Na1 ^v —O3—H2	122.0 (19)
$O7^{i}$ —Co1— $O2^{i}$	90.27 (4)	P1	130.61 (6)
O2—Co1—O2 ⁱ	180.00 (5)	P2—O5—Na1	120.44 (5)
O4—P1—O2	115.31 (6)	Р2—О5—Н5	112.6 (18)

04 D1 02	111 21 (()	No.1 05 115	112((19))
04—P1—03	111.31 (6)	Na1-05-H5	112.0 (18)
02—PI—03	105.44 (6)	$P2 = O6 = Na1^{v_1}$	121.18 (5)
O4—P1—C1	110.17 (6)	P2—O7—Co1	131.33 (6)
O2—P1—C1	109.98 (6)	Na1 ^{vii} —O8—H6	111.4 (16)
O3—P1—C1	103.94 (6)	Na1 ^{vii} —O8—H7	104.6 (17)
O7—P2—O6	115.45 (6)	H6—O8—H7	102 (2)
O7—P2—O6	115.45 (6)	P2—C1—P1	114.42 (7)
O7—P2—O5	106.61 (6)	P2—C1—H3	112.4 (12)
O7—P2—O5	106.61 (6)	P1—C1—H3	105.2 (12)
O6—P2—O5	109.49 (6)	P2—C1—H4	110.3 (12)
O7—P2—C1	108.36 (6)	P1—C1—H4	107.1 (12)
O7—P2—C1	108.36 (6)	H3—C1—H4	107.0 (17)
O6—P2—C1	109.14 (6)		
O4—P1—O2—Co1	-108.16 (8)	O6 ^{iv} —Na1—O5—P2	140.99 (16)
O3—P1—O2—Co1	128.63 (7)	Na1 ⁱⁱ —Na1—O5—P2	-161.48 (7)
C1—P1—O2—Co1	17.13 (9)	Na1 ^{vii} —Na1—O5—P2	16.59 (7)
O1—Co1—O2—P1	111.59 (7)	O7—P2—O6—Na1 ^{vi}	-74.24 (8)
O1 ⁱ —Co1—O2—P1	-68.41 (7)	O7—P2—O6—Na1 ^{vi}	-74.24 (8)
O7—Co1—O2—P1	24.95 (7)	O5—P2—O6—Na1 ^{vi}	165.48 (5)
O7—Co1—O2—P1	24.95 (7)	C1—P2—O6—Na1 ^{vi}	48.07 (7)
O7 ⁱ —Co1—O2—P1	-155.05 (7)	O6—P2—O7—Co1	134.82 (7)
O4—P1—O3—Na1 ^v	-126.78 (7)	O5—P2—O7—Co1	-103.34(8)
O2—P1—O3—Na1 ^v	-1.06 (8)	C1—P2—O7—Co1	12.09 (10)
C1—P1—O3—Na1 ^v	114.66 (7)	O1—Co1—O7—P2	-136.95 (8)
O2—P1—O4—Na1 ^{vi}	97.12 (8)	$O1^{i}$ —Co1—O7—P2	43.05 (8)
O3—P1—O4—Na1 ^{vi}	-142.84(7)	O2—Co1—O7—P2	-43.82(8)
$C1$ — $P1$ — $O4$ — $Na1^{vi}$	-28.09(9)	$O2^{i}$ —Co1—O7—P2	136.18 (8)
07—P2—05—Na1	-35.73(8)	07 - P2 - C1 - P1	46.92 (9)
07 - P2 - 05 - Na1	-3573(8)	07 - P2 - C1 - P1	46 92 (9)
06-P2-05-Na1	89.81 (7)	O6-P2-C1-P1	-79.55(8)
$C1_P2_O5_Na1$	-151.75(6)	00 - P2 - C1 - P1	161 78 (7)
O^{2i} Nal O5 P2	-162 13 (6)	$O_4 P_1 C_1 P_2$	66 52 (0)
$\begin{array}{c} 0.0 \\$	102.15 (0) 81 72 (6)	$O_{1} = 0 = 0 = 0$	-61.67(0)
$O_3 = Na1 = O_3 = P_2$	01.72(0)	O_2 P_1 C_1 P_2	-01.0/(9)
04	-//.92(/)	03-11-01-12	-1/4.14(/)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, -*y*+3/2, *z*-1/2; (iii) -*x*+1, *y*+1/2, -*z*+1/2; (iv) -*x*, *y*+1/2, -*z*+1/2; (v) -*x*+1, *y*-1/2, -*z*+1/2; (vi) -*x*, *y*-1/2, -*z*+1/2; (vi) *x*, -*y*+3/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
O8—H6…O7	0.86(1)	1.88 (1)	2.7154 (15)	164 (2)
C1—H4···O1 ⁱ	0.92 (2)	2.54 (2)	3.1449 (17)	123.9 (15)
C1—H3···O4 ^{viii}	0.92 (2)	2.53 (2)	3.4366 (17)	168.4 (17)
O3—H2···O2 ^{viii}	0.81 (3)	1.84 (3)	2.6394 (14)	176 (3)
O1—H1A···O6 ^{ix}	0.83 (2)	1.98 (2)	2.8008 (14)	173 (2)
O8—H7…O1 ^{ix}	0.83 (1)	2.57 (2)	3.2763 (15)	143 (2)

O1— $H1B$ ···O4 ^x	0.83 (2)	1.84 (2)	2.6634 (15)	175 (2)
O5—H5…O6 ^{xi}	0.82 (2)	1.81 (2)	2.6272 (14)	177 (3)

Symmetry codes: (i) -x+1, -y+1, -z+1; (viii) x, -y+1/2, z-1/2; (ix) -x, -y+1, -z+1; (x) x, -y+1/2, z+1/2; (xi) -x, -y+1, -z.