Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Bromo-4-methyl-2-nitrobenzene

Ping Li, Hai Wang, XiMan Zhang and HongYu Chen*
School of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China
Correspondence e-mail: Binboll@126.com

Received 15 August 2011; accepted 7 September 2011

Key indicators: single-crystal X-ray study; $T=181 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$; R factor $=0.053 ; w R$ factor $=0.131$; data-to-parameter ratio $=14.2$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrNO}_{2}$, the dihedral angle between the nitro group and the phenyl ring is $14.9(11)^{\circ}$.

Related literature

For related structures, see: Ellena et al. (1996); Gatilov et al. (1975); Fricke et al. (2002). The title compound is an intermediate in the synthesis of a pyrethroid insecticide, see: Zou et al. (2002). For the synthesis, see: Moodie et al. (1976).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrNO}_{2}$
$M_{r}=216.04$
Orthorhombic, Pna2 $_{1}$
$a=13.016$ (5) A
$b=14.617$ (5) \AA
$c=4.037$ (5) \AA
$V=768.1(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=5.30 \mathrm{~mm}^{-1}$
$T=181 \mathrm{~K}$
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Oxford Diffraction CCD areadetector diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.627, T_{\text {max }}=0.690$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.131$
$S=1.19$
1446 reflections
102 parameters
25 restraints

H -atom parameters constrained
3749 measured reflections 1446 independent reflections 1189 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$
$\Delta \rho_{\text {max }}=0.85$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.45$ e \AA^{-3}
Absolute structure: Flack (1983), 556 Friedel pairs
Flack parameter: -0.04 (4)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis $P R O$; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $S H E L X T L$; software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by Shandong College research program (J11LB15) and the Young and Middle-aged Scientist Research Awards Foundation of Shandong Province (BS2010CL045)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2119).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Ellena, J., Punte, G. \& Rivero, B. E. (1996). Acta Cryst. C52, 2074-2076.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fricke, T., Dickmans, A., Jana, U., Zabel, M., Jones, P. G., Dix, I., Konig, B. \& Herges, R. (2002). Z. Naturforsch. Teil B, 57, 937-945
Gatilov, Yu. V., Bokii, N. G. \& Struchkov, Yu. T. (1975). Zh. Strukt. Khim. 16, 702-704.
Moodie, R. B., Schofield, K. \& Weston, J. B. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1089-1100.
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
Zou, X. Z. \& Qiu, Z. X. (2002). J. Fluor. Chem. 116, 173-179.

supporting information

Acta Cryst. (2011). E67, o2641 [https://doi.org/10.1107/S1600536811036439]

1-Bromo-4-methyl-2-nitrobenzene

Ping Li, Hai Wang, XiMan Zhang and HongYu Chen

S1. Comment

The title compound is a synthetic intermediate in the synthesis of 4-methoxymethylbenzyl alcohol containing bromine, which is an alcohol moiety having insecticidal activity of pyrethroids (Zou et al., 2002). It is a pale yellow liquid, but needle-like crystals were obtained by a slow cooling process from room temperature to $0^{\circ} \mathrm{C}$ and the crystal structure was determined at 181 K (Fig. 1).
The dihedral angle between the plane of the nitro group and the best plane through the phenyl ring is $14.9(11)^{\circ}$. In nitrobenzene structures, the dihedral angle between the nitro group and the phenyl ring is sensitive to its chemial environment, especially the ortho group. In the crystal structure of 4-methyl-2-nitroaniline (Ellena et al.,1996), the nitro group having an amino group as neighbour is almost coplanar with the phenyl ring [dihedral angle $3.2(3)^{\circ}$]. With larger methyl groups as neighbour in pentamethylnitrobenzene (Gatilov et al.,1975) the dihedral angle is $86.1(5)^{\circ}$. In the crystal structure of the analogous compound 2-bromo-3-nitrotoluene (Fricke et al.,2002), the dihedral angle between the nitro group and the phenyl ring is 54.1 (4) ${ }^{\circ}$.
There are no obvious interactions between neighbouring molecules in the packing.

S2. Experimental

The title compound was synthesised as described by Moodie et al. (1976). The obtained compound is a pale yellow liquid at room temperature. The needle-like crystal was obtained by slowly cooling from room temperature to $0{ }^{\circ} \mathrm{C}$.

S3. Refinement

All H atoms were geometrically fixed and allowed to ride on their attached atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for the phenyl group and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}=0.96 \AA$ for the methyl group and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. The U_{ij} components of O 1 and O 2 have been restrained to isotropic behavior and those of the $\mathrm{N}-\mathrm{O}$ bonds to have the same U_{ij} components.

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

1-Bromo-4-methyl-2-nitrobenzene

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrNO}_{2}$
$M_{r}=216.04$
Orthorhombic, $\mathrm{Pna2}_{1}$
Hall symbol: P 2c - 2 n
$a=13.016$ (5) Å
$b=14.617$ (5) \AA
$c=4.037$ (5) \AA
$V=768.1(10) \AA^{3}$
$Z=4$

Data collection

Oxford Diffraction MODEL NAME? CCD
area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$F(000)=424$
$D_{\mathrm{x}}=1.868 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1057 reflections
$\theta=3.1-28.9^{\circ}$
$\mu=5.30 \mathrm{~mm}^{-1}$
$T=181 \mathrm{~K}$
BLOCK, pale yellow
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$
phi and ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\min }=0.627, T_{\max }=0.690$
3749 measured reflections

1446 independent reflections
1189 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=3.1^{\circ}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.131$
$S=1.19$
1446 reflections
102 parameters
25 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$h=-13 \rightarrow 16$
$k=-18 \rightarrow 18$
$l=-4 \rightarrow 5$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0631 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.85$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.45$ e \AA^{-3}
Absolute structure: Flack (1983), 556 Friedel pairs
Absolute structure parameter: -0.04 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$0.38514(5)$	$0.46896(5)$	$-0.1387(5)$	$0.0399(3)$
C1	$0.1871(6)$	$0.4507(5)$	$0.1963(18)$	$0.0252(17)$
C2	$0.2674(5)$	$0.4080(5)$	$0.0313(18)$	$0.0233(16)$
C3	$0.2651(6)$	$0.3145(5)$	$-0.003(2)$	$0.0307(18)$
H3	0.3182	0.2847	-0.1126	0.037^{*}
C4	$0.1847(6)$	$0.2649(5)$	$0.1252(19)$	$0.0298(17)$
H4	0.1855	0.2016	0.1034	0.036^{*}
C5	$0.1030(6)$	$0.3055(6)$	$0.2844(19)$	$0.035(3)$
C6	$0.1046(5)$	$0.4002(5)$	$0.314(2)$	$0.026(2)$
H6	0.0496	0.4301	0.4135	0.032^{*}
C7	$0.0156(6)$	$0.2492(6)$	$0.422(2)$	$0.044(2)$
H7A	0.0271	0.1857	0.3726	0.067^{*}
H7B	-0.0478	0.2686	0.3221	0.067^{*}
H7C	0.0118	0.2575	0.6572	0.067^{*}
N1	$0.1794(8)$	$0.5505(5)$	$0.2441(19)$	$0.046(2)$
O1	$0.1192(6)$	$0.5797(5)$	$0.451(2)$	$0.073(3)$
O2	$0.2367(7)$	$0.5997(5)$	$0.110(2)$	$0.085(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0283(4)$	$0.0560(5)$	$0.0354(4)$	$-0.0095(3)$	$0.0030(6)$	$0.0041(6)$
C1	$0.023(4)$	$0.030(4)$	$0.022(4)$	$0.004(3)$	$-0.010(3)$	$-0.002(3)$
C2	$0.006(4)$	$0.040(4)$	$0.024(4)$	$-0.002(3)$	$0.001(3)$	$0.008(3)$
C3	$0.014(4)$	$0.043(4)$	$0.034(4)$	$0.004(3)$	$-0.004(3)$	$-0.001(3)$
C4	$0.025(5)$	$0.030(4)$	$0.035(4)$	$-0.001(3)$	$-0.012(3)$	$0.002(3)$
C5	$0.020(4)$	$0.045(4)$	$0.042(7)$	$-0.012(3)$	$-0.014(3)$	$0.014(4)$
C6	$0.018(4)$	$0.040(4)$	$0.021(6)$	$0.001(3)$	$0.002(3)$	$-0.003(4)$
C7	$0.044(5)$	$0.055(5)$	$0.034(5)$	$-0.021(4)$	$-0.005(4)$	$0.001(4)$
N1	$0.061(5)$	$0.034(4)$	$0.043(4)$	$0.003(4)$	$0.018(3)$	$0.000(3)$
O1	$0.090(5)$	$0.050(4)$	$0.079(6)$	$0.000(3)$	$0.037(4)$	$-0.012(3)$
O2	$0.099(5)$	$0.053(4)$	$0.104(5)$	$-0.006(4)$	$0.053(5)$	$-0.003(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 2$	1.901 (7)	C5-C6	1.389 (12)
C1-C6	1.386 (10)	C5-C7	1.510 (10)
$\mathrm{C} 1-\mathrm{C} 2$	1.389 (10)	C6-H6	0.9300
$\mathrm{C} 1-\mathrm{N} 1$	1.475 (10)	C7-H7A	0.9600
C2-C3	1.373 (10)	C7-H7B	0.9600
C3-C4	1.373 (11)	C7-H7C	0.9600
C3-H3	0.9300	$\mathrm{N} 1-\mathrm{O} 2$	1.170 (10)
C4-C5	1.377 (11)	N1-O1	1.222 (10)
C4-H4	0.9300		
C6- $\mathrm{C} 1-\mathrm{C} 2$	120.5 (7)	C6-C5-C7	121.5 (8)
C6- $\mathrm{C} 1-\mathrm{N} 1$	115.5 (7)	C1-C6-C5	120.9 (7)
C2-C1-N1	123.9 (7)	C1-C6-H6	119.6
C3-C2-C1	118.6 (7)	C5-C6-H6	119.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 1$	116.6 (5)	C5-C7-H7A	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	124.7 (5)	C5-C7-H7B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.3 (7)	H7A-C7-H7B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9	C5-C7- H 7 C	109.5
C2-C3-H3	119.9	H7A-C7- H 7 C	109.5
C3-C4-C5	122.4 (7)	H7B-C7-H7C	109.5
C3-C4-H4	118.8	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	120.7 (9)
C5-C4-H4	118.8	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	120.3 (8)
C4-C5-C6	117.2 (7)	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	118.6 (8)
C4-C5-C7	121.3 (7)		

