

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(guanidinium) chloranilate

Konstantin A. Udachin,^a* Md. Badruz Zaman^{a,b} and John A. Ripmeester^a

^aSteacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex, Ottawa, Ontario, K1A 0R6, Canada, and ^bCenter of Excellence for Research in Engineering Materials, Faculty of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Correspondence e-mail: Kostia.Oudatchin@nrc-cnrc.gc.ca

Received 10 August 2011; accepted 6 September 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.026; wR factor = 0.078; data-to-parameter ratio = 14.4.

The asymmetric unit of the title co-crystal, $2CH_6N_3^+$.- $C_6Cl_2O_4^{2-}$, contains one half of a chloranilate anion and one guanidinium cation, which are connected by strong N-H···O hydrogen bonds into a two-dimensional network.

Related literature

For organic co-crystals containing 2,5-dihydroxy-3,6-dichloro-1,4-benzoquinone (chloranilic acid), see: Andersen & Andersen (1975); Horiuchi *et al.* (2005, 2007); Zaman *et al.* (1999*a,b*, 2010). For inorganic co-ordination polymers containing chloranilic acid, see: Kitagawa *et al.* (2002). For guanidine and guanidinium structures, see: Abrahams *et al.* (2004, 2005); Best *et al.* (2003); Said *et al.* (2006); Smith & Wermuth (2010, 2011).

Experimental

Crystal data

 $\begin{array}{l} 2 \mathrm{CH_6N_3^+ \cdot C_6Cl_2O_4^{2-}} \\ M_r = 327.14 \\ \mathrm{Monoclinic}, \ C2/c \\ a = 19.5224 \ (14) \ \mathrm{\AA} \\ b = 3.7316 \ (3) \ \mathrm{\AA} \\ c = 18.4103 \ (14) \ \mathrm{\AA} \\ \beta = 116.087 \ (1)^\circ \end{array}$

 $V = 1204.56 (16) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.57 \text{ mm}^{-1}\) T = 173 K 0.45 \times 0.40 \times 0.30 \text{ mm}\) 6965 measured reflections

 $R_{\rm int} = 0.020$

1674 independent reflections

1525 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS, Sheldrick, 1996) $T_{min} = 0.785, T_{max} = 0.849$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ 116 parameters $wR(F^2) = 0.078$ All H-atom parameters refinedS = 1.08 $\Delta \rho_{max} = 0.47 \ e \ Å^{-3}$ 1674 reflections $\Delta \rho_{min} = -0.25 \ e \ Å^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H2···O3	0.85 (2)	2.32 (2)	3.0504 (13)	144.4 (16)
$N1 - H1 \cdots O2^{i}$	0.901 (17)	2.117 (17)	2.8978 (13)	144.4 (15)
$N1 - H1 \cdots O3^{i}$	0.901 (17)	2.303 (18)	3.0555 (13)	140.9 (15)
$N2 - H3 \cdot \cdot \cdot O3$	0.818 (19)	2.161 (19)	2.9337 (14)	157.7 (17)
$N3 - H6 \cdot \cdot \cdot O2^{i}$	0.79 (2)	2.21 (2)	2.9016 (14)	146.3 (18)
$N3-H5\cdots O2^{ii}$	0.88 (2)	2.14 (2)	2.9586 (13)	154.4 (17)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{5}{2}, -z$; (ii) $x, -y + 3, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS* (Dowty, 1999); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2118).

References

- Abrahams, B. E., Haywood, M. G., Hudson, T. A. & Robson, R. (2004). Angew. Chem. Int. Ed. 43, 6157–6160.
- Abrahams, B. F., Haywood, M. G. & Robson, R. (2005). J. Am. Chem. Soc. 127, 816–817.
- Andersen, E. K. & Andersen, I. G. K. (1975). Acta Cryst. B31, 379-383.
- Best, M. D., Tobey, S. L. & Anslyn, E. V. (2003). Coord. Chem. Rev. 240, 3–15.
- Bruker (2003). *SMART* and *SAINT-Plus*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005). *Nat. Mater.* 4, 163–166.

Horiuchi, S., Kumaia, R. & Tokura, Y. (2007). *Chem. Commun.* pp. 2321–2329.

- Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34
- Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o575-o580.
- Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, 01645.
- Zaman, M. B. & Ripmeester, J. A. (2010). Supramol. Chem. 22, 582-585.
- Zaman, M. B., Tomura, M. & Yamashita, Y. (1999a). Chem. Commun. pp. 999–1000.
- Zaman, M. B., Tomura, M., Yamashita, Y., Sayaduzzaman, M. & Chowdhury, A. M. S. (1999b). CrystEngComm, 1, 36–38.

supporting information

Acta Cryst. (2011). E67, o2625 [https://doi.org/10.1107/S1600536811036373]

Bis(guanidinium) chloranilate

Konstantin A. Udachin, Md. Badruz Zaman and John A. Ripmeester

S1. Comment

The co-crystallization of chloranilic acid and guanidine was carried out in methanol resulting in the co-crystal $2CH_6N_3^+$. $C_6O_4Cl_2^{2-}$ (Fig. 1). The chloranilic acid molecule is centro-symmetric and contains two hydrogen bond donors and two hydrogen bond acceptors and is, therefore, capable of participating in multiple hydrogen bonds. It forms 2D-sheet-like networks through N3—H5···O2 hydrogen bonds as shown in Figure 2. There are three N—H bonds in guanidine that connect with the O2 and O3 atoms of the chloranilic acid and form a one-dimensional molecular supramolecular structure. Two of these one-dimensional structures are again connected *via* N3—H5···O2 hydrogen bonds and form a two-dimensional network. Details of hydrogen-bonds are shown in Table 1.

S2. Experimental

Crystals were grown by slow evaporation of a methanol solution under ambient conditions containing a 1:1 stoichiometric quantity of guanidinium carbonate (Aldrich, 98%) and chloranilic acid (Aldrich, 99%).

S3. Refinement

Hydrogen atoms were found from the difference electron density maps and refined with isotropic temperature factors.

Figure 1

Molecular structure and atom naming scheme. Displacement ellipsoids are drawn at the 50% probability level. Grown fragment generated by symmetry codes: (a) - x, 2 - y, - z; (b) 1/2 - x, 2.5 - y, - z.

Figure 2

Packing diagram of the hydrogen-bonded framework structure of co-crystals viewed down the *b* axis, showing hydrogenbonding associations as thin lines (H atoms are omitted).

Bis(guanidinium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-bis(olate)

Crystal data

 $2CH_6N_3^+ \cdot C_6Cl_2O_4^{2-}$ $M_r = 327.14$ Monoclinic, C2/cHall symbol: -C 2yc *a* = 19.5224 (14) Å b = 3.7316(3) Å *c* = 18.4103 (14) Å $\beta = 116.087 (1)^{\circ}$ $V = 1204.56 (16) \text{ Å}^3$ Z = 4Data collection Bruker SMART 1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans

F(000) = 672 $D_x = 1.804 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71070 \text{ Å}$ Cell parameters from 220 reflections $\theta = 4.0-29.0^{\circ}$ $\mu = 0.57 \text{ mm}^{-1}$ T = 173 KBlock, yellow $0.45 \times 0.40 \times 0.30 \text{ mm}$

Absorption correction: multi-scan (*SADABS*, Sheldrick, 1996) $T_{min} = 0.785$, $T_{max} = 0.849$ 6965 measured reflections 1674 independent reflections

1525 reflections with $I > 2\sigma(I)$	$h = -27 \rightarrow 27$
$R_{\rm int} = 0.020$	$k = -5 \rightarrow 5$
$\theta_{\rm max} = 29.6^{\circ}, \theta_{\rm min} = 2.3^{\circ}$	$l = -25 \rightarrow 25$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from
$wR(F^2) = 0.078$	neighbouring sites
<i>S</i> = 1.08	All H-atom parameters refined
1674 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0494P)^2 + 0.7637P]$
116 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.036370 (14)	0.71393 (8)	0.174949 (15)	0.01677 (10)
O2	0.14122 (4)	1.0852 (3)	0.12281 (5)	0.01823 (18)
O3	0.11119 (5)	1.3347 (3)	-0.02492 (5)	0.01949 (19)
N1	0.23429 (6)	1.5093 (3)	-0.07912 (6)	0.0213 (2)
H2	0.2183 (11)	1.461 (6)	-0.0438 (12)	0.037 (5)*
H1	0.2810 (10)	1.436 (5)	-0.0711 (10)	0.028 (4)*
N2	0.11581 (6)	1.7324 (3)	-0.16016 (7)	0.0201 (2)
H4	0.0871 (10)	1.852 (5)	-0.1996 (11)	0.024 (4)*
Н3	0.1026 (10)	1.648 (5)	-0.1273 (11)	0.030 (5)*
N3	0.21154 (6)	1.7664 (3)	-0.20145 (7)	0.0211 (2)
H6	0.2549 (12)	1.736 (5)	-0.1912 (12)	0.034 (5)*
Н5	0.1782 (11)	1.824 (6)	-0.2505 (13)	0.039 (5)*
C1	0.01581 (6)	0.8726 (3)	0.07862 (6)	0.0143 (2)
C2	0.07504 (6)	1.0395 (3)	0.06811 (6)	0.0140 (2)
C3	0.05815 (6)	1.1811 (3)	-0.01681 (6)	0.0139 (2)
C4	0.18720 (6)	1.6695 (3)	-0.14746 (7)	0.0154 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Cll	0.01745 (15)	0.02061 (16)	0.01101 (15)	-0.00081 (9)	0.00514 (11)	0.00188 (9)
02	0.0120 (3)	0.0267 (4)	0.0132 (4)	-0.0009 (3)	0.0030 (3)	0.0000 (3)

supporting information

O3	0.0147 (4)	0.0274 (5)	0.0165 (4)	-0.0040 (3)	0.0069 (3)	0.0016 (3)
N1	0.0181 (5)	0.0293 (5)	0.0165 (5)	0.0044 (4)	0.0077 (4)	0.0056 (4)
N2	0.0150 (4)	0.0270 (5)	0.0191 (5)	0.0023 (4)	0.0082 (4)	0.0045 (4)
N3	0.0154 (5)	0.0326 (6)	0.0154 (5)	0.0012 (4)	0.0069 (4)	0.0049 (4)
C1	0.0139 (4)	0.0182 (5)	0.0099 (4)	-0.0003 (4)	0.0043 (4)	0.0014 (4)
C2	0.0133 (4)	0.0161 (5)	0.0119 (4)	0.0007 (4)	0.0051 (4)	-0.0008 (4)
C3	0.0129 (5)	0.0166 (5)	0.0120 (5)	0.0004 (4)	0.0053 (4)	0.0000 (4)
C4	0.0142 (5)	0.0168 (5)	0.0142 (5)	-0.0013 (4)	0.0052 (4)	-0.0015 (4)

Geometric parameters (Å, °)

Cl1—C1	1.7409 (11)	N2—H3	0.818 (19)
O2—C2	1.2522 (13)	N3—C4	1.3267 (15)
O3—C3	1.2487 (13)	N3—H6	0.79 (2)
N1-C4	1.3297 (15)	N3—H5	0.88 (2)
N1—H2	0.85 (2)	C1—C2	1.3997 (14)
N1—H1	0.901 (17)	C1-C3 ⁱ	1.4051 (14)
N2C4	1.3287 (14)	C2—C3	1.5423 (15)
N2—H4	0.827 (18)	C3—C1 ⁱ	1.4052 (14)
C4—N1—H2	118.9 (13)	$C3^{i}$ — $C1$ — $C11$	118.10 (8)
C4—N1—H1	121.3 (11)	O2—C2—C1	124.91 (10)
H2—N1—H1	119.6 (17)	O2—C2—C3	116.98 (9)
C4—N2—H4	120.2 (12)	C1—C2—C3	118.10 (9)
C4—N2—H3	116.7 (13)	O3—C3—C1 ⁱ	125.41 (10)
H4—N2—H3	123.1 (17)	O3—C3—C2	117.36 (9)
C4—N3—H6	118.7 (14)	$C1^{i}$ — $C3$ — $C2$	117.23 (9)
C4—N3—H5	119.3 (13)	N3—C4—N2	120.90 (11)
H6—N3—H5	121.0 (18)	N3—C4—N1	120.33 (11)
C2-C1-C3 ⁱ	124.66 (10)	N2—C4—N1	118.76 (11)
C2C1Cl1	117.24 (8)		

Symmetry code: (i) -x, -y+2, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N1—H2…O3	0.85 (2)	2.32 (2)	3.0504 (13)	144.4 (16)
N1—H1···O2 ⁱⁱ	0.901 (17)	2.117 (17)	2.8978 (13)	144.4 (15)
N1—H1···O3 ⁱⁱ	0.901 (17)	2.303 (18)	3.0555 (13)	140.9 (15)
N2—H3…O3	0.818 (19)	2.161 (19)	2.9337 (14)	157.7 (17)
N3—H6…O2 ⁱⁱ	0.79 (2)	2.21 (2)	2.9016 (14)	146.3 (18)
N3—H5····O2 ⁱⁱⁱ	0.88 (2)	2.14 (2)	2.9586 (13)	154.4 (17)

Symmetry codes: (ii) -*x*+1/2, -*y*+5/2, -*z*; (iii) *x*, -*y*+3, *z*-1/2.