Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-[4-(2-Chlorophenyl)but-3-en-2-ylidene1malononitrile

Tai-Ran Kang

College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: kangtairan@sina.com

Received 11 September 2011; accepted 13 September 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.140; data-to-parameter ratio = 14.2.

There are two independent but virtually identical molecules in the asymmetric unit of the title compound, $C_{13}H_{19}ClN_2$. Each molecular skeleton displays an approximately planar structure except for the methyl group [the r.m.s. deviations for all 16 non-H atoms are 0.039 (molecule 1) and 0.056 Å (molecule 2)]. An *E* configuration is found about each of the C=Cbonds. The crystal packing is stabilized by C-H···N interactions that connect the independent molecules into supramolecular chains along the *c*-axis direction.

Related literature

For the use of malononitrile-containing compounds as building blocks in synthesis, see: Liu et al. (2002); Sepiol & Milart (1985); Zhang et al. (2003). For a related structure, see: Kang & Chen (2009).

Experimental

Crystal data C13H9ClN2

 $M_r = 228.67$

Triclinic, $P\overline{1}$
a = 7.7177 (2) Å
b = 11.0539 (5) Å
c = 14.7236 (5) Å
$\alpha = 91.260 \ (3)^{\circ}$
$\beta = 103.992 \ (3)^{\circ}$
$\gamma = 106.357 \ (3)^{\circ}$

Data collection

A

ŀ K

Oxford Diffraction Xcalibur	Diffraction 2009)
Samphine? Comini ultre	T 0 455 T 0 502
Sapphires Gemini ultra	$I_{\min} = 0.433, \ I_{\max} = 0.302$
diffractometer	9739 measured reflections
Absorption correction: multi-scan	4135 independent reflections
(CrysAlis PRO; Oxford	3770 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.027$
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.048$	291 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
4135 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$C10-H10C\cdots N3^{i}$	0.96	2.62	3.564 (3)	166 (1)		
Symmetry code: (i) $x, y, z + 1$.						

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Testing Centre of Sichuan University for the diffraction measurements and are grateful for financial support from China West Normal University (No. 10ZB016).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2789).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, 03164.
- Liu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem. 67, 7019-7028.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261-5265.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. G. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295-3298.

organic compounds

V = 1163.99 (7) Å³

 $0.35 \times 0.32 \times 0.30$ mm

Cu Ka radiation

 $\mu = 2.67 \text{ mm}^{-1}$ T = 291 K

7 - 4

supporting information

Acta Cryst. (2011). E67, o2661 [https://doi.org/10.1107/S1600536811037159]

(E)-2-[4-(2-Chlorophenyl)but-3-en-2-ylidene]malononitrile

Tai-Ran Kang

S1. Comment

The chemistry of ylidene malononitrile has been studied extensively for ring closure reactions, with compounds containing newly formed five- or six-membered rings, such as indanes (Zhang *et al.*, 2003), naphthalenes (Liu *et al.*, 2002) and benzenes (Sepiol & Milart, 1985) being obtained. Some crystal structures involving ylidene malononitrile groups have been published, including a recent report from our laboratory (Kang & Chen, 2009). As a part of our interest in the synthesis of some complex ring systems, we investigated the title compound (I), which is a diene reagent in the Diels-Alder reaction. We report herein the crystal structure of (I).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The molecular skeleton displays an approximately planar arrangement in each case. The chlorobenzene ring and 2-propylidenemalononitrile groups are located on opposite sides of the double bond to which they are attached, showing an E configuration. The crystal packing is stabilized by C—H…N interactions (Table 1).

S2. Experimental

2-(Propan-2-ylidene)malononitrile (0.212 g, 2 mmol) and 2-chlorobenzaldehyde (0.28 g, 2 mmol) were dissolved in 2propanol (2 ml). To the solution was added piperidine (0.017 g, 0.2 mmol). The solution was then stirred for 24 h at 343 K. The reaction mixture was cooled to room temperature and the solution was filtered to obtain a white solid. Recrystallization from hot ethanol afforded the pure compound. Single crystals of (I) were obtained by slow evaporation of its ethyl acetate solution.

S3. Refinement

The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.96 Å, and refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for the others.

The molecular structure of (I) showing atom labelling scheme and 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

(E)-2-[4-(2-Chlorophenyl)but-3-en-2-ylidene]malononitrile

Crystal data

C₁₃H₉ClN₂ $M_r = 228.67$ Triclinic, *P*I Hall symbol: -P 1 a = 7.7177 (2) Å b = 11.0539 (5) Å c = 14.7236 (5) Å a = 91.260 (3)° $\beta = 103.992$ (3)° $\gamma = 106.357$ (3)° V = 1163.99 (7) Å³ Z = 4 F(000) = 472 $D_x = 1.305 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 6315 reflections $\theta = 3.1-72.1^{\circ}$ $\mu = 2.67 \text{ mm}^{-1}$ T = 291 K Block, yellow $0.35 \times 0.32 \times 0.30 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer Radiation source: Enhance Ultra (Cu) X-ray Source Mirror monochromator Detector resolution: 15.9149 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) <i>Refinement</i>	$T_{min} = 0.455, T_{max} = 0.502$ 9739 measured reflections 4135 independent reflections 3770 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 67.1^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -9 \rightarrow 7$ $k = -13 \rightarrow 13$ $l = -17 \rightarrow 17$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
S = 1.04	H-atom parameters constrained
4135 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0727P)^2 + 0.290P]$
291 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.45$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C24	0.5347 (2)	0.25777 (17)	0.36952 (12)	0.0541 (4)	
C9	0.6600 (2)	0.30400 (18)	0.94779 (12)	0.0536 (4)	
C8	0.6947 (3)	0.43885 (18)	0.96046 (13)	0.0562 (4)	
H8	0.6495	0.4786	0.9088	0.067*	
C1	0.9378 (3)	0.71648 (18)	1.14140 (13)	0.0569 (4)	
C23	0.5469 (3)	0.2649 (2)	0.53865 (14)	0.0670 (5)	
H23A	0.4703	0.1791	0.5194	0.100*	
H23C	0.4796	0.3106	0.5656	0.100*	
H23B	0.6592	0.2654	0.5846	0.100*	
C22	0.5964 (3)	0.32662 (18)	0.45502 (13)	0.0551 (4)	
N1	0.4827 (4)	-0.0031 (2)	0.83682 (16)	0.0942 (7)	
C11	0.5561 (3)	0.23861 (18)	0.86407 (13)	0.0574 (4)	
C19	0.8945 (3)	0.66283 (18)	0.55896 (14)	0.0588 (5)	
C6	0.8253 (2)	0.64747 (17)	1.05665 (12)	0.0524 (4)	
C26	0.4247 (3)	0.1281 (2)	0.35739 (15)	0.0697 (5)	

C12	0.5155 (3)	0.1042 (2)	0.84862 (15)	0.0679 (5)
C25	0.5774 (3)	0.30988 (19)	0.28661 (13)	0.0600 (5)
C14	0.9546 (3)	0.7332 (2)	0.64619 (15)	0.0651 (5)
C5	0.7504 (3)	0.71784 (19)	0.98811 (14)	0.0613 (5)
H5	0.6738	0.6759	0.9307	0.074*
C4	0.7863 (3)	0.8465 (2)	1.00278 (17)	0.0716 (6)
H4	0.7347	0.8903	0.9557	0.086*
N2	0.4120 (3)	0.3468 (2)	0.72447 (14)	0.0907 (6)
C10	0.7382 (3)	0.2352 (2)	1.02658 (14)	0.0645 (5)
H10A	0.6969	0.1460	1.0073	0.097*
H10C	0.6955	0.2506	1.0806	0.097*
H10B	0.8723	0.2650	1.0423	0.097*
C20	0.7793 (3)	0.53241 (19)	0.54577 (13)	0.0594 (5)
H20	0.7489	0.4972	0.5987	0.071*
C21	0.7120 (3)	0.45749 (18)	0.46499 (13)	0.0577 (4)
H21	0.7412	0.4915	0.4114	0.069*
C7	0.7870 (2)	0.51104 (18)	1.04108 (13)	0.0544 (4)
H7	0.8312	0.4701	1.0922	0.065*
C18	0.9567 (3)	0.7248 (2)	0.48501 (16)	0.0703 (5)
H18	0.9197	0.6815	0.4254	0.084*
C17	1.0704 (3)	0.8474 (2)	0.4987 (2)	0.0855 (7)
H17	1.1080	0.8863	0.4484	0.103*
C2	0.9749 (3)	0.8458 (2)	1.15697 (17)	0.0730 (6)
H2	1.0507	0.8888	1.2142	0.088*
C13	0.4755 (3)	0.2988 (2)	0.78642 (14)	0.0661 (5)
C15	1.0718 (3)	0.8564 (2)	0.6601 (2)	0.0844 (7)
H15	1.1119	0.9008	0.7194	0.101*
C3	0.8988 (3)	0.9107 (2)	1.08720 (19)	0.0776 (6)
H3	0.9233	0.9980	1.0971	0.093*
C16	1.1285 (4)	0.9126 (3)	0.5857 (3)	0.0941 (8)
H16	1.2068	0.9954	0.5947	0.113*
N3	0.6097 (3)	0.3519 (2)	0.22018 (13)	0.0802 (5)
N4	0.3349 (4)	0.0253 (2)	0.34942 (17)	0.1014 (8)
C11	1.03787 (8)	0.63948 (6)	1.23196 (4)	0.0778 (2)
C12	0.88209 (9)	0.66910 (6)	0.74273 (4)	0.0836 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C24	0.0527 (9)	0.0603 (10)	0.0449 (9)	0.0145 (8)	0.0070 (7)	0.0042 (8)
C9	0.0564 (10)	0.0620 (10)	0.0417 (9)	0.0157 (8)	0.0137 (8)	0.0040 (7)
C8	0.0603 (10)	0.0620 (11)	0.0433 (9)	0.0149 (8)	0.0113 (8)	0.0084 (8)
C1	0.0525 (9)	0.0617 (11)	0.0491 (10)	0.0086 (8)	0.0089 (8)	0.0051 (8)
C23	0.0747 (12)	0.0774 (13)	0.0473 (10)	0.0197 (10)	0.0156 (9)	0.0124 (9)
C22	0.0581 (10)	0.0639 (11)	0.0451 (9)	0.0240 (8)	0.0093 (8)	0.0088 (8)
N1	0.1175 (17)	0.0700 (13)	0.0813 (14)	0.0206 (12)	0.0100 (12)	-0.0096 (11)
C11	0.0626 (10)	0.0653 (11)	0.0435 (9)	0.0187 (9)	0.0129 (8)	0.0020 (8)
C19	0.0597 (10)	0.0621 (11)	0.0544 (11)	0.0267 (9)	0.0044 (8)	0.0055 (8)

supporting information

C6	0.0483 (9)	0.0575 (10)	0.0474 (9)	0.0100 (7)	0.0115 (7)	0.0075 (7)
C26	0.0694 (12)	0.0719 (14)	0.0546 (11)	0.0062 (10)	0.0094 (10)	0.0008 (9)
C12	0.0750 (13)	0.0696 (13)	0.0526 (11)	0.0178 (10)	0.0094 (10)	-0.0039 (9)
C25	0.0649 (11)	0.0634 (11)	0.0440 (10)	0.0142 (9)	0.0062 (8)	-0.0008 (8)
C14	0.0636 (11)	0.0714 (12)	0.0598 (11)	0.0322 (10)	0.0011 (9)	0.0005 (9)
C5	0.0567 (10)	0.0682 (12)	0.0538 (11)	0.0139 (9)	0.0093 (8)	0.0133 (9)
C4	0.0713 (13)	0.0674 (13)	0.0790 (15)	0.0220 (10)	0.0216 (11)	0.0246 (11)
N2	0.1135 (16)	0.1141 (17)	0.0487 (11)	0.0514 (14)	0.0078 (10)	0.0067 (10)
C10	0.0774 (13)	0.0643 (12)	0.0482 (10)	0.0223 (10)	0.0082 (9)	0.0066 (9)
C20	0.0618 (11)	0.0675 (11)	0.0475 (10)	0.0225 (9)	0.0074 (8)	0.0068 (8)
C21	0.0598 (10)	0.0646 (11)	0.0473 (10)	0.0191 (9)	0.0102 (8)	0.0077 (8)
C7	0.0527 (9)	0.0619 (11)	0.0448 (9)	0.0133 (8)	0.0094 (7)	0.0065 (8)
C18	0.0731 (13)	0.0788 (14)	0.0644 (13)	0.0338 (11)	0.0136 (10)	0.0138 (10)
C17	0.0732 (14)	0.0788 (16)	0.110 (2)	0.0272 (12)	0.0273 (14)	0.0291 (15)
C2	0.0726 (13)	0.0618 (12)	0.0689 (13)	0.0011 (10)	0.0125 (11)	-0.0047 (10)
C13	0.0773 (13)	0.0785 (13)	0.0411 (10)	0.0257 (11)	0.0104 (9)	-0.0009 (9)
C15	0.0735 (14)	0.0753 (15)	0.0921 (18)	0.0239 (12)	-0.0022 (13)	-0.0113 (13)
C3	0.0828 (15)	0.0555 (12)	0.0920 (17)	0.0122 (10)	0.0276 (13)	0.0094 (11)
C16	0.0732 (15)	0.0717 (15)	0.127 (3)	0.0179 (12)	0.0117 (16)	0.0060 (16)
N3	0.0992 (14)	0.0858 (13)	0.0485 (10)	0.0164 (11)	0.0189 (9)	0.0050 (9)
N4	0.1103 (17)	0.0789 (14)	0.0845 (15)	-0.0136 (13)	0.0191 (13)	-0.0043 (11)
Cl1	0.0806 (4)	0.0843 (4)	0.0513 (3)	0.0177 (3)	-0.0067 (2)	0.0067 (2)
Cl2	0.0973 (4)	0.1005 (5)	0.0477 (3)	0.0347 (3)	0.0035 (3)	-0.0035 (3)

Geometric parameters (Å, °)

C24—C22	1.362 (3)	C25—N3	1.144 (3)
C24—C26	1.427 (3)	C14—C15	1.386 (3)
C24—C25	1.432 (3)	C14—Cl2	1.744 (2)
C9—C11	1.357 (3)	C5—C4	1.372 (3)
С9—С8	1.438 (3)	С5—Н5	0.9300
C9—C10	1.499 (3)	C4—C3	1.377 (3)
С8—С7	1.335 (3)	C4—H4	0.9300
С8—Н8	0.9300	N2—C13	1.143 (3)
C1—C2	1.379 (3)	C10—H10A	0.9600
C1—C6	1.398 (3)	C10—H10C	0.9600
C1—Cl1	1.738 (2)	C10—H10B	0.9600
C23—C22	1.498 (3)	C20—C21	1.336 (3)
С23—Н23А	0.9600	C20—H20	0.9300
С23—Н23С	0.9600	C21—H21	0.9300
С23—Н23В	0.9600	С7—Н7	0.9300
C22—C21	1.453 (3)	C18—C17	1.370 (3)
N1—C12	1.141 (3)	C18—H18	0.9300
C11—C12	1.430 (3)	C17—C16	1.365 (4)
C11—C13	1.435 (3)	C17—H17	0.9300
C19—C14	1.391 (3)	C2—C3	1.376 (3)
C19—C18	1.409 (3)	C2—H2	0.9300
C19—C20	1.445 (3)	C15—C16	1.372 (4)

C6—C5	1.401 (3)	C15—H15	0.9300
C6—C7	1.454 (3)	С3—Н3	0.9300
C26—N4	1.139 (3)	C16—H16	0.9300
C22—C24—C26	121.80 (17)	C6—C5—H5	118.9
C22—C24—C25	122.40 (17)	C5—C4—C3	120.0 (2)
C26—C24—C25	115.80 (17)	C5—C4—H4	120.0
С11—С9—С8	119.85 (17)	C3—C4—H4	120.0
C11—C9—C10	119.80 (18)	C9—C10—H10A	109.5
C8—C9—C10	120.35 (16)	C9-C10-H10C	109.5
С7—С8—С9	124.63 (17)	H10A—C10—H10C	109.5
С7—С8—Н8	117.7	C9-C10-H10B	109.5
С9—С8—Н8	117.7	H10A—C10—H10B	109.5
C2—C1—C6	122.53 (19)	H10C—C10—H10B	109.5
C2—C1—C11	117.46 (16)	C21—C20—C19	126.43 (19)
C6—C1—Cl1	120.01 (15)	C21—C20—H20	116.8
C22—C23—H23A	109.5	C19—C20—H20	116.8
С22—С23—Н23С	109.5	C20—C21—C22	124.53 (18)
H23A—C23—H23C	109.5	C20—C21—H21	117.7
C22—C23—H23B	109.5	C22—C21—H21	117.7
H23A—C23—H23B	109.5	C8—C7—C6	126.29 (17)
H23C—C23—H23B	109.5	С8—С7—Н7	116.9
$C_{24} - C_{22} - C_{21}$	120.17 (17)	С6—С7—Н7	116.9
C24—C22—C23	119.18 (18)	C17—C18—C19	121.7 (2)
$C_{21} - C_{22} - C_{23}$	120.64 (17)	C17—C18—H18	119.1
C9—C11—C12	121.86 (18)	C19—C18—H18	119.1
C9-C11-C13	122.42 (18)	C16—C17—C18	120.3 (3)
C12—C11—C13	115.70 (18)	C16—C17—H17	119.9
C14-C19-C18	116.2 (2)	C18—C17—H17	119.9
C14—C19—C20	121.75 (19)	C3—C2—C1	119.5 (2)
C18-C19-C20	122.03 (19)	C3—C2—H2	120.3
C1 - C6 - C5	115.78 (18)	C1—C2—H2	120.3
C1 - C6 - C7	122.04 (17)	N2-C13-C11	179.7(2)
C5—C6—C7	122.18 (17)	C16—C15—C14	119.6 (3)
N4—C26—C24	178.2 (3)	C16—C15—H15	120.2
N1—C12—C11	179.5 (3)	C14—C15—H15	120.2
N3-C25-C24	179.2 (2)	C2-C3-C4	120.0(2)
C_{15} C_{14} C_{19}	121.9(2)	C2—C3—H3	120.0
C_{15} C_{14} C_{12}	117 28 (19)	C4—C3—H3	120.0
C19-C14-C12	120 77 (17)	C17-C16-C15	120.3(2)
C4-C5-C6	122.21(19)	C_{17} C_{16} H_{16}	119.9
C4—C5—H5	118.9	C15—C16—H16	119.9
C11—C9—C8—C7	176.58 (19)	C1—C6—C5—C4	0.6 (3)
C10—C9—C8—C7	-3.4 (3)	C7—C6—C5—C4	179.95 (18)
C26—C24—C22—C21	178.43 (18)	C6—C5—C4—C3	-0.3 (3)
C25—C24—C22—C21	-0.8 (3)	C14—C19—C20—C21	178.88 (19)
C26—C24—C22—C23	-0.3 (3)	C18—C19—C20—C21	-2.9 (3)

C25—C24—C22—C23	-179.49 (18)	C19—C20—C21—C22	-179.99 (17)
C8—C9—C11—C12	-179.02 (18)	C24—C22—C21—C20	-179.91 (19)
C10—C9—C11—C12	1.0 (3)	C23—C22—C21—C20	-1.2 (3)
C8—C9—C11—C13	-0.8 (3)	C9—C8—C7—C6	179.82 (17)
C10—C9—C11—C13	179.17 (19)	C1—C6—C7—C8	-174.14 (19)
C2-C1-C6-C5	-0.6 (3)	C5—C6—C7—C8	6.5 (3)
Cl1—C1—C6—C5	179.76 (14)	C14—C19—C18—C17	0.2 (3)
C2-C1-C6-C7	-179.94 (18)	C20-C19-C18-C17	-178.10 (19)
Cl1—C1—C6—C7	0.4 (3)	C19—C18—C17—C16	0.8 (3)
C22—C24—C26—N4	35 (9)	C6—C1—C2—C3	0.2 (3)
C25—C24—C26—N4	-146 (9)	Cl1—C1—C2—C3	179.92 (18)
C9—C11—C12—N1	56 (43)	C9—C11—C13—N2	85 (47)
C13—C11—C12—N1	-122 (43)	C12-C11-C13-N2	-96 (47)
C22—C24—C25—N3	-90 (17)	C19—C14—C15—C16	1.2 (3)
C26—C24—C25—N3	91 (17)	Cl2—C14—C15—C16	-178.09 (19)
C18—C19—C14—C15	-1.2 (3)	C1—C2—C3—C4	0.1 (4)
C20-C19-C14-C15	177.10 (19)	C5—C4—C3—C2	-0.1 (4)
C18—C19—C14—Cl2	178.12 (14)	C18—C17—C16—C15	-0.8 (4)
C20-C19-C14-Cl2	-3.6 (3)	C14—C15—C16—C17	-0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C10—H10C…N3 ⁱ	0.96	2.62	3.564 (3)	166 (1)

Symmetry code: (i) x, y, z+1.