organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 5-hydroxy-6-oxo-4-phenyl-5,6dihydro-4H-cyclopenta[b]thiophene-5carboxylate

C. John McAdam, Stephen C. Moratti, Jim Simpson* and **Zheng Shi**

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Received 7 September 2011; accepted 12 September 2011

Key indicators: single-crystal X-ray study; T = 91 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.079; data-to-parameter ratio = 13.3.

In the title molecule, $C_{16}H_{14}O_4S$, the dihydrocyclopentathiophenone ring system is almost planar, with an r.m.s. deviation of 0.060 Å from the best fit plane through all nine non-H atoms. The cyclopentanone ring adopts a severely flattened envelope conformation with the C atom carrying the OH and ethylcarboxylate substituents at the flap. This atom lies only 0.185 (3) Å from the plane through the other four C atoms. The phenyl substituent is inclined at $43.37(5)^{\circ}$ to the dihydrocyclopentathiophenone mean plane. In the crystal, molecules are linked by pairs of $O-H \cdots O$ hydrogen bonds, forming inversion dimers with $R_2^2(10)$ ring motifs. Weak C- $H \cdots O$ hydrogen bonds also link molecules into chains along c, while an approximately orthogonal set of C-H···O contacts form chains along b, resulting in layers lying parallel to (100). Inversion dimers also form through weaker $R_2^2(12)$ C-H···S contacts, which combine with C-H···O contacts to form stacks along b.

Related literature

For details of conducting thiophene polymers, see: Anguetil et al. (2003). For related structures, see: Bonini et al. (2004); Chang et al. (2004). For details of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see Allen et al. (1987). For the preparation of a precursor used in the synthesis, see: Yang (2009).

Experimental

Crystal data	
$C_{16}H_{14}O_4S$	$\gamma = 88.086 (3)^{\circ}$
$M_r = 302.33$	V = 727.56 (6) A ³
Triclinic, P1	Z = 2
a = 7.7407 (4) Å	Mo $K\alpha$ radiation
b = 9.1005 (4) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 10.5035 (5) Å	T = 91 K
$\alpha = 84.840 \ (3)^{\circ}$	$0.45 \times 0.35 \times 0.25 \text{ mm}$
$\beta = 80.929 \ (3)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
$T_{\min} = 0.672, \ T_{\max} = 0.745$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.079$ S = 1.072584 reflections 194 parameters

2584 independent reflections 2233 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$

13007 measured reflections

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O6−H6···O14	0.82 (2)	2.27 (2)	2.6705 (16)	110.8 (16)
$O6-H6\cdots O5^{i}$	0.82(2)	2.06 (2)	2.7973 (16)	150.5 (19)
$C1-H1\cdots O14^{ii}$	0.95	2.56	3.157 (2)	121
C11-H11···O5 ⁱⁱⁱ	0.95	2.52	3.386 (2)	152
$C15-H15B\cdots O6^{iv}$	0.99	2.27	3.206 (2)	157
$C7-H7\cdots S1^{v}$	1.00	2.97	3.7855 (16)	139
$C12{-}H12{\cdot}{\cdot}{\cdot}O14^{vi}$	0.95	2.61	3.497 (2)	157

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) x, y - 1, z; (iii) x, y, z + 1; (iv) x + 1, y, z; (v) -x, -y + 1, -z + 1; (vi) -x, -y + 2, -z + 2.

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2314).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Anquetil, P. A., Yu, H.-H., Madden, J. D., Swager, T. M. & Hunter, I. W. (2003). Proceedings of SPIE - The International Society for Optical Engineering 5051 (Electroactive Polymer Actuators and Devices), pp. 42–53.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bonini, B. F., Capito, E., Comes-Franchini, M., Ricci, A., Bottoni, A., Bernardi, F., Miscione, G. P., Giordano, L. & Cowley, A. R. (2004). *Eur. J. Org. Chem.* pp. 4442–4451.
- Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chang, K.-J., Rayabarapu, D. K. & Cheng, C.-H. (2004). J. Org. Chem. 69, 4781–4787.
- Hunter, K. A. & Simpson, J. (1999). *TITAN2000*. University of Otago, New Zealand.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, B. V. (2009). World Patent WO 2009158380 A1.

supporting information

Acta Cryst. (2011). E67, o2764–o2765 [https://doi.org/10.1107/S1600536811037032] Ethyl 5-hydroxy-6-oxo-4-phenyl-5,6-dihydro-4*H*-cyclopenta[*b*]thiophene-5-carboxylate

C. John McAdam, Stephen C. Moratti, Jim Simpson and Zheng Shi

S1. Comment

There is currently much interest in research into conducting thiophene polymers (Anquetil *et al.*, 2003). Our interest in molecular actuators based on this chemistry led to the isolation of the previously unreported title compound.

In the molecular structure of the title molecule (Fig. 1), the flap atom of the severely flattened C3···C7 ring carries both hydroxy and ethylcarboxylate substituents. Atom C6 lies 0.185 (3) Å from the mean plane through atoms (C3-C5,C7) and this plane is inclined at 4.43 (8) ° to the thiophene ring (S1,C1-C4) mean plane. As a result the dihydrocyclopenta-thiophene-one ring system is also reasonably planar with a r.m.s. deviation of only 0.060 Å from the plane through all 9 non-hydrogen atoms. The C7 atom of the cyclopentane ring carries a phenyl substituent that subtends a dihedral angle of 43.37 (5) ° to the dihydrocyclopentathiophene plane. The Cambridge Crystal Structure Database (CSD, Version 5.32, last update Aug. 2011; Allen, 2002) reveals only three structures involving dihydrocyclopenta-thiophene-one ring systems (Bonini *et al.*, 2004; Chang *et al.*, 2004). In the title molecule the bond distances are normal (Allen *et al.*, 1987) and similar to those reported for these similar molecules.

In the crystal O6–H6···O5 hydrogen bonds form inversion dimers with $R^2_2(10)$ ring motifs, (Bernstein *et al.*, 1995), Fig 2. Chains form along *c* due to weak C11–H11···O5 contacts while C1–H1..O14 contacts form chains at roughly 90 ° to these along *b*. These contacts combine to generate layers lying parallel to the (100) plane, Fig 3. Inversion dimers also form through weaker $R^2_2(12)$ C7–H7···S1 contacts, and together with C12..H12···O14 hydrogen bonds lead to stacks along *b*, Fig 4. Additional C15..H15···O6 contacts further stabilize the packing.

S2. Experimental

The precursor thiophene, ethyl 6-oxo-4-phenyl-5,6-dihydro-4*H*-cyclopenta- thiophene-5-carboxylate (EOPDCTC), was prepared by a literature procedure (Yang, 2009). EOPDCTC (315 mg, 1.1 mmol) and potassium tertiary butoxide (289 mg, 2.6 mmol) were dissolved in 2-propanol (5 ml) and iodine (280 mg, 1.1 mmol) in 2-propanol (5 ml) added dropwise under a N₂ atmosphere. After stirring at room temperature for 24 hrs, the solvent was removed under reduced pressure. The residues were redissolved in EtOAc, washed with saturated sodium thiosulfate and distilled water then dried over MgSO₄. The crude product was purified by silica gel column chromatography with CH₂Cl₂/EtOAc (10%) to give a brown solid in 17% yield. X-ray quality crystals were obtained from a CH₂Cl₂ solution of the title compound layered with hexane. *M*.p 404 K. HRMS (+ve ESI) m/z calc for C₁₆H₁₃O₄SNa 324.0427, found 325.1152. Spectroscopic data for the title compound are available in the archived CIF.

S3. Refinement

The H atom of the OH group was located in a difference Fourier map and its coordinates were refined with $U_{iso} = 1.5U_{eq}(O)$. All C-bound H atoms were included in calulated positions and refined using a riding model: d(C-H) = 0.95,

1.00, 0.99 and 0.98 Å, for aromatic, methylene and methyl H-atoms, respectively, with $U_{iso} = k \times U_{eq}(C)$, where k = 1.5 for methyl H atoms, and k = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with numbering scheme and dispacement ellipsoids drawn at the 50% probability level.

Figure 2

A view of the inversion dimers of the title compound formed by O—H…O hydrogen bonds [dashed cyan lines].

Figure 3

A view of the formation of layers of the title compound lying parallel to the (100) plane. The C—H \cdots O interactions are illustrated by dashed cyan lines.

Figure 4

The crystal packing of the title compound viewed along the b-axis, showing the C—H…S and C—H…O interactions [dashed cyan lines].

Ethyl 5-hydroxy-6-oxo-4-phenyl-5,6-dihydro-4*H*- cyclopenta[*b*]thiophene-5-carboxylate

Crystal data

$C_{16}H_{14}O_4S$	Z = 2
$M_r = 302.33$	F(000) = 316
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.380 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.7407 (4) Å	Cell parameters from 4122 reflections
b = 9.1005 (4) Å	$\theta = 2.7 - 24.9^{\circ}$
c = 10.5035 (5) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\alpha = 84.840 \ (3)^{\circ}$	T = 91 K
$\beta = 80.929 \ (3)^{\circ}$	Block, colourless
$\gamma = 88.086 \ (3)^{\circ}$	$0.45 \times 0.35 \times 0.25 \text{ mm}$
V = 727.56 (6) Å ³	
Data collection	
Bruker APEXII CCD area-detector	13007 measured reflections
diffractometer	2584 independent reflections
Radiation source: fine-focus sealed tube	2233 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -9 \longrightarrow 9$
(SADABS; Bruker, 2011)	$k = -10 \rightarrow 10$
$T_{\min} = 0.672, \ T_{\max} = 0.745$	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.079$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
2584 reflections	and constrained refinement
194 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0322P)^2 + 0.3338P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Spectroscopic data for the title compound: ¹H NMR (δ p.p.m., CDCl₃, 400 MHz): 8.08 (1*H*, d, J = 4.8 Hz, CHS), 7.35–7.28 (5*H*, m, phenyl *H*), 7.16 (1*H*, d, J = 4.8 Hz, CHCHS), 4.73 (1*H*, s, CHC₆H₅), 4.37 (1*H*, s, O*H*), 3.82 & 3.62 [2 *x* (1*H*, m, CH₂)], 0.85 (3*H*, t, J = 7 Hz, CH₃). IR *v*(CO) 1737, 1703 cm⁻¹.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.31491 (5)	0.47012 (4)	0.41577 (4)	0.01868 (13)
C1	0.2877 (2)	0.33654 (18)	0.54308 (16)	0.0206 (4)
H1	0.3238	0.2366	0.5349	0.025*
C2	0.2095 (2)	0.38688 (18)	0.65715 (16)	0.0185 (4)
H2	0.1850	0.3271	0.7365	0.022*
C3	0.1697 (2)	0.53999 (17)	0.64162 (15)	0.0149 (3)
C4	0.2184 (2)	0.59827 (17)	0.51632 (15)	0.0155 (3)
C5	0.1669 (2)	0.75165 (17)	0.49802 (15)	0.0154 (3)
05	0.17464 (15)	0.83394 (12)	0.39918 (10)	0.0204 (3)
C6	0.0911 (2)	0.79820 (17)	0.63548 (15)	0.0152 (3)
O6	-0.07237 (14)	0.86931 (13)	0.63575 (12)	0.0203 (3)
H6	-0.064 (3)	0.959 (2)	0.6268 (19)	0.030*
C7	0.0721 (2)	0.65116 (17)	0.72591 (15)	0.0158 (3)
H7	-0.0542	0.6251	0.7382	0.019*
C8	0.1173 (2)	0.66251 (18)	0.86036 (15)	0.0174 (4)
С9	0.2418 (2)	0.57266 (19)	0.91240 (16)	0.0228 (4)
H9	0.3044	0.5001	0.8629	0.027*
C10	0.2752 (3)	0.5886 (2)	1.03705 (17)	0.0293 (4)
H10	0.3582	0.5247	1.0728	0.035*
C11	0.1892 (3)	0.6958 (2)	1.10879 (17)	0.0292 (4)
H11	0.2145	0.7074	1.1929	0.035*
H11	0.1892 (3) 0.2145	0.7074	1.1929	0.0292 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	0.0658 (3)	0.78667 (19)	1.05765 (17)	0.0272 (4)
H12	0.0067	0.8614	1.1064	0.033*
C13	0.0281 (2)	0.76864 (18)	0.93510 (16)	0.0216 (4)
H13	-0.0595	0.8293	0.9017	0.026*
C14	0.2214 (2)	0.90456 (17)	0.67132 (14)	0.0147 (3)
014	0.18207 (15)	1.02944 (12)	0.69500 (11)	0.0212 (3)
015	0.38114 (14)	0.84388 (12)	0.66685 (11)	0.0200 (3)
C15	0.5156 (2)	0.9380 (2)	0.69937 (17)	0.0245 (4)
H15A	0.4980	1.0404	0.6625	0.029*
H15B	0.6326	0.9028	0.6600	0.029*
C16	0.5090 (3)	0.9368 (3)	0.8421 (2)	0.0471 (6)
H16A	0.3957	0.9768	0.8807	0.071*
H16B	0.6030	0.9975	0.8603	0.071*
H16C	0.5241	0.8353	0.8790	0.071*

Atomic displacement parameters (A^2)

S1 0.0229 (2) 0.0171 (2) 0.0166 (2) 0.00254 (17) -0.00388 (17) -0.00395 (C1 0.0247 (9) 0.0143 (8) 0.0237 (9) 0.0026 (7) -0.0072 (7) -0.0022 (7)C2 0.0210 (9) 0.0167 (8) 0.0179 (8) -0.0010 (7) -0.0032 (7) -0.0007 (7C3 0.0122 (8) 0.0167 (8) 0.0168 (8) -0.0012 (6) -0.0044 (6) -0.0021 (6)C4 0.0142 (8) 0.0158 (8) 0.0177 (8) 0.0005 (6) -0.0046 (6) -0.0038 (7C5 0.0120 (8) 0.0167 (8) 0.0185 (9) -0.0017 (6) -0.0051 (6) -0.0023 (7O5 0.0252 (7) 0.0177 (6) 0.0184 (6) 0.0006 (5) -0.0062 (5) 0.0014 (5)C6 0.0115 (8) 0.0155 (8) 0.0189 (8) 0.0029 (6) -0.0031 (6) -0.0027 (7O6 0.0136 (6) 0.0150 (6) 0.327 (7) 0.0042 (5) -0.0057 (5) -0.0029 (5)C7 0.0128 (8) 0.0148 (8) 0.0198 (9) -0.0012 (6) -0.0022 (6) -0.0008 (7)C8 0.0174 (9) 0.0167 (8) 0.0169 (8) -0.0031 (7) -0.0023 (7) -0.0006 (7)C9 0.0246 (9) 0.0243 (9) 0.0194 (9) 0.0031 (7) -0.0034 (8) -0.0066 (8)C11 0.0407 (11) 0.0329 (11) 0.0146 (9) -0.0079 (9) -0.0034 (8) -0.0066 (7)C13 0.0234 (9) 0.0185 (9) 0.0212 (9) -0.00086 (7)		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1	0.0229 (2)	0.0171 (2)	0.0166 (2)	0.00254 (17)	-0.00388 (17)	-0.00395 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.0247 (9)	0.0143 (8)	0.0237 (9)	0.0026 (7)	-0.0072 (7)	-0.0022 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.0210 (9)	0.0167 (8)	0.0179 (8)	-0.0010 (7)	-0.0032 (7)	-0.0007 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.0122 (8)	0.0167 (8)	0.0168 (8)	-0.0012 (6)	-0.0044 (6)	-0.0021 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.0142 (8)	0.0158 (8)	0.0177 (8)	0.0005 (6)	-0.0046 (6)	-0.0038 (7)
05 $0.0252 (7)$ $0.0177 (6)$ $0.0184 (6)$ $0.0006 (5)$ $-0.0062 (5)$ $0.0014 (5)$ $C6$ $0.0115 (8)$ $0.0155 (8)$ $0.0189 (8)$ $0.0029 (6)$ $-0.0031 (6)$ $-0.0027 (7)$ 06 $0.0136 (6)$ $0.0150 (6)$ $0.0327 (7)$ $0.0042 (5)$ $-0.0057 (5)$ $-0.0029 (5)$ $C7$ $0.0128 (8)$ $0.0148 (8)$ $0.0198 (9)$ $-0.0012 (6)$ $-0.0022 (6)$ $-0.0008 (7)$ $C8$ $0.0174 (9)$ $0.0167 (8)$ $0.0169 (8)$ $-0.0037 (7)$ $0.0015 (7)$ $-0.0009 (7)$ $C9$ $0.0246 (9)$ $0.0243 (9)$ $0.0194 (9)$ $0.0031 (7)$ $-0.0023 (7)$ $-0.0050 (7)$ $C10$ $0.0317 (11)$ $0.0351 (11)$ $0.0220 (10)$ $0.0013 (9)$ $-0.0086 (8)$ $-0.0006 (8)$ $C11$ $0.0407 (11)$ $0.0329 (11)$ $0.0146 (9)$ $-0.0079 (9)$ $-0.0034 (8)$ $-0.0066 (7)$ $C13$ $0.0234 (9)$ $0.0185 (9)$ $0.0212 (9)$ $-0.0008 (7)$ $0.0014 (7)$ $0.0001 (7)$ $C14$ $0.0163 (8)$ $0.0157 (8)$ $0.0116 (8)$ $-0.0006 (7)$ $-0.0003 (6)$ $-0.0006 (6)$ $O14$ $0.0220 (6)$ $0.0149 (6)$ $0.0270 (7)$ $0.0009 (5)$ $-0.0047 (5)$ $-0.0034 (5)$ $O15$ $0.0118 (6)$ $0.0222 (6)$ $0.0278 (7)$ $0.0012 (5)$ $-0.0040 (7)$ $-0.0098 (5)$ $C15$ $0.0139 (9)$ $0.0281 (10)$ $0.0334 (10)$ $-0.0044 (7)$ $-0.0113 (8)$ $C16$ $0.0419 (13)$ $0.0704 (16)$ $0.0341 (12)$ -0.0	C5	0.0120 (8)	0.0167 (8)	0.0185 (9)	-0.0017 (6)	-0.0051 (6)	-0.0023 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05	0.0252 (7)	0.0177 (6)	0.0184 (6)	0.0006 (5)	-0.0062 (5)	0.0014 (5)
06 0.0136 (6) 0.0150 (6) 0.0327 (7) 0.0042 (5) -0.0057 (5) -0.0029 (5) $C7$ 0.0128 (8) 0.0148 (8) 0.0198 (9) -0.0012 (6) -0.0022 (6) -0.0008 (7) $C8$ 0.0174 (9) 0.0167 (8) 0.0169 (8) -0.0037 (7) 0.0015 (7) -0.0009 (7) $C9$ 0.0246 (9) 0.0243 (9) 0.0194 (9) 0.0031 (7) -0.0023 (7) -0.0050 (7) $C10$ 0.0317 (11) 0.0351 (11) 0.0220 (10) 0.0013 (9) -0.0086 (8) -0.0006 (8) $C11$ 0.0407 (11) 0.0329 (11) 0.0146 (9) -0.0079 (9) -0.0034 (8) -0.0034 (8) $C12$ 0.0385 (11) 0.0207 (9) 0.0199 (9) -0.0036 (8) 0.0070 (8) -0.0066 (7) $C13$ 0.0234 (9) 0.0185 (9) 0.0212 (9) -0.0008 (7) 0.0014 (7) 0.0001 (7) $C14$ 0.0163 (8) 0.0157 (8) 0.0116 (8) -0.0006 (7) -0.0047 (5) -0.0034 (5) $O15$ 0.0118 (6) 0.0222 (6) 0.0278 (7) 0.0012 (5) -0.0047 (5) -0.0098 (5) $C15$ 0.0139 (9) 0.0281 (10) 0.0334 (10) -0.0044 (7) -0.0040 (7) -0.0113 (8) $C16$ 0.0419 (13) 0.0704 (16) 0.0341 (12) -0.0203 (12) -0.0160 (10) -0.0069 (1	C6	0.0115 (8)	0.0155 (8)	0.0189 (8)	0.0029 (6)	-0.0031 (6)	-0.0027 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6	0.0136 (6)	0.0150 (6)	0.0327 (7)	0.0042 (5)	-0.0057 (5)	-0.0029 (5)
C8 0.0174 (9) 0.0167 (8) 0.0169 (8) -0.0037 (7) 0.0015 (7) -0.0009 (7)C9 0.0246 (9) 0.0243 (9) 0.0194 (9) 0.0031 (7) -0.0023 (7) -0.0050 (7)C10 0.0317 (11) 0.0351 (11) 0.0220 (10) 0.0013 (9) -0.0086 (8) -0.0006 (8)C11 0.0407 (11) 0.0329 (11) 0.0146 (9) -0.0079 (9) -0.0034 (8) -0.0034 (8)C12 0.0385 (11) 0.0207 (9) 0.0199 (9) -0.0036 (8) 0.0070 (8) -0.0066 (7)C13 0.0234 (9) 0.0185 (9) 0.0212 (9) -0.0008 (7) 0.0014 (7) 0.0001 (7)C14 0.0163 (8) 0.0157 (8) 0.0116 (8) -0.0006 (7) -0.0003 (6) -0.0006 (6)O14 0.0220 (6) 0.0149 (6) 0.0270 (7) 0.0009 (5) -0.0047 (5) -0.0034 (5)O15 0.0118 (6) 0.0222 (6) 0.0278 (7) 0.0012 (5) -0.0047 (5) -0.0098 (5)C15 0.0139 (9) 0.0281 (10) 0.0334 (10) -0.0044 (7) -0.0113 (8)C16 0.0419 (13) 0.0704 (16) 0.0341 (12) -0.0203 (12) -0.0160 (10) -0.0069 (12)	C7	0.0128 (8)	0.0148 (8)	0.0198 (9)	-0.0012 (6)	-0.0022 (6)	-0.0008(7)
C9 $0.0246(9)$ $0.0243(9)$ $0.0194(9)$ $0.0031(7)$ $-0.0023(7)$ $-0.0050(7)$ C10 $0.0317(11)$ $0.0351(11)$ $0.0220(10)$ $0.0013(9)$ $-0.0086(8)$ $-0.0006(8)$ C11 $0.0407(11)$ $0.0329(11)$ $0.0146(9)$ $-0.0079(9)$ $-0.0034(8)$ $-0.0034(8)$ C12 $0.0385(11)$ $0.0207(9)$ $0.0199(9)$ $-0.0036(8)$ $0.0070(8)$ $-0.0066(7)$ C13 $0.0234(9)$ $0.0185(9)$ $0.0212(9)$ $-0.0008(7)$ $0.0014(7)$ $0.0001(7)$ C14 $0.0163(8)$ $0.0157(8)$ $0.0116(8)$ $-0.0006(7)$ $-0.0003(6)$ $-0.0006(6)$ O14 $0.0220(6)$ $0.0149(6)$ $0.0270(7)$ $0.0009(5)$ $-0.0047(5)$ $-0.0034(5)$ O15 $0.0118(6)$ $0.0222(6)$ $0.0278(7)$ $0.0012(5)$ $-0.0050(5)$ $-0.0098(5)$ C15 $0.0139(9)$ $0.0281(10)$ $0.0341(12)$ $-0.0203(12)$ $-0.0160(10)$ $-0.0069(1)$	C8	0.0174 (9)	0.0167 (8)	0.0169 (8)	-0.0037 (7)	0.0015 (7)	-0.0009 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.0246 (9)	0.0243 (9)	0.0194 (9)	0.0031 (7)	-0.0023 (7)	-0.0050 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.0317 (11)	0.0351 (11)	0.0220 (10)	0.0013 (9)	-0.0086 (8)	-0.0006 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.0407 (11)	0.0329 (11)	0.0146 (9)	-0.0079 (9)	-0.0034 (8)	-0.0034 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.0385 (11)	0.0207 (9)	0.0199 (9)	-0.0036 (8)	0.0070 (8)	-0.0066 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.0234 (9)	0.0185 (9)	0.0212 (9)	-0.0008 (7)	0.0014 (7)	0.0001 (7)
O14 0.0220 (6) 0.0149 (6) 0.0270 (7) 0.0009 (5) -0.0047 (5) -0.0034 (5) O15 0.0118 (6) 0.0222 (6) 0.0278 (7) 0.0012 (5) -0.0050 (5) -0.0098 (5) C15 0.0139 (9) 0.0281 (10) 0.0334 (10) -0.0044 (7) -0.0040 (7) -0.0113 (8) C16 0.0419 (13) 0.0704 (16) 0.0341 (12) -0.0203 (12) -0.0160 (10) -0.0069 (1	C14	0.0163 (8)	0.0157 (8)	0.0116 (8)	-0.0006 (7)	-0.0003 (6)	-0.0006 (6)
O15 0.0118 (6) 0.0222 (6) 0.0278 (7) 0.0012 (5) -0.0050 (5) -0.0098 (5) C15 0.0139 (9) 0.0281 (10) 0.0334 (10) -0.0044 (7) -0.0040 (7) -0.0113 (8) C16 0.0419 (13) 0.0704 (16) 0.0341 (12) -0.0203 (12) -0.0160 (10) -0.0069 (10)	O14	0.0220 (6)	0.0149 (6)	0.0270 (7)	0.0009 (5)	-0.0047 (5)	-0.0034 (5)
C15 $0.0139(9)$ $0.0281(10)$ $0.0334(10)$ $-0.0044(7)$ $-0.0040(7)$ $-0.0113(8)$ C16 $0.0419(13)$ $0.0704(16)$ $0.0341(12)$ $-0.0203(12)$ $-0.0160(10)$ $-0.0069(1)$	O15	0.0118 (6)	0.0222 (6)	0.0278 (7)	0.0012 (5)	-0.0050 (5)	-0.0098 (5)
$C_{16} = 0.0419(13) = 0.0704(16) = 0.0341(12) = -0.0203(12) = -0.0160(10) = -0.0069(1)$	C15	0.0139 (9)	0.0281 (10)	0.0334 (10)	-0.0044 (7)	-0.0040 (7)	-0.0113 (8)
	C16	0.0419 (13)	0.0704 (16)	0.0341 (12)	-0.0203 (12)	-0.0160 (10)	-0.0069 (11)

Geometric parameters (Å, °)

S1—C1	1.7164 (17)	C9—C10	1.395 (2)	
S1—C4	1.7171 (16)	С9—Н9	0.9500	
C1—C2	1.365 (2)	C10—C11	1.376 (3)	
C1—H1	0.9500	C10—H10	0.9500	
С2—С3	1.417 (2)	C11—C12	1.384 (3)	
С2—Н2	0.9500	C11—H11	0.9500	

supporting information

$C_3 C_4$	1374(2)	C12 C13	1380(2)
$C_3 = C_7$	1.574(2) 1.509(2)	C12 - C13	0.9500
C_{1}	1.309(2) 1.443(2)	C12 H13	0.9500
$C_{1} = C_{2}$	1.445(2)	C_{13}	1.2041(10)
C5_C6	1.2190 (19)	$C_{14} = 0.15$	1.2041(19) 1.3332(10)
C5C0	1.300(2) 1.4018(18)	015 015	1.3332(19)
$C_0 = 0_0$	1.4010(10)	C15 C16	1.4069(19)
$C_0 = C_1 + C_2$	1.331(2)	C15_U15A	1.491 (3)
	1.307(2)	CI5—HI5A CI5—UI5D	0.9900
	0.82(2)	CIG-HISB	0.9900
C7C8	1.520 (2)		0.9800
C/—H/	1.0000		0.9800
	1.389 (2)	C16—H16C	0.9800
C8-C13	1.395 (2)		
C1—S1—C4	89.88 (8)	C8—C9—C10	120.27 (16)
C2—C1—S1	113.94 (13)	С8—С9—Н9	119.9
C2-C1-H1	123.0	С10—С9—Н9	119.9
S1—C1—H1	123.0	C11—C10—C9	120.64 (17)
C1—C2—C3	111.12 (15)	C11—C10—H10	119.7
C1—C2—H2	124.4	С9—С10—Н10	119.7
С3—С2—Н2	124.4	C10-C11-C12	119.60 (16)
C4—C3—C2	112.06 (14)	C10-C11-H11	120.2
C4—C3—C7	112.16 (14)	C12—C11—H11	120.2
C2—C3—C7	135.47 (15)	C11—C12—C13	120.06 (16)
C3—C4—C5	112.25 (14)	C11—C12—H12	120.0
C3—C4—S1	112.99 (12)	C13—C12—H12	120.0
C5—C4—S1	134.64 (13)	C12—C13—C8	120.82 (17)
O5—C5—C4	130.13 (15)	C12—C13—H13	119.6
O5—C5—C6	124.00 (14)	С8—С13—Н13	119.6
C4—C5—C6	105.87 (13)	O14—C14—O15	125.38 (15)
O6—C6—C14	109.60 (13)	O14—C14—C6	122.73 (14)
O6—C6—C5	111.05 (12)	O15—C14—C6	111.83 (13)
C14—C6—C5	106.85 (12)	C14—O15—C15	115.81 (12)
O6—C6—C7	110.20 (12)	O15—C15—C16	111.60 (15)
C14—C6—C7	113.48 (12)	O15—C15—H15A	109.3
C5—C6—C7	105.56 (12)	C16—C15—H15A	109.3
С6—О6—Н6	111.8 (14)	O15—C15—H15B	109.3
C3—C7—C8	119.14 (13)	C16—C15—H15B	109.3
C3—C7—C6	102.88 (12)	H15A—C15—H15B	108.0
C8—C7—C6	114.66 (13)	C15—C16—H16A	109.5
С3—С7—Н7	106.4	C15—C16—H16B	109.5
С8—С7—Н7	106.4	H16A—C16—H16B	109.5
С6—С7—Н7	106.4	C15—C16—H16C	109.5
C9—C8—C13	118.56 (15)	H16A—C16—H16C	109.5
C9—C8—C7	123.45 (14)	H16B—C16—H16C	109.5
C13—C8—C7	117.99 (15)		
	× /		

<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
0.82 (2)	2.27 (2)	2.6705 (16)	110.8 (16)
0.82 (2)	2.06 (2)	2.7973 (16)	150.5 (19)
0.95	2.56	3.157 (2)	121
0.95	2.52	3.386 (2)	152
0.99	2.27	3.206 (2)	157
1.00	2.97	3.7855 (16)	139
0.95	2.61	3.497 (2)	157
	D—H 0.82 (2) 0.82 (2) 0.95 0.95 0.99 1.00 0.95	D—H H···A 0.82 (2) 2.27 (2) 0.82 (2) 2.06 (2) 0.95 2.56 0.95 2.52 0.99 2.27 1.00 2.97 0.95 2.61	D—HH···A D ···A 0.82 (2) 2.27 (2) 2.6705 (16) 0.82 (2) 2.06 (2) 2.7973 (16) 0.95 2.56 3.157 (2) 0.95 2.52 3.386 (2) 0.99 2.27 3.206 (2) 1.00 2.97 3.7855 (16) 0.95 2.61 3.497 (2)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*, *z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*, -*y*+1, -*z*+1; (vi) -*x*, -*y*+2, -*z*+2.