Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2*E*)-1-(Pyridin-2-yl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one

Hoong-Kun Fun,^a* \$ Suchada Chantrapromma^b§ and Thitipone Suwunwong^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, and ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Received 19 September 2011; accepted 23 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.105; data-to-parameter ratio = 8.6.

The title heteroaryl chalcone derivative, C₁₇H₁₇NO₄, is a condensation product of 2-acetylpyridine and 2,4,6-trimethoxybenzaldehyde. The molecule is roughly planar, the dihedral angle between the pyridine and benzene rings being 5.51 (10)°. All the three methoxy groups are almost co-planar with the bound benzene ring [r.m.s. deviation of 0.0306(2) Å]. A weak C-H···O intramolecular interaction involving one of the *ortho*-methoxy groups generates an S(6) ring motif. In the crystal, the molecules are linked by weak C-H···O interactions into anti-parallel face-to-face pairs. Adjacent pairs are further connected into sheets parallel to the *ab* plane.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Fun et al. (2010, 2011). For background to and applications of chalcones and heteroaryl chalcones, see: Bandgar et al. (2010); Gacche et al. (2008); Go et al. (2005); Isomoto et al. (2005); Jung et al. (2008); Suwunwong et al. (2011); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

31465 measured reflections 2309 independent reflections

 $R_{\rm int} = 0.100$

1908 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₇ H ₁₇ NO ₄	V = 5549.6 (7) Å ³
$M_r = 299.32$	Z = 16
Orthorhombic, Fdd2	Mo Ka radiation
a = 31.563 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 44.508 (3) Å	T = 100 K
c = 3.9504 (3) Å	$0.58 \times 0.14 \times 0.04~\mathrm{mm}$

Data collection

Bruker APEXII CCD area detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\rm min} = 0.943, \ T_{\rm max} = 0.996$

Refinement

D-

C3

C7 C1′

$R[F^2 > 2\sigma(F^2)] = 0.043$	1 restraint
$wR(F^2) = 0.105$	All H-atom parameters refined
S = 1.09	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
2309 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
267 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

-H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H3A\cdots O2^{i}$	1.00 (2)	2.45 (3)	3.369 (2)	157.8 (17)
-H11B\cdots O4	0.97 (3)	2.31 (2)	2.835 (2)	113.1 (18)
$-H17B\cdots O4^{ii}$	0.99 (2)	2.46 (2)	3.337 (3)	148 (2)

Symmetry codes: (i) $x + \frac{9}{4}, -y + \frac{9}{4}, z + \frac{1}{4}$; (ii) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Thailand Research Fund (grant No. RSA5280033) and Prince of Songkla University for financial support. They also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2642).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, N. (2010). Bioorg. Med. Chem. 18, 1364-1370.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, 0893-0894.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

- Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o2406–o2407.
- Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, 02559–02560.
- Gacche, R. N., Dhole, N. A., Kamble, S. G. & Bandgar, B. P. (2008). J. Enzyme Inhib. Med. Chem. 23, 28–31.
- Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.
- Isomoto, H., Furusu, H., Ohnita, K., Wen, C. Y., Inoue, K. & Kohno, S. (2005). World J. Gastroenterol. 11, 1629–1633.
- Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). *Polyhedron* 27, 861–867. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Pap., doi: 10.2478/s11696-011-0084-4.
- Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.

supporting information

Acta Cryst. (2011). E67, o2789–o2790 [https://doi.org/10.1107/S1600536811039110] (2E)-1-(Pyridin-2-yl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one Hoong-Kun Fun, Suchada Chantrapromma and Thitipone Suwunwong

S1. Comment

Chalcones and heteroaryl chalcones have drawn a lot of interests due to their wide range of biological properties including antioxidant (Gacche *et al.*, 2008), antibacterial (Go *et al.*, 2005; Isomoto *et al.*, 2005), anti-inflammatory and anticancer (Bandgar *et al.*, 2010) as well as HIV-1 protease inhibitory (Tewtrakul *et al.*, 2003) activities. Furthermore they also exhibit fluorescent property (Jung *et al.*, 2008; Suwunwong *et al.*, 2011). In our on-going research on the biological and fluorescent properties of chalcones and heteroaryl chalcones (Chantrapromma *et al.*, 2009; Fun *et al.*, 2010, 2011; Suwunwong *et al.*, 2011), the title heteroaryl chalcone derivative (I) was synthesized in order to study the effects of substituted positions on the fluorescent property in comparision with the closely related compounds (Fun *et al.*, 2011; Suwunwong *et al.*, 2011). In addition (I) was also tested for analgesic and antibacterial activities. Our results showed that (I) exhibits a moderate analgesic activity but is inactive for antibacterial activity. Herein we report the crystal structure of (I).

The molecule of the title heteroaryl chalcone derivative (Fig. 1) exists in an *E* configuration with respect to the C7=C8 double bond [1.341 (3) Å]. The torsion angle C6–C7–C8–C9 is 179.0 (2)°. The molecule is almost planar with a dihedral angle between the pyridine and 2,4,6-trimethoxyphenyl rings of 5.51 (10)°. Atoms of the propenone bridge (C6, C7, C8 and O1) lie on the same plane [*r:m.s.* deviation of 0.017 (2)] and the torsion angle O1–C6–C7–C8 is -5.8 (4)°. The mean plane through this bridge makes dihedral angles of 6.96 (16) and 11.72 (16)° with the planes of pyridine and benzene rings, respectively. All the three substituted methoxy groups of the 2,4,6-trimethoxyphenyl unit are co-planar with the phenyl ring as indicated by the torsion angles C15–O2–C10–C11 = -0.4 (3)°, C16–O3–C12–C13 = 0.9 (3)° and C17–O4–C14–C13 = -4.7 (3)°. In the molecule, a weak intramolecular C7–H7A···O4 interaction (Table 1) generates an S(6) ring motif (Bernstein *et al.*, 1995). The bond distances are of normal values (Allen *et al.*, 1987) and comparable with related structures (Chantrapromma *et al.*, 2009; Fun *et al.*, 2010; 2011).

In the crystal packing (Fig. 2), only the two *ortho*-methoxy groups are involved in weak C—H···O interactions (Table 1). The adjacent molecules are linked by weak C17—H17B···O4 interaction (Table 1) into anti-parallel face-to-face pairs. The adjacent pairs were further connected by weak C3—H3A···O2 interactions (Table 1) into sheets parallel to the *ab* plane which are stacked down the *c* axis. The crystal may be further stabilized by C···O [3.203 (2) Å] short contacts.

S2. Experimental

The title compound was synthesized by the condensation reaction of 2,4,6-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 2-acetylpyridine (0.20 g, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH(aq) (5 ml). After stirring in ice bath at 278 K for 4 h, the resulting pale yellow solid appeared and was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Pale yellow plate-shaped single crystals of the title compound suitable for *X*-ray structure determination were recrystalized from acetone/ethanol (1:1 v/v) by the evaporation of the solvent at room temperature after several days, M.p. 392-393 K.

S3. Refinement

All H atoms were located in difference maps and refined isotropically. A total of 1754 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute structure.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. A weak intramolecular C—H···O interaction is shown as a dashed line.

Figure 2

The crystal packing of the title compound viewed along the c axis, showing molecular sheets parallel to the ab plane. Hydrogen bonds are shown as dashed lines. (2E)-1-(Pyridin-2-yl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one

Crystal data

C₁₇H₁₇NO₄ $M_r = 299.32$ Orthorhombic, *Fdd2* Hall symbol: F 2 -2d a = 31.563 (2) Å b = 44.508 (3) Å c = 3.9504 (3) Å V = 5549.6 (7) Å³ Z = 16F(000) = 2528

Data collection

Bruker APEXII CCD area detector
diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.943, \ T_{\max} = 0.996$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.105$	neighbouring sites
S = 1.09	All H-atom parameters refined
2309 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0467P)^2 + 4.8268P]$
267 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

 $D_{\rm x} = 1.433 {\rm Mg m^{-3}}$

 $\theta = 1.6 - 30.0^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.100$

 $h = -44 \rightarrow 44$ $k = -62 \rightarrow 62$ $l = -5 \rightarrow 5$

Plate, pale yellow $0.58 \times 0.14 \times 0.04$ mm

Melting point = 392-393 K Mo K α radiation, $\lambda = 0.71073$ Å

31465 measured reflections 2309 independent reflections 1908 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 30.0^\circ, \, \theta_{\rm min} = 1.6^\circ$

Cell parameters from 2309 reflections

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.18610 (5)	0.11217 (3)	1.2030 (5)	0.0298 (4)	
O2	0.07115 (4)	0.04799 (3)	1.1758 (5)	0.0239 (3)	

supporting information

O3	0.05980 (4)	-0.04831 (3)	0.6752 (5)	0.0248 (4)
O4	0.19307 (4)	0.00496 (3)	0.6918 (5)	0.0242 (4)
N1	0.27419 (5)	0.08486 (4)	0.7393 (6)	0.0245 (4)
C1	0.31419 (7)	0.09271 (5)	0.6662 (7)	0.0263 (5)
C2	0.33299 (7)	0.11932 (5)	0.7701 (7)	0.0266 (5)
C3	0.30912 (7)	0.13912 (5)	0.9612 (7)	0.0270 (5)
C4	0.26779 (7)	0.13153 (5)	1.0406 (7)	0.0254 (5)
C5	0.25139 (6)	0.10419 (4)	0.9256 (7)	0.0225 (4)
C6	0.20685 (6)	0.09511 (4)	1.0251 (7)	0.0226 (4)
C7	0.19132 (7)	0.06578 (4)	0.9048 (7)	0.0228 (4)
C8	0.15391 (7)	0.05521 (4)	1.0129 (7)	0.0228 (4)
C9	0.13222 (6)	0.02737 (4)	0.9251 (6)	0.0213 (4)
C10	0.08883 (6)	0.02411 (4)	1.0100 (6)	0.0217 (4)
C11	0.06569 (6)	-0.00125 (4)	0.9267 (7)	0.0225 (4)
C12	0.08555 (6)	-0.02465 (4)	0.7554 (6)	0.0216 (4)
C13	0.12828 (6)	-0.02332 (4)	0.6760 (7)	0.0220 (4)
C14	0.15094 (6)	0.00253 (4)	0.7601 (6)	0.0217 (4)
C15	0.02726 (7)	0.04603 (5)	1.2600 (7)	0.0252 (5)
C16	0.07863 (7)	-0.07331 (5)	0.5027 (7)	0.0259 (5)
C17	0.21410 (7)	-0.02095 (5)	0.5537 (7)	0.0261 (5)
H1A	0.3305 (7)	0.0785 (5)	0.524 (8)	0.023 (6)*
H2A	0.3622 (7)	0.1239 (5)	0.708 (9)	0.027 (6)*
H3A	0.3216 (7)	0.1581 (5)	1.051 (8)	0.025 (6)*
H4A	0.2489 (7)	0.1445 (5)	1.187 (9)	0.030 (7)*
H8A	0.1375 (8)	0.0676 (6)	1.166 (9)	0.039 (8)*
H11A	0.0350 (7)	-0.0029 (5)	0.980 (8)	0.023 (6)*
H11B	0.2095 (7)	0.0554 (5)	0.747 (9)	0.025 (6)*
H13A	0.1415 (7)	-0.0402 (5)	0.545 (8)	0.025 (6)*
H15A	0.0101 (8)	0.0457 (6)	1.054 (9)	0.033 (8)*
H15B	0.0223 (8)	0.0281 (6)	1.428 (10)	0.038 (7)*
H15C	0.0194 (7)	0.0634 (5)	1.389 (8)	0.024 (7)*
H16A	0.0549 (7)	-0.0874 (5)	0.453 (8)	0.023 (6)*
H16B	0.0916 (7)	-0.0668 (5)	0.282 (9)	0.023 (6)*
H16C	0.1003 (8)	-0.0827 (5)	0.644 (9)	0.031 (7)*
H17A	0.2010 (8)	-0.0257 (6)	0.328 (9)	0.030 (8)*
H17B	0.2445 (7)	-0.0160 (5)	0.542 (8)	0.025 (6)*
H17C	0.2105 (7)	-0.0383 (5)	0.714 (9)	0.028 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0320 (8)	0.0216 (7)	0.0360 (11)	-0.0005 (6)	0.0043 (8)	-0.0058 (8)
O2	0.0246 (7)	0.0189 (6)	0.0283 (9)	0.0001 (5)	0.0026 (7)	-0.0024 (7)
03	0.0251 (7)	0.0175 (6)	0.0317 (10)	-0.0026 (5)	0.0018 (7)	-0.0032 (7)
O4	0.0236 (7)	0.0194 (6)	0.0295 (10)	-0.0009(5)	0.0026 (7)	-0.0034 (7)
N1	0.0284 (9)	0.0189 (8)	0.0264 (11)	0.0003 (6)	-0.0011 (8)	-0.0007(8)
C1	0.0279 (10)	0.0233 (9)	0.0276 (13)	0.0008 (8)	0.0002 (10)	0.0019 (10)
C2	0.0290 (11)	0.0239 (9)	0.0270 (13)	-0.0012 (8)	-0.0014 (10)	0.0061 (10)

Acta Cryst. (2011). E67, o2789–o2790

supporting information

C3	0.0320 (11)	0.0203 (9)	0.0288 (14)	-0.0037 (8)	-0.0050 (11)	0.0023 (10)
C4	0.0313 (11)	0.0197 (9)	0.0251 (12)	-0.0004 (8)	-0.0021 (10)	0.0009 (9)
C5	0.0274 (10)	0.0188 (9)	0.0214 (11)	-0.0013 (7)	-0.0012 (9)	0.0033 (9)
C6	0.0267 (10)	0.0185 (9)	0.0224 (11)	0.0004 (7)	-0.0010 (9)	0.0029 (9)
C7	0.0278 (10)	0.0162 (9)	0.0242 (12)	0.0008 (7)	-0.0007 (9)	0.0012 (9)
C8	0.0266 (10)	0.0173 (8)	0.0245 (12)	0.0013 (7)	-0.0014 (9)	0.0017 (9)
C9	0.0258 (10)	0.0181 (9)	0.0200 (12)	0.0013 (7)	-0.0009 (9)	0.0019 (9)
C10	0.0287 (10)	0.0162 (8)	0.0201 (11)	0.0015 (7)	-0.0017 (9)	0.0011 (9)
C11	0.0233 (9)	0.0195 (9)	0.0248 (12)	0.0001 (7)	0.0002 (9)	0.0027 (9)
C12	0.0287 (10)	0.0156 (8)	0.0206 (12)	-0.0024 (7)	-0.0039 (9)	0.0021 (8)
C13	0.0263 (10)	0.0176 (8)	0.0220 (12)	-0.0009 (7)	-0.0012 (9)	-0.0009 (9)
C14	0.0245 (10)	0.0191 (9)	0.0214 (12)	0.0007 (7)	-0.0014 (9)	0.0028 (9)
C15	0.0247 (10)	0.0231 (9)	0.0279 (13)	0.0018 (8)	0.0003 (10)	-0.0022 (10)
C16	0.0305 (11)	0.0179 (9)	0.0292 (13)	-0.0016 (8)	-0.0011 (10)	-0.0026 (10)
C17	0.0264 (11)	0.0194 (9)	0.0325 (14)	0.0009 (8)	0.0045 (10)	-0.0029 (10)

Geometric parameters (Å, °)

01—C6	1.224 (3)	C7—H11B	0.96 (3)	
O2—C10	1.368 (2)	C8—C9	1.458 (3)	
O2—C15	1.427 (3)	C8—H8A	0.97 (3)	
O3—C12	1.367 (2)	C9—C14	1.413 (3)	
O3—C16	1.434 (3)	C9—C10	1.417 (3)	
O4—C14	1.361 (2)	C10—C11	1.384 (3)	
O4—C17	1.438 (3)	C11—C12	1.392 (3)	
N1—C5	1.341 (3)	C11—H11A	0.99 (2)	
N1—C1	1.342 (3)	C12—C13	1.386 (3)	
C1—C2	1.387 (3)	C13—C14	1.395 (3)	
C1—H1A	0.99 (3)	C13—H13A	1.00 (3)	
C2—C3	1.383 (3)	C15—H15A	0.98 (3)	
C2—H2A	0.97 (2)	C15—H15B	1.05 (3)	
C3—C4	1.384 (3)	C15—H15C	0.96 (3)	
С3—НЗА	1.00 (2)	C16—H16A	1.00 (2)	
C4—C5	1.398 (3)	C16—H16B	1.01 (3)	
C4—H4A	1.01 (3)	C16—H16C	0.98 (3)	
C5—C6	1.515 (3)	C17—H17A	1.01 (3)	
C6—C7	1.474 (3)	C17—H17B	0.99 (2)	
С7—С8	1.341 (3)	C17—H17C	1.00 (3)	
C10—O2—C15	117.39 (16)	O2—C10—C9	115.35 (17)	
C12—O3—C16	117.48 (16)	C11—C10—C9	122.49 (19)	
C14—O4—C17	117.55 (16)	C10—C11—C12	119.22 (19)	
C5—N1—C1	117.13 (18)	C10-C11-H11A	121.7 (14)	
N1-C1-C2	124.1 (2)	C12—C11—H11A	119.1 (14)	
N1—C1—H1A	116.3 (13)	O3—C12—C13	123.98 (18)	
C2	119.5 (13)	O3—C12—C11	114.91 (18)	
C3—C2—C1	118.2 (2)	C13—C12—C11	121.11 (18)	
C3—C2—H2A	121.2 (15)	C12—C13—C14	118.69 (19)	

C1—C2—H2A	120.6 (15)	C12—C13—H13A	119.3 (13)
C2—C3—C4	118.8 (2)	C14—C13—H13A	121.8 (13)
С2—С3—НЗА	121.3 (14)	O4—C14—C13	121.27 (19)
С4—С3—НЗА	119.8 (14)	O4—C14—C9	115.97 (17)
C3—C4—C5	119.2 (2)	C13—C14—C9	122.75 (18)
C3—C4—H4A	123.1 (13)	O2—C15—H15A	110.2 (17)
C5—C4—H4A	117.7 (13)	O2—C15—H15B	109.8 (14)
N1—C5—C4	122.54 (19)	H15A—C15—H15B	115 (2)
N1—C5—C6	117.99 (17)	O2—C15—H15C	109.0 (14)
C4—C5—C6	119.4 (2)	H15A—C15—H15C	108 (2)
O1—C6—C7	123.82 (19)	H15B—C15—H15C	104 (2)
O1—C6—C5	118.70 (18)	O3—C16—H16A	105.8 (14)
C7—C6—C5	117.47 (19)	O3—C16—H16B	111.0 (14)
C8—C7—C6	120.1 (2)	H16A—C16—H16B	108 (2)
C8—C7—H11B	124.1 (14)	O3—C16—H16C	110.5 (17)
C6—C7—H11B	115.8 (14)	H16A—C16—H16C	112 (2)
C7—C8—C9	129.5 (2)	H16B—C16—H16C	109 (2)
С7—С8—Н8А	118.2 (15)	O4—C17—H17A	108.4 (15)
С9—С8—Н8А	112.3 (15)	O4—C17—H17B	106.7 (14)
C14—C9—C10	115.68 (17)	H17A—C17—H17B	114 (2)
C14—C9—C8	125.35 (18)	O4—C17—H17C	109.0 (16)
C10—C9—C8	118.97 (18)	H17A—C17—H17C	111 (2)
O2—C10—C11	122.16 (18)	H17B—C17—H17C	108 (2)
C5—N1—C1—C2	-0.2 (4)	C8—C9—C10—O2	-1.0 (3)
N1—C1—C2—C3	0.0 (4)	C14-C9-C10-C11	-2.2 (3)
C1—C2—C3—C4	0.1 (4)	C8—C9—C10—C11	178.1 (2)
C2—C3—C4—C5	-0.1 (4)	O2—C10—C11—C12	179.5 (2)
C1—N1—C5—C4	0.3 (3)	C9-C10-C11-C12	0.5 (4)
C1—N1—C5—C6	-177.1 (2)	C16—O3—C12—C13	0.9 (3)
C3—C4—C5—N1	-0.1 (4)	C16—O3—C12—C11	-179.1 (2)
C3—C4—C5—C6	177.2 (2)	C10-C11-C12-O3	-178.1 (2)
N1-C5-C6-O1	178.0 (2)	C10-C11-C12-C13	1.9 (4)
C4—C5—C6—O1	0.5 (3)	O3—C12—C13—C14	177.6 (2)
N1—C5—C6—C7	-1.1 (3)	C11—C12—C13—C14	-2.3 (3)
C4—C5—C6—C7	-178.5 (2)	C17—O4—C14—C13	-4.7 (3)
O1—C6—C7—C8	-5.8 (4)	C17—O4—C14—C9	174.2 (2)
C5—C6—C7—C8	173.2 (2)	C12-C13-C14-O4	179.2 (2)
C6—C7—C8—C9	179.0 (2)	C12—C13—C14—C9	0.4 (3)
C7—C8—C9—C14	14.7 (4)	C10-C9-C14-O4	-177.1 (2)
C7—C8—C9—C10	-165.6 (2)	C8—C9—C14—O4	2.6 (3)
C15—O2—C10—C11	-0.4 (3)	C10-C9-C14-C13	1.8 (3)
C15—O2—C10—C9	178.7 (2)	C8—C9—C14—C13	-178.6 (2)
C14—C9—C10—O2	178.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3A···O2 ⁱ	1.00 (2)	2.45 (3)	3.369 (2)	157.8 (17)
C7—H11 <i>B</i> ···O4	0.97 (3)	2.31 (2)	2.835 (2)	113.1 (18)
C17—H17 <i>B</i> ····O4 ⁱⁱ	0.99 (2)	2.46 (2)	3.337 (3)	148 (2)

Symmetry codes: (i) x+9/4, -y+9/4, z+1/4; (ii) -x+1/2, -y, z-1/2.