organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-1-(1-Benzyl-5-methyl-1H-1,2,3triazol-4-yl)-3-(4-fluorophenyl)prop-2en-1-one

Hoong-Kun Fun,^a*‡ Madhukar Hemamalini,^a Poovan Shanmugavelan,^b Alagusundaram Ponnuswamy^b and Rathinavel Jagatheesan^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India, and ^cDepartment of Chemistry, Thanthai Hans Roever College, Perambalur 621 212, Tamil Nadu, India

Correspondence e-mail: hkfun@usm.my

Received 13 September 2011; accepted 22 September 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.158; data-to-parameter ratio = 21.8.

The asymmetric unit of the title compound, $C_{19}H_{16}FN_3O$, contains two crystallographically independent molecules. The triazole rings in both molecules are essentially planar with maximum deviations of 0.002 (1) and 0.001 (1) Å. The dihedral angles between the benzene and fluorophenyl rings are 79.36 (9) and 89.40 (10)° in the two molecules. In the crystal, the two independent molecules are linked by C– $H\cdots N$ hydrogen bonds, forming dimers. Furthermore, the crystal structure is stabilized by C– $H\cdots \pi$ interactions.

Related literature

For applications of 1,2,3-triazole, see: Banerjee *et al.* (1966); Laliberte *et al.* (1967); Suwa *et al.* (1984). For applications of chalcones, see: Ballesteros *et al.* (1995); Kothari *et al.* (1999); Nagaraj & Reddy (2007). The crystal structure is isomorphous with that of (E)-1-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3phenylprop-2-en-1-one, see: Fun *et al.* (2011).

Experimental

Crystal data $C_{19}H_{16}FN_{3}O$ $M_r = 321.35$

Monoclinic, $P2_1/c$ a = 12.458 (1) Å

‡ Thomson Reuters ResearcherID: A-3561-2009.

b = 13.7528 (11) Å c = 19.3128 (15) Å $\beta = 100.183 (2)^{\circ}$ $V = 3256.8 (4) \text{ Å}^{3}$ Z = 8

Data collection

Bruker APEXII DUO CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\rm min} = 0.977, T_{\rm max} = 0.986$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.049 & \mbox{435 parameters} \\ wR(F^2) = 0.158 & \mbox{H-atom parameters constrained} \\ S = 0.99 & \mbox{$\Delta\rho_{\rm max}$} = 0.16 \ {\rm e} \ {\rm \AA}^{-3} \\ 9500 \ {\rm reflections} & \mbox{$\Delta\rho_{\rm min}$} = -0.19 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.26 \times 0.22 \times 0.16 \text{ mm}$

37230 measured reflections 9500 independent reflections

4782 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.048$

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 and Cg6 are the centroids of the of the C13A–C18A and C13B–C18B rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12B-H12C\cdots N1A^{i}$ $C5A-H5AA\cdots Cg6^{ii}$ $C12A-H12A\cdots Cg3^{iii}$	0.97	2.46	3.422 (2)	172
	0.93	2.91	3.842 (2)	178
	0.97	2.62	3.551 (2)	161

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 2, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2639).

References

Ballesteros, J. F., Sanz, M. J., Ubeda, A., Miranda, M. A., Iborra, S., Paya, M. & Alcaraz, M. J. (1995). *J. Med. Chem.* **38**, 2794–2797.

Banerjee, A., Nayak, P. L. & Rout, M. K. (1966). J. Indian Chem. Soc. 43, 578-82.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, 02707.

- Kothari, S., Vyas, R. & Verma, B. L. (1999). Indian J. Heterocycl. Chem. 8, 285– 288.
- Laliberte, R., Campbell, D. J. & Bruderlein, F. (1967). *Can. J. Pharm. Sci.* 2, 37–43.
- Nagaraj, A. & Reddy, C. S. J. (2007). J. Heterocycl. Chem. 44, 1181-1185.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Suwa, T., Fukushima, K. & Kyogoku, K. (1984). Jpn J. Pharmacol. 34, 89-94.

supporting information

Acta Cryst. (2011). E67, o2776 [https://doi.org/10.1107/S1600536811038943]

(*E*)-1-(1-Benzyl-5-methyl-1*H*-1,2,3-triazol-4-yl)-3-(4-fluorophenyl)prop-2-en-1one

Hoong-Kun Fun, Madhukar Hemamalini, Poovan Shanmugavelan, Alagusundaram Ponnuswamy and Rathinavel Jagatheesan

S1. Comment

Organic compounds having the 1,2,3-triazole nucleus have the potential to induce antiviral, agonistic, antibacterial, antimicrobial, anti-HIV, anticonvulsant and anti-allergic activities. In addition, compounds having 1,2,3-triazole group have found industrial application such as dyes, corrosion inhibitors, sensors and photo-stabilizers (Banerjee *et al.*, 1966; Laliberte *et al.*, 1967; Suwa *et al.*, 1984). The chalcone skeleton is a unique template for synthesizing various heterocyclic compounds. The compounds with the backbone of chalcones are associated with different biological activities like cardiovascular, antispasmodic, anthelmintics, antiulcer, anti-inflammatory, antiviral, antiallergic, fungicidal, bactericidal, insecticidal, antitumor, herbicidal, anticancer, antitubercular and anti-HIV (Ballesteros *et al.*, 1995; Kothari *et al.*, 1999; Nagaraj & Reddy, 2007). Chalcones, considered as the precursors of flavonoids and isoflavonoids, are abundant in edible plants, and have also been shown to display a diverse array of pharmacological activities. The presence of a reactive α , β -unsaturated keto function in chalcones is found to be responsible for their activities.

The asymmetric unit of the title compound, contains two crystallographically independent (*E*)-1-(1-benzyl-5methyl-1*H*-1,2,3-triazol-4-yl)-3-(4-fluorophenyl)prop-2-en-1-one molecules (A & B) as shown in Fig. 1. In both molecules, the triazole (N1A–N3A/C10A,C11A and N1B–N3B/C10B,C11B) units are essentially planar, with maximum deviations of 0.002 (1) Å for atom C11A and 0.001 (1) Å for atom N3B. The dihedral angles between the phenyl ring and the flurophenyl ring in the molecules A and B are 79.36 (9)° and 89.40 (10)° respectively.

In the crystal, (Fig. 2), the two independent molecules are connected *via* intermolecular C—H···N hydrogen bonds, (Table 1), to form dimers. Furthermore, the crystal structure is stabilized by C—H··· π interactions involving the centroids of the C13A–C18A (Cg3) and C13B–C18B (Cg6) rings. This crystal structure is isomorphous with that of (*E*)-1-(1-benzyl-5-methyl-1*H*-1,2,3-triazol-4-yl)-3-phenylprop-2-en-1-one (Fun *et al.*, 2011).

S2. Experimental

A mixture of 4-acetyl-1-benzyl-5-methyl-1,2,3-triazole (0.20 g, 0.01 mol) and *p*-fluorobenzaldehyde (0.01 mol) was stirred in ethanol (2–3 ml) and then a 50% sodium hydroxide solution (0.5 ml) was added. The mixture was stirred for 2 minutes at room temperature and poured onto excess of crushed ice and neutralized with dilute hydrochloric acid. (*E*)-1-(1- Benzyl-5-methyl-1*H*-1,2,3-triazol-4-yl)-3-(4-fluorophenyl)prop-2-en-1-one, which precipitated out as a solid, was filtered and recrystallized from ethanol. Yield: 0.29 g (98%), Mp.169–170°C.

S3. Refinement

All hydrogen atoms were positioned geometrically [C-H = 0.93-0.97 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Figure 2

The crystal packing of the title compound. H atoms not involved in hydrogen bonding are omitted.

(E)-1-(1-Benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-(4-fluorophenyl)prop-2-en-1-one

Crystal data $C_{19}H_{16}FN_{3}O$ $M_r = 321.35$

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.5 - 28.8^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.26 \times 0.22 \times 0.16 \text{ mm}$

T = 296 K

Cell parameters from 5012 reflections

a = 12.458 (1) Å b = 13.7528 (11) Å c = 19.3128 (15) Å $\beta = 100.183 (2)^{\circ}$ $V = 3256.8 (4) \text{ Å}^{3}$ Z = 8 F(000) = 1344 $D_{x} = 1.311 \text{ Mg m}^{-3}$

Data collection

Bruker APEXII DUO CCD area-detector	37230 measured reflections
diffractometer	9500 independent reflections
Radiation source: fine-focus sealed tube	4782 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
φ and ω scans	$\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 17$
(SADABS; Bruker, 2009)	$k = -16 \rightarrow 19$
$T_{\min} = 0.977, \ T_{\max} = 0.986$	$l = -27 \rightarrow 27$

Refinement

	Secondary atom site location, amerenee i ourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.158$	neighbouring sites
S = 0.99	H-atom parameters constrained
9500 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0702P)^2 + 0.2551P]$
435 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.158$ $S = 0.99$ 9500 reflections 435 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0702P)^2 + 0.2551P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.16$ e Å ⁻³ $\Delta\rho_{min} = -0.19$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1A	-0.32640 (10)	0.37115 (10)	0.09739 (9)	0.1059 (5)	
O1A	0.23331 (11)	0.69816 (10)	0.24388 (6)	0.0639 (4)	
N1A	0.24431 (12)	0.74029 (11)	0.06245 (7)	0.0589 (4)	
N2A	0.31516 (13)	0.79113 (12)	0.03501 (8)	0.0630 (4)	
N3A	0.38780 (11)	0.82740 (9)	0.08961 (7)	0.0468 (3)	
C1A	-0.08988 (15)	0.51783 (14)	0.08771 (10)	0.0588 (5)	
H1AA	-0.0572	0.5484	0.0538	0.071*	
C2A	-0.18483 (17)	0.46491 (15)	0.06714 (12)	0.0710 (6)	
H2AA	-0.2156	0.4589	0.0198	0.085*	

C3A	-0.23210 (15)	0.42178 (13)	0.11782 (13)	0.0669 (5)
C4A	-0.18837 (16)	0.42645 (14)	0.18714 (12)	0.0693 (6)
H4AA	-0.2213	0.3948	0.2204	0.083*
C5A	-0.09391 (15)	0.47917 (13)	0.20721 (10)	0.0576 (4)
H5AA	-0.0637	0.4836	0.2547	0.069*
C6A	-0.04287(13)	0.52584 (11)	0.15815 (9)	0.0443 (4)
C7A	0.05598 (13)	0.58185 (11)	0.18279 (9)	0.0458 (4)
H7AA	0.0832	0.5787	0.2308	0.055*
C8A	0.11174 (13)	0.63664 (12)	0.14531 (9)	0.0474 (4)
H8AA	0.0903	0.6399	0.0967	0.057*
C9A	0 20747 (13)	0.69246 (11)	0 17970 (9)	0.0456(4)
C10A	0.207110(13)	0.09210(11) 0.74407(11)	0 13399 (8)	0.0427(4)
C11A	0.27110(13) 0.36359(12)	0.80044 (10)	0.15187(8)	0.0408(3)
C12A	0.30339(12) 0.47819(14)	0.88739(12)	0.07504(10)	0.0400(3) 0.0529(4)
H12A	0.4864	0.8776	0.0755	0.0529 (4)
H12R	0.4804	0.8659	0.0205	0.003
	0.5450 0.46218(12)	0.0039	0.1040	0.003
CI3A CI4A	0.40318(13)	0.99394(12)	0.08708(8) 0.11866(0)	0.0449(4)
UI4A	0.55168 (15)	1.04882 (15)	0.11800 (9)	0.0538 (4)
HI4A	0.0180	1.0183	0.1348	0.065*
CI5A	0.54284 (19)	1.14811 (15)	0.12649 (10)	0.0689 (5)
HISA	0.6034	1.1843	0.1466	0.083*
C16A	0.4451 (2)	1.19308 (15)	0.10462 (11)	0.0729 (6)
H16A	0.4386	1.2596	0.1114	0.087*
C17A	0.35653 (19)	1.14075 (16)	0.07276 (12)	0.0755 (6)
H17A	0.2905	1.1720	0.0573	0.091*
C18A	0.36500 (15)	1.04084 (14)	0.06344 (10)	0.0618 (5)
H18A	0.3049	1.0056	0.0414	0.074*
C19A	0.42936 (15)	0.83060 (14)	0.22006 (9)	0.0578 (5)
H19A	0.5055	0.8245	0.2180	0.087*
H19B	0.4120	0.7898	0.2569	0.087*
H19C	0.4132	0.8970	0.2295	0.087*
F1B	0.73003 (13)	0.72639 (11)	0.08097 (11)	0.1253 (6)
O1B	0.27643 (11)	0.39555 (10)	0.25084 (6)	0.0671 (4)
N1B	0.15078 (13)	0.35495 (11)	0.07189 (8)	0.0592 (4)
N2B	0.06363 (14)	0.30509 (12)	0.04708 (8)	0.0655 (4)
N3B	0.02495 (11)	0.26840 (10)	0.10339 (7)	0.0519 (4)
C1OB	0.16882 (13)	0.35062 (11)	0.14372 (8)	0.0457 (4)
C1B	0.49013 (17)	0.58159 (14)	0.08252 (11)	0.0667 (5)
HIBA	0.4331	0.5547	0.0507	0.080*
C2B	0 5694 (2)	0.63425 (16)	0.05776 (13)	0.0829(7)
H2BA	0.5667	0.6428	0.0097	0.099*
C3B	0.65206 (19)	0.67376 (15)	0.10544 (16)	0.099
C4B	0.65200(19)	0.66406 (16)	0.17544 (16)	0.0807(7)
	0.03010 (10)	0.6028	0.17544 (10)	0.0000 (7)
C5B	0.7170	0.0920	0.2007	0.100°
USB A	0.57805(15)	0.6031	0.19975(12) 0.2480	0.0074(3)
CGD	0.3023	0.0031	0.2400	0.001°
	0.47300(13)	0.50785 (11)	0.13370(9)	0.0493(4)
U/D	0.41313(13)	0.3112/(12)	0.162/8(9)	0.0490 (4)

H7BA	0.4192	0.5130	0.2315	0.060*
C8B	0.33261 (14)	0.45779 (12)	0.14874 (9)	0.0511 (4)
H8BA	0.3211	0.4558	0.0998	0.061*
C9B	0.26054 (13)	0.40125 (12)	0.18655 (9)	0.0475 (4)
C11B	0.08781 (13)	0.29476 (11)	0.16430 (8)	0.0445 (4)
C12B	-0.07283 (14)	0.20804 (13)	0.09197 (11)	0.0602 (5)
H12C	-0.1147	0.2225	0.0459	0.072*
H12D	-0.1173	0.2251	0.1266	0.072*
C13B	-0.04989 (14)	0.10044 (12)	0.09659 (8)	0.0485 (4)
C14B	-0.13479 (17)	0.03893 (15)	0.10314 (11)	0.0703 (6)
H14B	-0.2023	0.0648	0.1073	0.084*
C15B	-0.1208 (2)	-0.06059 (16)	0.10362 (13)	0.0865 (7)
H15B	-0.1790	-0.1012	0.1081	0.104*
C16B	-0.0227 (2)	-0.09977 (16)	0.09764 (11)	0.0815 (7)
H16B	-0.0140	-0.1669	0.0972	0.098*
C17B	0.0622 (2)	-0.04041 (16)	0.09231 (12)	0.0795 (6)
H17B	0.1296	-0.0670	0.0888	0.095*
C18B	0.04912 (17)	0.05965 (15)	0.09199 (11)	0.0672 (5)
H18B	0.1082	0.0996	0.0886	0.081*
C19B	0.06490 (15)	0.26518 (14)	0.23379 (10)	0.0615 (5)
H19D	-0.0115	0.2729	0.2345	0.092*
H19E	0.1062	0.3051	0.2697	0.092*
H19F	0.0850	0.1983	0.2423	0.092*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1A	0.0656 (8)	0.0858 (9)	0.1618 (14)	-0.0349 (7)	0.0079 (8)	-0.0050 (9)
OlA	0.0682 (8)	0.0721 (9)	0.0517 (7)	-0.0202 (7)	0.0112 (6)	-0.0022 (6)
N1A	0.0605 (9)	0.0638 (10)	0.0503 (8)	-0.0176 (8)	0.0043 (7)	-0.0003 (7)
N2A	0.0675 (10)	0.0705 (10)	0.0498 (8)	-0.0217 (8)	0.0067 (7)	0.0012 (7)
N3A	0.0483 (8)	0.0418 (7)	0.0513 (8)	-0.0087 (6)	0.0116 (6)	-0.0008 (6)
C1A	0.0569 (11)	0.0603 (11)	0.0593 (11)	-0.0115 (9)	0.0107 (9)	0.0058 (9)
C2A	0.0655 (13)	0.0687 (13)	0.0746 (13)	-0.0138 (10)	0.0008 (10)	-0.0025 (10)
C3A	0.0474 (10)	0.0463 (10)	0.1058 (17)	-0.0100 (8)	0.0106 (11)	-0.0024 (10)
C4A	0.0607 (12)	0.0569 (12)	0.0966 (16)	-0.0093 (10)	0.0309 (11)	0.0143 (11)
C5A	0.0572 (11)	0.0540 (10)	0.0639 (11)	-0.0057 (9)	0.0171 (9)	0.0092 (8)
C6A	0.0436 (9)	0.0342 (8)	0.0565 (10)	0.0009 (7)	0.0125 (7)	0.0026 (7)
C7A	0.0446 (9)	0.0414 (8)	0.0528 (9)	0.0008 (7)	0.0128 (7)	-0.0001 (7)
C8A	0.0470 (9)	0.0438 (9)	0.0521 (9)	-0.0061 (7)	0.0105 (7)	-0.0017 (7)
C9A	0.0459 (9)	0.0391 (8)	0.0524 (10)	-0.0018 (7)	0.0102 (7)	-0.0015 (7)
C10A	0.0420 (8)	0.0382 (8)	0.0469 (9)	-0.0019 (7)	0.0047 (7)	0.0008 (7)
C11A	0.0419 (8)	0.0337 (7)	0.0471 (8)	-0.0003 (6)	0.0089 (7)	-0.0002 (6)
C12A	0.0509 (10)	0.0477 (10)	0.0643 (11)	-0.0064 (8)	0.0217 (8)	0.0028 (8)
C13A	0.0448 (9)	0.0461 (9)	0.0463 (8)	-0.0051 (7)	0.0146 (7)	0.0049 (7)
C14A	0.0514 (10)	0.0583 (11)	0.0512 (9)	-0.0069 (8)	0.0083 (8)	0.0000 (8)
C15A	0.0820 (15)	0.0608 (12)	0.0643 (12)	-0.0183 (11)	0.0141 (11)	-0.0139 (10)
C16A	0.1014 (18)	0.0482 (11)	0.0758 (13)	-0.0028 (12)	0.0340 (13)	-0.0037 (10)

supporting information

C17A	0.0717 (14)	0.0663 (14)	0.0938 (16)	0.0204 (11)	0.0288 (12)	0.0190 (11)
C18A	0.0478 (10)	0.0605 (12)	0.0775 (13)	-0.0021 (9)	0.0121 (9)	0.0093 (10)
C19A	0.0532 (10)	0.0644 (11)	0.0545 (10)	-0.0138 (9)	0.0058 (8)	-0.0048 (8)
F1B	0.1008 (11)	0.0844 (10)	0.2067 (18)	-0.0360 (8)	0.0705 (11)	0.0100 (10)
O1B	0.0653 (8)	0.0783 (9)	0.0552 (8)	-0.0194 (7)	0.0037 (6)	0.0041 (6)
N1B	0.0631 (10)	0.0599 (9)	0.0537 (9)	-0.0172 (8)	0.0082 (7)	0.0033 (7)
N2B	0.0758 (11)	0.0642 (10)	0.0533 (9)	-0.0206 (9)	0.0028 (8)	0.0022 (7)
N3B	0.0494 (8)	0.0445 (8)	0.0583 (9)	-0.0085 (6)	0.0002 (7)	0.0061 (6)
C10B	0.0474 (9)	0.0397 (8)	0.0495 (9)	-0.0019 (7)	0.0072 (7)	0.0037 (7)
C1B	0.0662 (12)	0.0567 (11)	0.0759 (13)	-0.0138 (10)	0.0093 (10)	0.0042 (10)
C2B	0.0942 (17)	0.0646 (13)	0.0970 (17)	-0.0146 (12)	0.0364 (14)	0.0121 (12)
C3B	0.0668 (14)	0.0445 (11)	0.140 (2)	-0.0101 (10)	0.0443 (15)	0.0029 (13)
C4B	0.0537 (12)	0.0662 (14)	0.129 (2)	-0.0188 (10)	0.0142 (13)	-0.0144 (14)
C5B	0.0550 (11)	0.0601 (12)	0.0848 (14)	-0.0092 (9)	0.0065 (10)	-0.0102 (10)
C6B	0.0433 (9)	0.0367 (8)	0.0676 (11)	0.0015 (7)	0.0089 (8)	-0.0003 (7)
C7B	0.0450 (9)	0.0429 (9)	0.0600 (10)	0.0007 (7)	0.0066 (8)	0.0016 (7)
C8B	0.0483 (9)	0.0468 (9)	0.0571 (10)	-0.0054 (7)	0.0067 (8)	0.0021 (8)
C9B	0.0441 (9)	0.0417 (9)	0.0557 (10)	-0.0016 (7)	0.0060 (7)	0.0022 (7)
C11B	0.0417 (8)	0.0365 (8)	0.0535 (9)	0.0010 (7)	0.0037 (7)	0.0045 (7)
C12B	0.0439 (10)	0.0523 (10)	0.0793 (13)	-0.0100 (8)	-0.0035 (9)	0.0028 (9)
C13B	0.0480 (9)	0.0485 (9)	0.0474 (9)	-0.0076 (8)	0.0044 (7)	-0.0003 (7)
C14B	0.0580 (12)	0.0629 (13)	0.0883 (14)	-0.0164 (10)	0.0080 (10)	0.0067 (11)
C15B	0.0947 (18)	0.0572 (13)	0.1027 (18)	-0.0305 (13)	0.0042 (14)	0.0116 (12)
C16B	0.128 (2)	0.0461 (11)	0.0689 (13)	-0.0041 (14)	0.0131 (13)	-0.0026 (10)
C17B	0.1003 (18)	0.0624 (14)	0.0829 (15)	0.0143 (13)	0.0352 (13)	-0.0006 (11)
C18B	0.0647 (12)	0.0610 (12)	0.0810 (13)	-0.0063 (10)	0.0270 (10)	0.0033 (10)
C19B	0.0524 (11)	0.0676 (12)	0.0647 (11)	-0.0037 (9)	0.0113 (9)	0.0163 (9)

Geometric parameters (Å, °)

F1A—C3A	1.363 (2)	F1B—C3B	1.361 (2)
O1A—C9A	1.2267 (19)	O1B—C9B	1.2248 (19)
N1A—N2A	1.309 (2)	N1B—N2B	1.302 (2)
N1A—C10A	1.364 (2)	N1B—C1OB	1.367 (2)
N2A—N3A	1.3573 (19)	N2B—N3B	1.362 (2)
N3A—C11A	1.343 (2)	N3B—C11B	1.342 (2)
N3A—C12A	1.463 (2)	N3B—C12B	1.458 (2)
C1A—C2A	1.386 (3)	C10B—C11B	1.381 (2)
C1A—C6A	1.387 (2)	C10B—C9B	1.463 (2)
C1A—H1AA	0.9300	C1B—C2B	1.376 (3)
C2A—C3A	1.364 (3)	C1B—C6B	1.381 (3)
C2A—H2AA	0.9300	C1B—H1BA	0.9300
C3A—C4A	1.355 (3)	C2B—C3B	1.367 (3)
C4A—C5A	1.378 (3)	C2B—H2BA	0.9300
C4A—H4AA	0.9300	C3B—C4B	1.347 (3)
C5A—C6A	1.388 (2)	C4B—C5B	1.378 (3)
С5А—Н5АА	0.9300	C4B—H4BA	0.9300
C6A—C7A	1.459 (2)	C5B—C6B	1.389 (2)

C7A—C8A	1.324 (2)	С5В—Н5ВА	0.9300
С7А—Н7АА	0.9300	C6B—C7B	1.458 (2)
C8A—C9A	1.474 (2)	C7B—C8B	1.322 (2)
C8A—H8AA	0.9300	С7В—Н7ВА	0.9300
C9A—C10A	1.469 (2)	C8B—C9B	1.475 (2)
C10A—C11A	1.381 (2)	C8B—H8BA	0.9300
C11A—C19A	1.482 (2)	C11B—C19B	1.478 (2)
C12A—C13A	1.501 (2)	C12B—C13B	1.507 (2)
C12A—H12A	0.9700	C12B—H12C	0.9700
C12A—H12B	0.9700	C12B—H12D	0.9700
C13A—C14A	1.385 (2)	C13B—C18B	1.372 (3)
C13A—C18A	1.387 (2)	C13B—C14B	1.378 (2)
C14A—C15A	1.380 (3)	C14B—C15B	1.379 (3)
C14A—H14A	0.9300	C14B—H14B	0.9300
C15A—C16A	1.365 (3)	C15B—C16B	1.359 (3)
C15A—H15A	0.9300	C15B—H15B	0.9300
C16A - C17A	1 369 (3)	C16B - C17B	1354(3)
C16A - H16A	0.9300	C_{16B} H16B	0.9300
C17A - C18A	1 392 (3)	C17B-C18B	1.385(3)
C17A - H17A	0.9300	C17B—H17B	0.9300
C18A - H18A	0.9300	C18B—H18B	0.9300
C19A - H19A	0.9500	C19B - H19D	0.9600
C19A—H19B	0.9600	C19B—H19F	0.9600
	0.9600	C19B_H19E	0.9600
elox-moe	0.9000		0.9000
N2A—N1A—C10A	109.14 (14)	N2B-N1B-C10B	109.11 (14)
N1A—N2A—N3A	106 65 (13)	N1B—N2B—N3B	106.92 (13)
C11A - N3A - N2A	111.71 (13)	C11B N3B N2B	111.45 (13)
C11A - N3A - C12A	129.08 (14)	C11B—N3B—C12B	128.94 (15)
N2A—N3A—C12A	119.21 (13)	N2B—N3B—C12B	119.60 (14)
C2A-C1A-C6A	120.92(17)	N1B-C10B-C11B	108 59 (14)
C2A— $C1A$ — $H1AA$	119 5	N1B-C1OB-C9B	121 66 (15)
C6A-C1A-H1AA	119.5	C11B - C10B - C9B	129.74 (15)
C3A - C2A - C1A	118 53 (19)	$C^2B-C^1B-C^6B$	1213(2)
C3A - C2A - H2AA	120.7	C2B— $C1B$ — $H1BA$	119.4
C1A - C2A - H2AA	120.7	C6B-C1B-H1BA	119.4
C4A - C3A - F1A	1191(2)	C3B-C2B-C1B	119.1 118.4(2)
C4A - C3A - C2A	122 63 (18)	C3B - C2B - H2BA	120.8
F1A - C3A - C2A	1183(2)	C1B-C2B-H2BA	120.8
$C_{3A} - C_{4A} - C_{5A}$	118.48(18)	C4B-C3B-F1B	120.0 118.9(2)
C_{3A} C_{4A} H_{4AA}	120.8	C4B-C3B-C2B	110.9(2)
C5A - C4A - H4AA	120.8	F1B_C3B_C2B	122.0(2) 118 5 (3)
C44 - C54 - C64	120.0	C3B - C4B - C5B	118.6(2)
$C4\Delta = C5\Delta = H5AA$	110.2	C3B - C4B - H4BA	120.0(2)
C6A $C5A$ $H5AA$	119.2	C5B = C4B = H4PA	120.7
C1A C6A C5A	117.2	$C_{JD} = C_{4D} = \Pi_{4D} \Delta \Delta \Delta$	120.7
C1A = C6A = C7A	117.07 (10)	$C_{4}D = C_{5}D = C_{0}D$	121.3 (2)
CIA - CUA - C/A	123.17(13)	$C_{+D} = C_{-D} = \Pi_{-} D A$	117.3
UJA-UOA-U/A	110.92 (13)	Сор—Сэр—Нэрч	119.3

C8A—C7A—C6A	128.06 (16)	C1B—C6B—C5B	117.75 (17)
C8A—C7A—H7AA	116.0	C1B—C6B—C7B	123.60 (16)
С6А—С7А—Н7АА	116.0	C5B—C6B—C7B	118.65 (17)
C7A—C8A—C9A	120.73 (15)	C8B—C7B—C6B	128.24 (17)
С7А—С8А—Н8АА	119.6	C8B—C7B—H7BA	115.9
С9А—С8А—Н8АА	119.6	С6В—С7В—Н7ВА	115.9
O1A—C9A—C10A	120.21 (14)	C7B—C8B—C9B	121.48 (16)
O1A—C9A—C8A	122.37 (15)	С7В—С8В—Н8ВА	119.3
C10A—C9A—C8A	117.41 (14)	C9B—C8B—H8BA	119.3
N1A—C10A—C11A	108.58 (14)	O1B—C9B—C1OB	120.85 (15)
N1A—C10A—C9A	121.93 (14)	O1B-C9B-C8B	122.15 (15)
C11A - C10A - C9A	129.48 (14)	C1OB - C9B - C8B	116.99 (15)
N3A—C11A—C10A	103 93 (13)	N3B— $C11B$ — $C1OB$	103 93 (14)
N3A—C11A—C19A	122.83 (14)	N3B-C11B-C19B	123.02(15)
C10A - C11A - C19A	122.03(11) 133.24(15)	C10B-C11B-C19B	123.02(15) 133.05(15)
N3A = C12A = C13A	133.24(13) 113 56(14)	N3B-C12B-C13B	133.03(13) 113.92(14)
N3A = C12A = H12A	108.9	N3B - C12B - H12C	108.8
$C_{12A} = C_{12A} = H_{12A}$	108.9	$C_{13B} = C_{12B} = H_{12C}$	108.8
N3A C12A H12B	108.9	N3B C12B H12D	108.8
$C_{12A} = C_{12A} = H_{12B}$	108.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.8
$H_{12A} = C_{12A} = H_{12B}$	108.9	$C_{13}D - C_{12}D - H_{12}D$	108.8
$\begin{array}{c} \Pi 12A - C 12A - \Pi 12B \\ C 14A - C 12A - C 18A \end{array}$	107.7	$C_{12} = C_{12} = C_{14} = C_{14}$	107.7
C14A = C13A = C13A	110.30(10) 110.27(15)	$C_{10} = C_{13} = C_{14} = C_{14}$	117.94(16) 124.12(16)
C14A - C13A - C12A	119.27 (13)	C14D $C12D$ $C12D$	124.12(10)
C18A - C13A - C12A	122.01(16)	C14B - C13B - C12B	117.90 (17)
C15A - C14A - C13A	120.96 (18)	C13B - C14B - C15B	120.8 (2)
C12A - C14A - H14A	119.5	C13B - C14B - H14B	119.6
C13A - C14A - H14A	119.5	C15B-C14B-H14B	119.6
C16A - C15A - C14A	119.90 (19)		120.5 (2)
CI6A—CI5A—HI5A	120.0	CI6B—CI5B—HI5B	119.8
CI4A—CI5A—HI5A	120.0	CI4B—CI5B—HI5B	119.8
C15A—C16A—C17A	120.33 (19)	C17B—C16B—C15B	119.6 (2)
C15A—C16A—H16A	119.8	C17B—C16B—H16B	120.2
C17A—C16A—H16A	119.8	C15B—C16B—H16B	120.2
C16A—C17A—C18A	120.2 (2)	C16B—C17B—C18B	120.4 (2)
C16A—C17A—H17A	119.9	C16B—C17B—H17B	119.8
C18A—C17A—H17A	119.9	C18B—C17B—H17B	119.8
C13A—C18A—C17A	119.94 (19)	C13B—C18B—C17B	120.8 (2)
C13A—C18A—H18A	120.0	C13B—C18B—H18B	119.6
C17A—C18A—H18A	120.0	C17B—C18B—H18B	119.6
C11A—C19A—H19A	109.5	C11B—C19B—H19D	109.5
C11A—C19A—H19B	109.5	C11B—C19B—H19E	109.5
H19A—C19A—H19B	109.5	H19D—C19B—H19E	109.5
C11A—C19A—H19C	109.5	C11B—C19B—H19F	109.5
H19A—C19A—H19C	109.5	H19D—C19B—H19F	109.5
H19B—C19A—H19C	109.5	H19E—C19B—H19F	109.5
			/->
C10A—N1A—N2A—N3A	0.1 (2)	C1OB—N1B—N2B—N3B	0.1 (2)
N1A—N2A—N3A—C11A	-0.28 (19)	N1B—N2B—N3B—C11B	-0.2 (2)

N1A—N2A—N3A—C12A	179.52 (14)	N1B—N2B—N3B—C12B	-179.56 (15)
C6A—C1A—C2A—C3A	0.9 (3)	N2B—N1B—C10B—C11B	0.0 (2)
C1A—C2A—C3A—C4A	-1.8 (3)	N2B—N1B—C1OB—C9B	-179.05 (15)
C1A—C2A—C3A—F1A	178.96 (18)	C6B—C1B—C2B—C3B	-0.5 (3)
F1A—C3A—C4A—C5A	-178.99 (17)	C1B—C2B—C3B—C4B	-0.8 (4)
C2A—C3A—C4A—C5A	1.8 (3)	C1B—C2B—C3B—F1B	-179.57 (19)
C3A—C4A—C5A—C6A	-0.8 (3)	F1B-C3B-C4B-C5B	180.00 (19)
C2A—C1A—C6A—C5A	0.0 (3)	C2B—C3B—C4B—C5B	1.2 (4)
C2A—C1A—C6A—C7A	-178.99 (17)	C3B—C4B—C5B—C6B	-0.4 (3)
C4A—C5A—C6A—C1A	-0.1 (3)	C2B-C1B-C6B-C5B	1.3 (3)
C4A—C5A—C6A—C7A	179.01 (17)	C2B—C1B—C6B—C7B	-178.81 (18)
C1A—C6A—C7A—C8A	4.2 (3)	C4B-C5B-C6B-C1B	-0.8 (3)
C5A—C6A—C7A—C8A	-174.79 (17)	C4B—C5B—C6B—C7B	179.25 (18)
C6A—C7A—C8A—C9A	176.88 (15)	C1B—C6B—C7B—C8B	6.9 (3)
C7A—C8A—C9A—O1A	-7.1 (3)	C5B—C6B—C7B—C8B	-173.16 (18)
C7A—C8A—C9A—C10A	174.33 (15)	C6B—C7B—C8B—C9B	177.35 (16)
N2A—N1A—C10A—C11A	0.1 (2)	N1B-C10B-C9B-01B	-179.00 (16)
N2A—N1A—C10A—C9A	-178.98 (15)	C11B—C10B—C9B—O1B	2.2 (3)
O1A—C9A—C10A—N1A	-179.34 (16)	N1B-C1OB-C9B-C8B	0.3 (2)
C8A—C9A—C10A—N1A	-0.7 (2)	C11B—C10B—C9B—C8B	-178.47 (16)
O1A—C9A—C10A—C11A	1.8 (3)	C7B—C8B—C9B—O1B	-5.3 (3)
C8A—C9A—C10A—C11A	-179.51 (15)	C7B—C8B—C9B—C1OB	175.37 (15)
N2A—N3A—C11A—C10A	0.31 (18)	N2B—N3B—C11B—C10B	0.14 (18)
C12A—N3A—C11A—C10A	-179.47 (15)	C12B—N3B—C11B—C10B	179.46 (16)
N2A—N3A—C11A—C19A	-179.59 (15)	N2B-N3B-C11B-C19B	179.98 (16)
C12A—N3A—C11A—C19A	0.6 (3)	C12B—N3B—C11B—C19B	-0.7 (3)
N1A—C10A—C11A—N3A	-0.22 (18)	N1B—C1OB—C11B—N3B	-0.06 (18)
C9A—C10A—C11A—N3A	178.72 (16)	C9B—C1OB—C11B—N3B	178.85 (16)
N1A—C10A—C11A—C19A	179.66 (17)	N1B-C10B-C11B-C19B	-179.88 (18)
C9A—C10A—C11A—C19A	-1.4 (3)	C9B—C1OB—C11B—C19B	-1.0 (3)
C11A—N3A—C12A—C13A	-75.8 (2)	C11B—N3B—C12B—C13B	-80.5 (2)
N2A—N3A—C12A—C13A	104.47 (17)	N2B—N3B—C12B—C13B	98.73 (19)
N3A—C12A—C13A—C14A	139.38 (16)	N3B-C12B-C13B-C18B	-17.6 (3)
N3A—C12A—C13A—C18A	-44.9 (2)	N3B-C12B-C13B-C14B	165.00 (16)
C18A—C13A—C14A—C15A	-0.1 (3)	C18B—C13B—C14B—C15B	-1.2 (3)
C12A—C13A—C14A—C15A	175.76 (16)	C12B—C13B—C14B—C15B	176.30 (19)
C13A—C14A—C15A—C16A	1.7 (3)	C13B—C14B—C15B—C16B	0.0 (3)
C14A—C15A—C16A—C17A	-2.2 (3)	C14B—C15B—C16B—C17B	1.1 (4)
C15A—C16A—C17A—C18A	1.1 (3)	C15B—C16B—C17B—C18B	-0.8 (3)
C14A—C13A—C18A—C17A	-1.1 (3)	C14B—C13B—C18B—C17B	1.5 (3)
C12A—C13A—C18A—C17A	-176.80 (17)	C12B—C13B—C18B—C17B	-175.93 (18)
C16A—C17A—C18A—C13A	0.6 (3)	C16B—C17B—C18B—C13B	-0.4 (3)

Hydrogen-bond geometry (Å, °)

Cg3 and Cg6 are the centroids of the of the C13A-C18A and C13B-C18B rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12B—H12C···N1 A^{i}	0.97	2.46	3.422 (2)	172

			supportin	supporting information		
С5А—Н5АА…Сдб ^{іі}	0.93	2.91	3.842 (2)	178		
C12 <i>A</i> —H12 <i>A</i> … <i>Cg</i> 3 ⁱⁱⁱ	0.97	2.62	3.551 (2)	161		

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*, *y*+1/2, -*z*+1/2; (iii) -*x*+1, -*y*+2, -*z*.