Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A second polymorph of chlorido(hydroxydiphenylphosphane)gold(I)

Sicelo V. Sithole, ${ }^{\text {a }}$ Richard J. Staples ${ }^{\text {b }}$ and Werner E. Van $\left.Z y\right|^{\text {a* }}$

${ }^{\text {a School }}$ of Chemistry, University of KwaZulu-Natal, Westville Campus, Private, Bag X54001, Durban, 4000, South Africa, and ${ }^{\mathbf{b}}$ Department of Chemistry, Michigan State University, East Lansing, MI, 48824-1322, USA
Correspondence e-mail: vanzylw@ukzn.ac.za
Received 29 July 2011; accepted 2 September 2011
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.019 ; w R$ factor $=0.048$; data-to-parameter ratio $=16.0$.

The title complex, $\left[\mathrm{AuCl}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}(\mathrm{OH})-\kappa P\right\}\right]$ or $[\mathrm{AuCl}-$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OP}\right)\right]$, contains two independent molecules in the asymmetric unit and is a polymorph of a previously reported structure [Hollatz et al. (1999) J. Chem. Soc. Dalton Trans. pp. 111-114]. The crystal structure exhibits intermolecular $\mathrm{Au} \cdots \mathrm{Au}$ interactions with alternate distances of 3.0112 (3) \AA and 3.0375 (2) \AA. The $\mathrm{Cl}-\mathrm{Au}-\mathrm{P}$ bond angle varies between different molecular units, depending on the degree of influence of the intramolecular the $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond; the angle thus varies between negligible distortion from linearity at $179.23(3)^{\circ}$ and more significant distortion at $170.39(4)^{\circ}$, which differs from the previously reported polymorph in which both these angles are approximately 170°. The $\mathrm{Au}-\mathrm{Cl}[2.3366$ (9) and 2.3131 (10) A$]$ and $\mathrm{Au}-\mathrm{P}[2.2304$ (10) and 2.2254 (10) \AA] bond lengths vary slightly between the two independent molecules but overall, the bond lengths are in good agreement with those in the previously reported polymorph.

Related literature

For background to polymorphism, see: Braga \& Grepioni (2007). Polymorphs of chlorogold(I) phosphine complexes are relatively common (Healy, 2003) and often display interesting photochemical properties (Hoshino et al., 2010). For the previously reported polymorph of the title compound, see: Hollatz et al. (1999). For our studies on gold and P-based ligand complexes, see: Van Zyl (2010).

Experimental

Crystal data

$\left[\mathrm{AuCl}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OP}\right)\right]$
$V=5044.8(5) \AA^{3}$
$M_{r}=434.59$
$Z=16$
Monoclinic, $C 2 / c$
$a=29.2734$ (18) £
Mo $K \alpha$ radiation
$b=10.2321$ (6) \AA
$\mu=11.98 \mathrm{~mm}^{-1}$
$c=17.5643$ (11) \AA
$T=173 \mathrm{~K}$
$\beta=106.483(1)^{\circ}$
$0.32 \times 0.13 \times 0.06 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.371, T_{\text {max }}=0.745$
18295 measured reflections 4651 independent reflections 4183 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019 \quad 291$ parameters
$w R\left(F^{2}\right)=0.048 \quad \mathrm{H}$-atom parameters constrained
$S=1.03$
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}^{\AA^{-3}}$
4651 reflections
$\Delta \rho_{\text {min }}=-0.63 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{Cl} 2$	0.84	2.16	$2.994(3)$	170
O2-H2 $\cdots \mathrm{Cl} 1$	0.84	2.23	$3.050(3)$	166

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

WEvZ gratefully acknowledges financial support through a UKZN Competitive Grant, and also thanks Rand Refineries (South Africa) for a gift of the gold salt. SVS thanks the National Research Foundation (NRF) for an Innovative Grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2011).

metal-organic compounds

References

Braga, D. \& Grepioni, F. (2007). Editors. Making Crystals by Design: Methods, Techniques and Applications. Weinheim: Wiley-VCH Verlag.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Healy, P. C. (2003). Acta Cryst. E59, m1112-m1114.

Hollatz, C., Schier, A., Riede, J. \& Schmidbaur, H. (1999). J. Chem. Soc., Dalton Trans. pp. 111-114.
Hoshino, M., Uekusa, H., Ishii, S., Otsuka, T., Kaizu, Y., Ozawa, Y. \& Toriumi, K. (2010). Inorg. Chem. 49, 7257-7265.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.

supporting information

Acta Cryst. (2011). E67, m1328-m1329 [https://doi.org/10.1107/S1600536811035732]
A second polymorph of chlorido(hydroxydiphenylphosphane)gold(I)

Sicelo V. Sithole, Richard J. Staples and Werner E. Van Zyl

S1. Comment

Polymorphism is generally described as the ability of the same chemical substance to exist in at least two different crystalline forms (Braga \& Grepioni 2007). Data collection at 173 K showed that the gold(I) compound, (I), had crystallized in monoclinic space group $C 2 / c$ with sixteen formula units per unit cell (final R value 0.019) which differs significantly from a previously reported crystal structure of this compound (Hollatz et al., 1999), obtained at 195 K in triclinic space group $\mathrm{P} \overline{1}$ with four formula units per unit cell and a final R value of 0.036 . Due to the nearness of the respective data collection temperatures, we disregard an interpretation of this result as indicating that the structure had undergone a significant phase transition between 173 and 195 K , and thus conclude that the structure of complex (I) presented here is a genuine polymorph and not the consequence of a phase transition. Indeed, polymorphs of chlorogold(I) phosphine complexes are relatively common (Healy, 2003) and often display interesting photochemical properties (Hoshino et al., 2010).
In our continued studies on gold and P-based ligand complexes (Van Zyl, 2010), the title complex
$\left[\mathrm{AuCl}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}(\mathrm{OH})\right\}\right]$, (I), was readily synthesized from the reaction between $\mathrm{Ph}_{2} \mathrm{PCl}$ in wet dichloromethane (i.e. containing traces of water) followed by addition of [$\mathrm{AuCl}(\mathrm{tht})]$ ($\mathrm{tht}=$ tetrahydrothiophene). In the previously reported study of the polymorph, $\left[\mathrm{AuCl}\left(\mathrm{Me}_{2} \mathrm{~S}\right)\right]$ was reacted with $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent with the elimination of $\mathrm{Me}_{2} \mathrm{~S}$, forming $\left[\mathrm{AuCl}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}(\mathrm{OH})\right\}\right]$. A solution ${ }^{31} \mathrm{P}$ NMR study showed a sharp singlet at $\delta=89.5$ for (I) which corresponds well with the value of $\delta=90.4$ for the polymorph (Hollatz et al., 1999). Since polymorphs must have the same resonance in solution, and since the same solvent $\left(\mathrm{CDCl}_{3}\right)$ was used in both cases, the small difference (0.9 p.p.m.) is ascribed to possible difference in temperature (293 versus 298 K) during data acquisition. A single-crystal X-ray analysis of the compound subsequently provided unambiguous proof of the authenticity of the complex, and for it to be a polymorph.
The crystal structure of (I) presented here includes four molecular units along a virtual chain (described as two "inner" and two "outer" units) all linked through intermolecular Au \cdots Au interactions with alternate distances of 3.0112 (3) \AA (between the two inner units) and 3.0375 (2) \AA between an inner and outer unit which are both shorter than the corresponding distance for the reported polymorph, at 3.1112 (7) \AA. The $\mathrm{Cl}-\mathrm{Au}-\mathrm{P}$ bond angles between the two inner complexes have in one case negligible distortion away from linearity at $179.23(3)^{\circ}$ while in the other case it has significant distortion at $170.39(4)^{\circ}$, which differs from the previously reported polymorph where both these angles are approximately 170°. This difference originates through the varying influence of $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ type hydrogen bonding within the respective molecular units: the stronger the H -bonding, the more the distortion. In the case of (I), the one $\mathrm{Cl}-\mathrm{Au}-\mathrm{P}$ unit is positioned too far from a $\mathrm{P}-\mathrm{O}-\mathrm{H}$ unit for any $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding $[d(\mathrm{H} \cdots \mathrm{Cl})=2.23 \AA]$ to occur whilst the other $\mathrm{Cl}-\mathrm{Au}-\mathrm{P}$ unit is much closer to a $\mathrm{P}-\mathrm{O}-\mathrm{H}$ unit at $\mathrm{d}(\mathrm{H} \cdots \mathrm{Cl})=2.16 \AA$, and this causes the observed distortion. In the triclinic polymorph, hydrogen bonding is present on both monomeric units at $\mathrm{d}(\mathrm{H} \cdots \mathrm{Cl})=2.03$ and 2.11 \AA, respectively, which leads to significant distortion from linearity for both $\mathrm{Cl}-\mathrm{Au}-\mathrm{P}$ units. $\mathrm{The} \mathrm{Au}-\mathrm{Cl}$ bond length of the inner unit is 2.3366 (9) and for the outer unit 2.3131 (10) \AA, respectively, whilst the $\mathrm{Au}-\mathrm{P}$ bond lengths are slightly
shorter at 2.2304 (10) (inner) and 2.2254 (10) \AA (outer), respectively; these bond length results are in good agreement with the previously reported structure. The P — O bond length in (I) is 1.592 (3) \AA versus 1.597 (5) \AA in the triclinic polymorph. Based on the current studies, it cannot readily be inferred whether the polymorph with the shorter $\mathrm{Au} \cdots \mathrm{Au}$ interactions is the thermodynamically more stable of the two. Note that structure (I) has a slightly lower calculated density at $2.289 \mathrm{~g} / \mathrm{cm}^{3}$ compared to the other polymorph at $2.309 \mathrm{~g} / \mathrm{cm}^{3}$, suggesting the molecular packing in the latter is more efficient, presumably resulting from a larger extent of hydrogen bonding.

S2. Experimental

Preparation and characterization of complex (I): A Schlenk flask equipped with a magnetic stirrer bar was charged with wet dichloromethane (5 ml) and this was followed by addition of $\mathrm{ClPPh}_{2}(0.210 \mathrm{ml}, 1.11 \mathrm{mmol})$. The mixture was stirred for 20 minutes at room temperature. A dichloromethane solution of $[\mathrm{AuCl}(\mathrm{tht})](354 \mathrm{mg}, 1.11 \mathrm{mmol})$ was added in one portion and the resulting mixture stirred for a further 15 minutes. All of the solvent and tht were removed and the product isolated as a free-flowing white powder. ${ }^{31} \mathrm{P}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta_{\mathrm{P}}=89.2$ (s, 1P). Single crystals were obtained by slow diffusion of hexane vapor into a saturated dichloromethane solution.

S3. Refinement

All H atoms were placed in calculated positions and refined using a riding model. $\mathrm{C}-\mathrm{H}(\operatorname{aromatic})=0.94 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 \mathrm{Ueq}(\mathrm{C}) \mathrm{C}-\mathrm{H}($ alaphatic $)=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}) \mathrm{CH} 2=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}) \mathrm{CH} 3=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C}) \mathrm{N}-\mathrm{H}=0.86(0.92) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}) \mathrm{O}-\mathrm{H}($ alcohol $)=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{O}) \mathrm{O}-$ $\mathrm{H}(\mathrm{acid})=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{O})$.

Figure 1

The molecular structure of (I), showing the intermolecular $\mathrm{Au}-\mathrm{Au}$ interaction between two units with atom labels and 50\% probability displacement ellipsoids for non-H atoms.

Figure 2
The packing of the crystal structure, viewed along the a axis.

Figure 3
A molecular drawing showing four units, two inner and two outer. Note the atoms of the inner $\mathrm{P}-\mathrm{Au}-\mathrm{Cl}$ moiety points in approximately the same direction, whilst the outer two in the opposite direction.

(Hydroxydiphenylphosphane)chloridogold(I)

Crystal data

$\left[\mathrm{AuCl}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OP}\right)\right.$]
$M_{r}=434.59$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=29.2734$ (18) \AA
$b=10.2321$ (6) \AA
$c=17.5643$ (11) \AA
$\beta=106.483(1)^{\circ}$
$V=5044.8(5) \AA^{3}$
$Z=16$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 836.6 pixels mm^{-1}
ω,and/f 0.5 deg scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.371, T_{\text {max }}=0.745$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.048$
$S=1.03$
4651 reflections
291 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=3232$
$D_{\mathrm{x}}=2.289 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9950 reflections
$\theta=2.3-25.4^{\circ}$
$\mu=11.98 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Chunk, colourless
$0.32 \times 0.13 \times 0.06 \mathrm{~mm}$

18295 measured reflections
4651 independent reflections
4183 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-35 \rightarrow 35$
$k=-12 \rightarrow 12$
$l=-21 \rightarrow 21$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0223 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.004$
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.63$ e \AA^{-3}

Special details

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K . A suitable crystal was chosen and mounted on a glass fiber or nylon loop using Paratone oil for Mo radiation and Mineral oil for Copper radiation. Data were measured using omega and phi scans of 0.5° per frame for 30 s . The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to $0.83 \AA$ to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structures are solved by the direct method using the SHELXS97 program and refined by least squares method on F2, SHELXL97, incorporated in SHELXTL-PC V 6.14. The crystal used for the diffraction study showed no decomposition during data collection.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Au1	0.960725 (5)	0.437105 (13)	0.289805 (8)	0.02121 (5)
Au2	0.887378 (5)	0.384820 (13)	0.378563 (9)	0.02700 (6)
Cl 1	1.00671 (3)	0.26698 (9)	0.36128 (6)	0.0284 (2)
Cl 2	0.89312 (4)	0.59742 (9)	0.42511 (6)	0.0368 (3)
P1	0.91703 (4)	0.60110 (9)	0.22307 (6)	0.0228 (2)
P2	0.87692 (4)	0.17285 (9)	0.35069 (7)	0.0268 (2)
O1	0.90588 (11)	0.7154 (2)	0.27649 (16)	0.0342 (7)
H1	0.9059	0.6853	0.3210	0.051*
O2	0.91734 (10)	0.0976 (3)	0.3237 (2)	0.0411 (8)
H2	0.9435	0.1363	0.3419	0.062*
C1	0.85968 (13)	0.5459 (4)	0.1619 (2)	0.0241 (8)
C2	0.81825 (15)	0.6080 (4)	0.1658 (3)	0.0372 (11)
H2B	0.8198	0.6785	0.2016	0.045*
C3	0.77481 (17)	0.5670 (5)	0.1175 (3)	0.0508 (13)
H3	0.7465	0.6095	0.1201	0.061*
C4	0.77226 (16)	0.4651 (5)	0.0657 (3)	0.0471 (12)
H4	0.7423	0.4389	0.0316	0.056*
C5	0.81274 (17)	0.4011 (5)	0.0630 (3)	0.0437 (11)
H5	0.8107	0.3294	0.0278	0.052*
C6	0.85684 (15)	0.4403 (4)	0.1113 (3)	0.0347 (10)
H6	0.8849	0.3951	0.1096	0.042*
C7	0.94390 (13)	0.6894 (3)	0.1576 (2)	0.0244 (8)
C8	0.95612 (14)	0.6238 (4)	0.0969 (2)	0.0286 (9)
H8	0.9491	0.5334	0.0889	0.034*
C9	0.97805 (15)	0.6877 (4)	0.0485 (3)	0.0378 (10)
H9	0.9862	0.6416	0.0073	0.045*
C10	0.98827 (15)	0.8194 (5)	0.0597 (3)	0.0428 (12)
H10	1.0038	0.8638	0.0265	0.051*
C11	0.97600 (16)	0.8859 (4)	0.1187 (3)	0.0434 (12)
H11	0.9827	0.9767	0.1256	0.052*
C12	0.95387 (14)	0.8222 (4)	0.1687 (3)	0.0330 (10)
H12	0.9457	0.8687	0.2097	0.040*
C13	0.87130 (14)	0.0853 (4)	0.4367 (2)	0.0269 (9)
C14	0.88671 (15)	-0.0425 (4)	0.4518 (3)	0.0345 (10)
H14	0.9010	-0.0863	0.4167	0.041*
C15	0.88123 (17)	-0.1070 (4)	0.5187 (3)	0.0425 (12)
H15	0.8916	-0.1950	0.5287	0.051*
C16	0.86084 (17)	-0.0442 (4)	0.5704 (3)	0.0405 (11)
H16	0.8574	-0.0881	0.6161	0.049*
C17	0.84557 (16)	0.0823 (4)	0.5551 (3)	0.0368 (10)

H17	0.8311	0.1253	0.5902	0.044^{*}
C18	$0.85078(14)$	$0.1480(4)$	$0.4900(2)$	$0.0298(9)$
H18	0.8405	0.2361	0.4810	0.036^{*}
C19	$0.82412(14)$	$0.1317(4)$	$0.2729(2)$	$0.0273(9)$
C20	$0.81456(16)$	$0.0011(4)$	$0.2501(3)$	$0.0361(10)$
H20	0.8365	-0.0655	0.2744	0.043^{*}
C21	$0.77345(16)$	$-0.0307(4)$	$0.1926(3)$	$0.0407(11)$
H21	0.7673	-0.1193	0.1769	0.049^{*}
C22	$0.74071(16)$	$0.0648(4)$	$0.1570(3)$	$0.0393(11)$
H22	0.7120	0.0419	0.1180	0.047^{*}
C23	$0.75038(16)$	$0.1929(4)$	$0.1789(3)$	$0.0430(11)$
H23	0.7283	0.2592	0.1549	0.052^{*}
C24	$0.79207(16)$	$0.2261(4)$	$0.2357(3)$	$0.0376(10)$
H24	0.7987	0.3154	0.2493	0.045^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Au1	$0.01960(9)$	$0.02248(8)$	$0.02120(9)$	$0.00212(5)$	$0.00521(7)$	$0.00271(5)$
Au2	$0.02700(10)$	$0.02272(9)$	$0.03339(10)$	$-0.00234(6)$	$0.01200(7)$	$-0.00352(6)$
C11	$0.0240(5)$	$0.0277(5)$	$0.0322(5)$	$0.0054(4)$	$0.0060(4)$	$0.0078(4)$
C12	$0.0522(7)$	$0.0266(5)$	$0.0372(6)$	$-0.0047(5)$	$0.0217(5)$	$-0.0079(4)$
P1	$0.0238(6)$	$0.0214(5)$	$0.0219(5)$	$0.0035(4)$	$0.0042(4)$	$0.0016(4)$
P2	$0.0232(6)$	$0.0237(5)$	$0.0351(6)$	$-0.0008(4)$	$0.0106(5)$	$-0.0041(4)$
O1	$0.0470(19)$	$0.0264(14)$	$0.0300(17)$	$0.0066(13)$	$0.0120(15)$	$0.0004(12)$
O2	$0.0306(18)$	$0.0311(15)$	$0.067(2)$	$-0.0012(13)$	$0.0237(17)$	$-0.0126(15)$
C1	$0.021(2)$	$0.029(2)$	$0.021(2)$	$0.0005(16)$	$0.0051(17)$	$0.0061(16)$
C2	$0.023(2)$	$0.038(2)$	$0.050(3)$	$0.0052(18)$	$0.011(2)$	$-0.002(2)$
C3	$0.023(3)$	$0.057(3)$	$0.072(4)$	$0.009(2)$	$0.014(3)$	$0.000(3)$
C4	$0.023(3)$	$0.061(3)$	$0.049(3)$	$-0.004(2)$	$-0.004(2)$	$0.009(2)$
C5	$0.035(3)$	$0.053(3)$	$0.037(3)$	$-0.004(2)$	$0.000(2)$	$-0.005(2)$
C6	$0.023(2)$	$0.042(2)$	$0.039(3)$	$0.0021(18)$	$0.008(2)$	$-0.0097(19)$
C7	$0.017(2)$	$0.0268(19)$	$0.024(2)$	$0.0019(15)$	$-0.0030(16)$	$0.0059(16)$
C8	$0.026(2)$	$0.031(2)$	$0.028(2)$	$0.0032(17)$	$0.0051(18)$	$0.0061(17)$
C9	$0.033(3)$	$0.052(3)$	$0.026(2)$	$0.001(2)$	$0.0030(19)$	$0.013(2)$
C10	$0.025(3)$	$0.057(3)$	$0.043(3)$	$-0.007(2)$	$0.004(2)$	$0.021(2)$
C11	$0.033(3)$	$0.035(2)$	$0.052(3)$	$-0.013(2)$	$-0.005(2)$	$0.009(2)$
C12	$0.027(2)$	$0.028(2)$	$0.038(3)$	$-0.0015(17)$	$-0.0002(19)$	$0.0044(18)$
C13	$0.021(2)$	$0.0249(19)$	$0.030(2)$	$-0.0050(16)$	$0.0000(17)$	$-0.0040(17)$
C14	$0.032(3)$	$0.031(2)$	$0.036(3)$	$0.0003(18)$	$0.003(2)$	$-0.0067(18)$
C15	$0.053(3)$	$0.025(2)$	$0.040(3)$	$-0.002(2)$	$-0.002(2)$	$0.0035(19)$
C16	$0.052(3)$	$0.035(2)$	$0.029(3)$	$-0.010(2)$	$0.003(2)$	$0.0008(19)$
C17	$0.044(3)$	$0.035(2)$	$0.032(3)$	$-0.006(2)$	$0.012(2)$	$-0.0046(19)$
C18	$0.029(2)$	$0.0255(19)$	$0.033(2)$	$-0.0002(17)$	$0.0047(19)$	$-0.0011(17)$
C19	$0.031(2)$	$0.028(2)$	$0.028(2)$	$-0.0024(17)$	$0.0159(19)$	$-0.0002(16)$
C20	$0.036(3)$	$0.028(2)$	$0.041(3)$	$-0.0002(19)$	$0.007(2)$	$-0.0019(19)$
C21	$0.043(3)$	$0.039(2)$	$0.040(3)$	$-0.009(2)$	$0.012(2)$	$-0.010(2)$
C22	$0.029(3)$	$0.059(3)$	$0.029(2)$	$-0.012(2)$	$0.006(2)$	$-0.002(2)$

C 23	$0.035(3)$	$0.048(3)$	$0.041(3)$	$0.007(2)$	$0.003(2)$	$0.007(2)$
C 24	$0.040(3)$	$0.031(2)$	$0.042(3)$	$0.0003(19)$	$0.011(2)$	$0.0010(19)$

Geometric parameters (A, ${ }^{\circ}$)

Au1-P1	2.2304 (10)	C9-C10	1.382 (6)
Au1-Cl1	2.3366 (9)	C9-H9	0.9500
Aul-Au1 ${ }^{\text {i }}$	3.0112 (3)	C10-C11	1.370 (7)
Au1-Au2	3.0375 (2)	C10-H10	0.9500
Au2-P2	2.2254 (10)	C11-C12	1.392 (6)
$\mathrm{Au} 2-\mathrm{Cl} 2$	2.3131 (10)	C11-H11	0.9500
P1-O1	1.591 (3)	C12-H12	0.9500
P1-C1	1.808 (4)	C13-C14	1.385 (5)
P1-C7	1.808 (4)	C13-C18	1.403 (5)
$\mathrm{P} 2-\mathrm{O} 2$	1.592 (3)	C14-C15	1.396 (6)
P2-C19	1.799 (4)	C14-H14	0.9500
P2-C13	1.803 (4)	C15-C16	1.379 (6)
O1-H1	0.8400	C15-H15	0.9500
$\mathrm{O} 2-\mathrm{H} 2$	0.8400	C16-C17	1.371 (6)
C1-C2	1.387 (5)	C16-H16	0.9500
C1-C6	1.387 (5)	C17-C18	1.371 (6)
C2-C3	1.378 (6)	C17-H17	0.9500
C2-H2B	0.9500	C18-H18	0.9500
C3-C4	1.372 (7)	C19-C24	1.375 (6)
C3-H3	0.9500	C19-C20	1.401 (5)
C4-C5	1.366 (6)	C20-C21	1.373 (6)
C4-H4	0.9500	C20-H20	0.9500
C5-C6	1.387 (6)	C21-C22	1.387 (6)
C5-H5	0.9500	C21-H21	0.9500
C6-H6	0.9500	C22-C23	1.373 (6)
C7-C8	1.389 (5)	C22-H22	0.9500
C7-C12	1.392 (5)	C23-C24	1.381 (6)
C8-C9	1.368 (5)	C23-H23	0.9500
C8-H8	0.9500	C24-H24	0.9500
P1-Au1-Cl1	179.23 (3)	C8-C9-H9	120.1
P1-Au1-Au1 ${ }^{\text {i }}$	98.95 (3)	C10-C9-H9	120.1
Cl1-Au1-Au1 ${ }^{\text {i }}$	81.37 (2)	C11-C10-C9	119.9 (4)
P1-Au1-Au2	91.08 (3)	C11-C10-H10	120.0
C11-Au1-Au2	88.65 (2)	C9-C10-H10	120.0
Au1 ${ }^{\text {i-Aun }}$ - Au 2	169.256 (4)	C10-C11-C12	120.9 (4)
P2-Au2-Cl2	170.39 (4)	C10-C11-H11	119.5
P2-Au2-Au1	97.58 (3)	C12-C11-H11	119.5
C12-Au2-Au1	91.41 (3)	C11-C12-C7	119.1 (4)
O1-P1-C1	105.59 (17)	C11-C12-H12	120.5
O1-P1-C7	101.93 (16)	C7-C12-H12	120.5
C1-P1-C7	106.06 (17)	C14-C13-C18	118.8 (4)
O1-P1-Au1	115.24 (11)	C14-C13-P2	121.9 (3)

C1-P1-Au1	112.00 (12)
C7-P1-Au1	114.96 (12)
O2-P2-C19	102.24 (18)
O2-P2-C13	105.13 (18)
C19-P2-C13	104.90 (17)
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{Au} 2$	117.99 (11)
C19-P2-Au2	115.47 (13)
C13-P2-Au2	109.84 (13)
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{H} 1$	109.5
$\mathrm{P} 2-\mathrm{O} 2-\mathrm{H} 2$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	119.6 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 1$	120.4 (3)
C6- $\mathrm{C} 1-\mathrm{P} 1$	120.1 (3)
C3-C2-C1	119.8 (4)
C3-C2-H2B	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	120.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.4 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.8
C2-C3-H3	119.8
C5-C4-C3	120.2 (4)
C5-C4-H4	119.9
C3-C4-H4	119.9
C4-C5-C6	120.4 (4)
C4-C5-H5	119.8
C6-C5-H5	119.8
C1-C6-C5	119.6 (4)
C1-C6-H6	120.2
C5-C6-H6	120.2
C8-C7- 12	119.3 (4)
C8-C7-P1	120.0 (3)
C12-C7-P1	120.7 (3)
C9-C8-C7	121.0 (4)
C9-C8-H8	119.5
C7-C8-H8	119.5
C8-C9-C10	119.9 (4)
P1—Au1—Au2-P2	126.72 (4)
Cl1-Au1-Au2-P2	-54.00 (4)
Au 1 - $\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{P} 2$	-32.28 (5)
$\mathrm{P} 1-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{Cl} 2$	-56.69 (4)
$\mathrm{Cl} 1-\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{Cl} 2$	122.59 (4)
$\mathrm{Au1}$ - $\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{Cl} 2$	144.31 (5)
$\mathrm{Cl1}-\mathrm{Au} 1-\mathrm{P} 1-\mathrm{O} 1$	-11 (3)
$\mathrm{Au1}-\mathrm{Au} 1-\mathrm{P} 1-\mathrm{O} 1$	-125.53 (13)
$\mathrm{Au} 2-\mathrm{Au} 1-\mathrm{P} 1-\mathrm{O} 1$	58.35 (13)
$\mathrm{Cl1}-\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 1$	-132 (3)
Au1 ${ }^{\text {i }}$ - $\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 1$	113.74 (13)
$\mathrm{Au} 2-\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 1$	-62.38 (14)

$\mathrm{C} 18-\mathrm{C} 13-\mathrm{P} 2$	$119.4(3)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$119.9(4)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	120.0
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$	120.0
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$	$120.5(4)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$	119.7
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	119.7
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$	$119.3(4)$
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 16$	120.4
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16$	120.4
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$121.3(4)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17$	119.4
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{H} 17$	119.4
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 13$	$120.2(4)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{H} 18$	119.9
$\mathrm{C} 13-\mathrm{C} 18-\mathrm{H} 18$	119.9
$\mathrm{C} 24-\mathrm{C} 19-\mathrm{C} 20$	$118.7(4)$
$\mathrm{C} 24-\mathrm{C} 19-\mathrm{P} 2$	$121.3(3)$
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{P} 2$	$120.0(3)$
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19$	$119.9(4)$
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20$	120.1
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{H} 20$	120.1
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$121.0(4)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$	119.5
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21$	119.5
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 21$	$119.0(4)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	120.5
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	120.5
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$120.5(4)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	119.8
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23$	119.5
$\mathrm{C} 19-\mathrm{C} 24-\mathrm{C} 23$	(4)
$\mathrm{C} 19-\mathrm{C} 24-\mathrm{H} 24$	C
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 24$	19.5

$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 12$	$116.5(3)$
$\mathrm{A} 1-\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 12$	$-119.1(3)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.5(6)$
$\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-177.6(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.1(6)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.6(7)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$0.9(7)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$-0.5(6)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$-0.2(6)$
$\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$177.9(3)$
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{C} 13-\mathrm{C} 14$	$-20.8(4)$
$\mathrm{C} 19-\mathrm{P} 2-\mathrm{C} 13-\mathrm{C} 14$	$86.6(4)$

$\mathrm{C} 11-\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 7$	$107(3)$
$\mathrm{Au} 1-\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 7$	$-7.40(14)$
$\mathrm{Au} 2-\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 7$	$176.48(14)$
$\mathrm{C} 12-\mathrm{Au} 2-\mathrm{P} 2-\mathrm{O} 2$	$-139.1(3)$
$\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{P} 2-\mathrm{O} 2$	$20.00(16)$
$\mathrm{C} 12-\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 19$	$99.6(3)$
$\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 19$	$-101.26(14)$
$\mathrm{C} 12-\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 13$	$-18.8(3)$
$\mathrm{Au} 1-\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 13$	$140.40(14)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	$3.3(4)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	$-104.4(3)$
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	$129.4(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 6$	$-176.2(3)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 6$	$76.1(4)$
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 6$	$-50.0(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-2.0(6)$
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.5(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.0(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.7(8)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1.4(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$2.4(6)$
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.2(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.7(7)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 8$	$-175.6(3)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 8$	$-65.4(3)$
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 8$	$59.0(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 12$	$6.3(4)$

$\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 13-\mathrm{C} 14$	$-148.7(3)$
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{C} 13-\mathrm{C} 18$	$159.2(3)$
$\mathrm{C} 19-\mathrm{P} 2-\mathrm{C} 13-\mathrm{C} 18$	$-93.4(3)$
$\mathrm{Au}-\mathrm{P} 2-\mathrm{C} 13-\mathrm{C} 18$	$31.3(3)$
$\mathrm{C} 18-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$0.6(6)$
$\mathrm{P} 2-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-179.4(3)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-0.4(7)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$0.6(7)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$-0.9(7)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 13$	$1.1(6)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 18-\mathrm{C} 17$	$-1.0(6)$
$\mathrm{P} 2-\mathrm{C} 13-\mathrm{C} 18-\mathrm{C} 17$	$179.0(3)$
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{C} 19-\mathrm{C} 24$	$-131.4(3)$
$\mathrm{C} 13-\mathrm{P} 2-\mathrm{C} 19-\mathrm{C} 24$	$119.0(3)$
$\mathrm{A} 2-\mathrm{P} 2-\mathrm{C} 19-\mathrm{C} 24$	$-2.0(4)$
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{C} 19-\mathrm{C} 20$	$49.7(3)$
$\mathrm{C} 13-\mathrm{P} 2-\mathrm{C} 19-\mathrm{C} 20$	$-59.8(4)$
$\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 19-\mathrm{C} 20$	$179.2(3)$
$\mathrm{C} 24-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$-1.1(6)$
$\mathrm{P} 2-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$177.8(3)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$-0.7(7)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$1.3(7)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$-0.1(7)$
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 24-\mathrm{C} 23$	$2.3(6)$
$\mathrm{P} 2-\mathrm{C} 19-\mathrm{C} 24-\mathrm{C} 23$	$-176.6(3)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 19$	$-1.7(7)$

Symmetry code: (i) $-x+2, y,-z+1 / 2$.

Hydrogen-bond geometry ($\stackrel{A}{ },{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Cl2}$	0.84	2.16	$2.994(3)$	170
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{Cl1}$	0.84	2.23	$3.050(3)$	166

