

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ba₁₁La₄Br₃₄: a new barium lanthanum bromide

Yetta Eagleman,^a* Guang Wu,^b Gautam Gundiah,^a Edith Bourret-Courchesne^a and Stephen Derenzo^a

^aLawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA 94720, USA, and ^bDepartment of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA Correspondence e-mail: ydeagleman@lbl.gov

Received 25 June 2011; accepted 13 September 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (La–Br) = 0.002 Å; disorder in main residue; R factor = 0.049; wR factor = 0.118; data-to-parameter ratio = 26.8.

The structure of the title compound, barium lanthanum bromide (11/4/34), can be derived from the fluorite structure. The asymmetric unit contains two Ba sites (one with site symmetry 4/m.), one La site (site symmetry 4..), one mixedoccupied Ba and La site (ratio 1:1, site symmetry m.) and six Br sites (one with site symmetry \=4.., one with 2.., one with m..., the latter being disordered over two positions with a 0.86:0.14 ratio). The fundamental building units of the structure are edge-sharing polyhedral clusters made up of Ba and La bromide clusters interconnected to BaBr₈ square prisms and BaBr₁₀ groups.

Related literature

Alkaline earth halides (Cherepy et al., 2008), rare earth halides (van Loef et al., 2002; Glodo et al., 2008), and compounds based on such binaries (Bourret-Courchesne et al., 2009, 2010) are efficient scintillators when doped with divalent europium or trivalent cerium. For a detailed study of the luminescence properties of the title compound, see: Eagleman et al. (2011). Similar structure types to that of the title compound have been observed in ternary alkaline earth and rare earth fluorides (Bevan et al., 1980, 1982; Burns et al., 1968), chlorides (Liu & Eick, 1988, 1999; Löchner & Blachnik, 2011; Meyer & Masselmann, 1998), and bromides (Masselmann & Meyer, 1999; Liu & Eick, 1989) and in mixed valent rare earth halides (Druding & Corbett 1961; Liu & Eick, 1991). For structural details of simple and complex halides, see: Meyer & Wickleder (2000). For structural details of these types of superstructures, see: Meyer & Masselmann (1998).

Experimental

Crystal data

$Ba_{11}La_4Br_{34}$	Z = 2
$M_r = 4783.10$	Mo $K\alpha$ radiation
Tetragonal, I4/m	$\mu = 30.05 \text{ mm}^{-1}$
a = 11.909 (3) Å	$T = 150 { m K}$
c = 22.888 (5) Å	$0.25 \times 0.15 \times 0.1 \text{ mm}$
$V = 3246.2 (10) \text{ Å}^3$	

Data collection

Bruker SMART1000 CCD area-	12169 measured reflections
detector diffractometer	1687 independent reflections
Absorption correction: multi-scan	1193 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.168$
$T_{\min} = 0.141, T_{\max} = 0.403$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	63 parameters
$wR(F^2) = 0.118$	$(\Delta / \sigma)_{\text{max}} = 0.100$
S = 1.00	$\Delta \rho_{\rm max} = 5.72 \ {\rm e}$
1687 reflections	$\Delta \rho_{\rm min} = -3.31 {\rm e}$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the US Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. AC02-05CH11231.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2009).

References

- Bevan, D. J. M., Greis, O. & Strähle, J. (1980). Acta Cryst. A36, 889-890.
- Bevan, D. J. M., Strähle, J. & Greis, O. (1982). J. Solid State Chem. 44, 75-81.
- Bourret-Courchesne, E., Bizarri, G., Borade, R., Yan, Z., Hanrahan, S. M., Gundiah, G., Chaudhry, A., Canning, A. & Derenzo, S. E. (2009). Nucl. Instrum. Methods Phys. Res. Sect. A, 612, 138-142.
- Bourret-Courchesne, E., Bizarri, G., Hanrahan, S. M., Yan, Z. & Derenzo, S. E. (2010). Nucl. Instrum. Methods Phys. Res. Sect. A, 613, 95-97.
- Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Burns, J. H., Ellison, R. D. & Levy, H. A. (1968). Acta Cryst. B24, 230-237.

- Cherepy, N. J., et al. (2008). Appl. Phys. Lett. 92, 083508.
- Druding, L. F. & Corbett, J. D. (1961). J. Am. Chem. Soc. 83, 2462-2467.

Eagleman, Y., Bourret-Courchesne, E. & Derenzo, S.E. (2011). In preparation. Glodo, J., van Loef, E. V. D., Higgins, W. M. & Shah, K. S. (2008). IEEE Trans. Nucl. Sci. 55, 1496-1500.

- Liu, G. & Eick, H. A. (1988). Inorg. Chem. 27, 2161-2163.
- Liu, G. & Eick, H. A. (1989). J. Less Common Met. 149, 47-53.
- Liu, G. & Eick, H. A. (1991). J. Solid State Chem. 95, 99-110.
- Liu, G. & Eick, H. A. (1999). J. Solid State Chem. 146, 124-128.
- Löchner, U. & Blachnik, R. (2011). Z. Kristallogr. 183, 207-212.
- Loef, E. V. D. van, Dorenbos, P., van Eijk, C. W. E., Kramer, K. W. & Gudel, H. U. (2002). Nucl. Instrum. Methods Phys. Res. Sect. A, 486, 254-258.

Masselmann, S. & Meyer, G. (1999). Z. Anorg. Allg. Chem. 625, 1-2. Meyer, G. & Masselmann, S. (1998). Chem. Mater. 10, 2994-3004.

inorganic compounds

Meyer, G. & Wickleder, M. S. (2000). Simple and Complex Halides, pp. 53–129.
Amsterdam: Elsevier.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.

supporting information

Acta Cryst. (2011). E67, i53-i54 [https://doi.org/10.1107/S1600536811037354]

Ba₁₁La₄Br₃₄: a new barium lanthanum bromide

Yetta Eagleman, Guang Wu, Gautam Gundiah, Edith Bourret-Courchesne and Stephen Derenzo

S1. Comment

Alkaline earth halides (Cherepy *et al.* 2008), rare earth halides (van Loef *et al.* 2002; Glodo *et al.* 2008), and compounds based on such binaries (Bourret-Courchesne *et al.* 2010; Bourret-Courchesne *et al.* 2009) are efficient scintillators when doped with divalent europium or trivalent cerium. In an effort to discover new scintillators, a new mixed alkaline earth – rare earth bromide, $Ba_{11}La_4Br_{34}$, has been obtained. When doped with either aforementioned activator this material displays high luminosities making them attractive as a promising scintillators. A detailed study of the luminescence properties will be presented in a future publication (Eagleman *et al.* 2011).

Ba₁₁La₄Br₃₄ has a three dimensional tetragonal superstructure which can be derived from the fluorite structure. Similar structure types have been observed in ternary alkaline earth and rare earth fluorides (Bevan *et al.* 1980; Bevan *et al.* 1982; Burns *et al.* 1968), chlorides (Liu & Eick 1988; Liu & Eick 1999; Löchner & Blachnik 2011; Meyer & Masselmann 1998), and bromides (Masselmann & Meyer 1999; Liu & Eick 1989) and in mixed valent rare earth halides (Druding & Corbett 1961; Liu & Eick 1991). These superstructures follow the general formula of $M_n X_{2n+5}$ forming either a rhombohedral (n = 14) or tetragonal (n = 15) structure and consists of [M_6ZX_{36}] polyhedral clusters (Meyer & Wickleder 2000). There is some confusion about whether the interstitial atom, *Z*, is a halide or an oxide.

In Ba₁₁La₄Br₃₄, n = 15 following the $M_{15}X_{35}$ = MZX₃₄ general formula. There are six bromine sites, two barium sites (Ba1 & Ba2), one site that is occupied by Ba(3) and La(1) atoms, and one lanthanum site (La2). Each Ba1 is coordinated to 8 bromines in square prism arrangements and have 4/m site symmetry and Ba—Br distances of 3.2521 (12) Å. Each Ba(2) is coordinated to 10 bromines and have 1 symmetry and Ba—Br bond distances ranging from 3.2632 (12) – 3.7696 (13) Å. The Ba(3) and La(1) cations occupy the same site at 50% occupancy each. They are coordinated to 10 bromines and have m symmetry and bond distances ranging from 2.9708 (3) – 3.4805 (14) Å. Each La(2) is coordinated to 8 bromines in square antiprism arrangement and have 4 symmetry and La—Br distances of 3.0833 (15) Å (4x) and 3.1052 (15) Å (4x).

Typically, $[M_6ZX_{36}]$ polyhedral clusters consist of six corner sharing MX_8 square antiprisms whose metals are arranged in an octahedral geometry and the Z atom occupies the octahedral site. In the case of Ba₁₁La₄Br₃₄, the clusters consist of four edge sharing Ba(3)/La(1)Br₁₀ groups and capped by two La(2)Br₈ square antiprisms having a

 $[(Ba(3)/La(1))_4La(2)_2Br_{16}Br_{40/2}]$ formulation, shown in Figure 1. The interstitial atom, *Z*, is not present. The clusters are connected *via* four outer edges parallel to the (100) and (010) axis, Figure 2. The overall structure is made three dimensional by the interconnectivity of the clusters to Ba(1) and Ba(2) cations, Figure 3.

S2. Experimental

Small crystals of $Ba_{11}La_4Br_{34}$ were formed from solid state reaction of a stoichiometric mixture of barium bromide and lanthanum bromide. The reactants were sealed in an evacuated quartz ampoule, heated at 1000 °C for 10 hr, and then slow cooled to room temperature at a rate of 0.5 °C/hr.

S3. Refinement

(type here to add refinement details)

Figure 3

Structure of Ba11La4Br34viewing along (010) axis

undecabarium tetralanthanum tetratricontabromide

Crystal data

Ba₁₁La₄Br₃₄ $M_r = 4783.10$ Tetragonal, *I*4/*m* a = 11.909 (3) Å c = 22.888 (5) Å V = 3246.2 (10) Å³ Z = 2F(000) = 4068

Data collection

Bruker SMART1000 CCD area-detector	12169 measured reflections
diffractometer	1687 independent reflections
Radiation source: fine-focus sealed tube	1193 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.168$
ω scans	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.141, \ T_{\max} = 0.403$	$l = -28 \rightarrow 28$

 $D_{\rm x} = 4.894 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 119 reflections $\theta = 12.9-37.1^{\circ}$ $\mu = 30.05 \text{ mm}^{-1}$ T = 150 KBlock, colorless $0.25 \times 0.15 \times 0.1 \text{ mm}$

Acta Cryst. (2011). E**67**, i53–i54

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.049$ Secondary atom site location: difference Fourier $wR(F^2) = 0.118$ map S = 1.00 $w = 1/[\sigma^2(F_0^2) + (0.0501P)^2]$ 1687 reflections where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.100$ 63 parameters $\Delta \rho_{\rm max} = 5.72 \text{ e} \text{ Å}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -3.31 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Disclaimer: This document was prepared as an account of work sponsored by the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the United States Government or any agency thereof or The Regents of the University of California.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ba1	1.0000	1.0000	0.0000	0.0070 (5)	
Ba2	1.13364 (7)	0.68518 (6)	0.15892 (3)	0.0095 (2)	
Ba3	0.81444 (11)	0.60582 (10)	0.0000	0.0184 (3)	0.50
Br1	1.20905 (10)	0.91792 (11)	0.08083 (5)	0.0103 (3)	
Br2	1.0000	0.5000	0.2500	0.0113 (6)	
Br3	1.0000	0.5000	0.08013 (7)	0.0086 (4)	
Br4	0.90821 (10)	0.80123 (10)	0.23802 (5)	0.0100 (3)	
Br5	1.21627 (12)	1.07440 (11)	0.37484 (6)	0.0190 (4)	
Br6A	0.7919 (2)	0.3517 (2)	0.0000	0.0264 (6)	0.86
Br6B	0.5329 (13)	0.5572 (11)	0.0000	0.0190 (4)	0.14
La1	0.81444 (11)	0.60582 (10)	0.0000	0.0184 (3)	0.50
La2	1.0000	1.0000	0.31170 (6)	0.0063 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Bal	0.0081 (7)	0.0081 (7)	0.0046 (10)	0.000	0.000	0.000

supporting information

Ba2	0.0103 (4)	0.0073 (4)	0.0110 (4)	-0.0016 (3)	-0.0052 (3)	-0.0002(3)
Ba3	0.0373 (8)	0.0135 (6)	0.0045 (6)	0.0125 (6)	0.000	0.000
Br1	0.0110 (6)	0.0108 (7)	0.0092 (7)	-0.0022 (5)	-0.0023 (5)	-0.0005 (5)
Br2	0.0113 (8)	0.0113 (8)	0.0114 (13)	0.000	0.000	0.000
Br3	0.0119 (9)	0.0056 (8)	0.0084 (9)	-0.0004 (7)	0.000	0.000
Br4	0.0084 (6)	0.0114 (7)	0.0101 (7)	0.0008 (5)	-0.0016 (5)	0.0013 (5)
Br5	0.0190 (7)	0.0145 (7)	0.0237 (8)	-0.0003 (6)	-0.0103 (6)	-0.0024 (6)
Br6A	0.0470 (16)	0.0229 (13)	0.0092 (12)	-0.0234 (12)	0.000	0.000
Br6B	0.0190 (7)	0.0145 (7)	0.0237 (8)	-0.0003 (6)	-0.0103 (6)	-0.0024 (6)
Lal	0.0373 (8)	0.0135 (6)	0.0045 (6)	0.0125 (6)	0.000	0.000
La2	0.0048 (5)	0.0048 (5)	0.0093 (8)	0.000	0.000	0.000

Geometric parameters (Å, °)

Ba1—Br1 ⁱ	3.2521 (12)	Br1—Ba2 ⁱⁱⁱ	3.3737 (14)
Ba1—Br1 ⁱⁱ	3.2521 (12)	Br2—Ba2 ^{xvi}	3.4266 (8)
Ba1—Br1 ⁱⁱⁱ	3.2521 (12)	Br2—Ba2 ^{viii}	3.4266 (9)
Ba1—Br1	3.2521 (13)	Br2—Ba2 ^{xvii}	3.4266 (9)
Ba1—Br1 ^{iv}	3.2521 (13)	Br3—La1 ^{xi}	3.1361 (14)
Ba1—Br1 ^v	3.2521 (13)	Br3—Ba3 ^{xi}	3.1361 (14)
Ba1—Br1 ^{vi}	3.2521 (13)	Br3—Ba2 ^{xvi}	3.2633 (12)
Ba1—Br1 ^{vii}	3.2521 (12)	Br4—La2	3.1052 (14)
Ba2—Br3	3.2633 (12)	Br4—Ba2 ^{xvii}	3.2839 (15)
Ba2—Br4 ^{viii}	3.2839 (15)	Br4—Ba2 ⁱⁱ	3.3067 (15)
Ba2—Br4 ⁱⁱⁱ	3.3067 (14)	Br5—La2	3.0833 (15)
Ba2—Br1 ⁱⁱ	3.3737 (15)	Br5—La1 ^{xviii}	3.1167 (16)
Ba2—Br1	3.4182 (15)	Br5—Ba3 ^{xviii}	3.1167 (16)
Ba2—Br2	3.4266 (8)	Br5—Ba2 ^{xix}	3.5810 (16)
Ba2—Br4	3.5207 (15)	Br5—Ba2 ^x	3.6536 (16)
Ba2—Br5 ^{ix}	3.5810 (17)	Br6A—La1 ^{xv}	2.971 (3)
Ba2—Br5 ^x	3.6536 (16)	Br6A—Ba3 ^{xv}	2.971 (3)
Ba2—Br6A ^{xi}	3.7696 (13)	Br6A—Ba2 ^{xvi}	3.7696 (13)
Ba3—Br6A ^{xii}	2.971 (3)	Br6A—Ba2 ^{xi}	3.7696 (13)
Ba3—Br6A	3.038 (3)	Br6B—Br6B ^{xii}	1.111 (18)
Ba3—Br5 ^{xiii}	3.1167 (16)	Br6B—Br6B ^{xv}	1.111 (18)
Ba3—Br5 ^{xiv}	3.1167 (16)	Br6B—Br6B ^{xx}	1.57 (3)
Ba3—Br1 ⁱⁱ	3.1308 (16)	Br6B—La1 ^{xii}	3.480 (14)
Ba3—Br1 ⁱ	3.1308 (16)	Br6B—Ba3 ^{xii}	3.480 (14)
Ba3—Br3	3.1361 (14)	La2—Br5 ^{vi}	3.0833 (15)
Ba3—Br3 ^{xi}	3.1361 (14)	La2—Br5 ⁱⁱ	3.0833 (15)
Ba3—Br6B	3.402 (15)	La2—Br5 ⁱⁱⁱ	3.0833 (15)
Ba3—Br6B ^{xv}	3.480 (14)	La2—Br4 ⁱⁱⁱ	3.1052 (15)
Br1—La1 ⁱⁱⁱ	3.1308 (16)	La2—Br4 ⁱⁱ	3.1052 (15)
Br1—Ba3 ⁱⁱⁱ	3.1308 (16)	La2—Br4 ^{vi}	3.1052 (15)
Br1 ⁱ —Ba1—Br1 ⁱⁱ	69.34 (5)	Br3—Ba3—Br6B	128.76 (15)
Br1 ⁱ —Ba1—Br1 ⁱⁱⁱ	180.00 (4)	Br3 ^{xi} —Ba3—Br6B	128.76 (15)
Br1 ⁱⁱ —Ba1—Br1 ⁱⁱⁱ	110.66 (5)	Br6A ^{xii} —Ba3—Br6B ^{xv}	76.6 (2)

Brl ⁱ —Bal—Brl	108.88 (2)	Br6A—Ba3—Br6B ^{xv}	56.6 (2)
Br1 ⁱⁱ —Ba1—Br1	71.12 (2)	Br5 ^{xiii} —Ba3—Br6B ^{xv}	67.22 (4)
Br1 ⁱⁱⁱ —Ba1—Br1	71.12 (2)	Br5 ^{xiv} —Ba3—Br6B ^{xv}	67.22 (4)
Br1 ⁱ —Ba1—Br1 ^{iv}	71.12 (2)	Br1 ⁱⁱ —Ba3—Br6B ^{xv}	132.90 (14)
Br1 ⁱⁱ —Ba1—Br1 ^{iv}	108.88 (2)	Br1 ⁱ —Ba3—Br6B ^{xv}	132.90 (14)
Br1 ⁱⁱⁱ —Ba1—Br1 ^{iv}	108.88 (2)	Br3—Ba3—Br6B ^{xv}	115.43 (18)
Br1—Ba1—Br1 ^{iv}	180.0	Br3 ^{xi} —Ba3—Br6B ^{xv}	115.43 (18)
$Br1^{i}$ — $Ba1$ — $Br1^{v}$	71.12 (2)	Br6B—Ba3—Br6B ^{xv}	18.5 (3)
Br1 ⁱⁱ —Ba1—Br1 ^v	108.88 (2)	La1 ⁱⁱⁱ —Br1—Ba3 ⁱⁱⁱ	0.00 (4)
Br1 ⁱⁱⁱ —Ba1—Br1 ^v	108.88 (2)	La1 ⁱⁱⁱ —Br1—Ba1	108.74 (4)
Br1—Ba1—Br1 ^v	69.34 (5)	Ba3 ⁱⁱⁱ —Br1—Ba1	108.74 (4)
$Br1^{iv}$ — $Ba1$ — $Br1^{v}$	110.66 (5)	La1 ⁱⁱⁱ —Br1—Ba2 ⁱⁱⁱ	110.48 (4)
Br1 ⁱ —Ba1—Br1 ^{vi}	108.88 (2)	Ba3 ⁱⁱⁱ —Br1—Ba2 ⁱⁱⁱ	110.48 (4)
Br1 ⁱⁱ —Ba1—Br1 ^{vi}	71.12 (2)	Ba1—Br1—Ba2 ⁱⁱⁱ	111.00 (4)
Br1 ⁱⁱⁱ —Ba1—Br1 ^{vi}	71.12 (2)	La1 ⁱⁱⁱ —Br1—Ba2	100.07 (4)
Br1—Ba1—Br1 ^{vi}	110.66 (5)	Ba3 ⁱⁱⁱ —Br1—Ba2	100.07 (4)
$Br1^{iv}$ — $Ba1$ — $Br1^{vi}$	69.34 (5)	Ba1—Br1—Ba2	109.88 (4)
Br1 ^v —Ba1—Br1 ^{vi}	180.0	Ba2 ⁱⁱⁱ —Br1—Ba2	116.01 (4)
Br1 ⁱ —Ba1—Br1 ^{vii}	110.66 (5)	Ba2 ^{xvi} —Br2—Ba2 ^{viii}	111.721 (15)
Br1 ⁱⁱ —Ba1—Br1 ^{vii}	180.00 (4)	Ba2 ^{xvi} —Br2—Ba2	105.06 (3)
Br1 ⁱⁱⁱ —Ba1—Br1 ^{vii}	69.34 (5)	Ba2 ^{viii} —Br2—Ba2	111.721 (18)
Br1—Ba1—Br1 ^{vii}	108.88 (2)	Ba2 ^{xvi} —Br2—Ba2 ^{xvii}	111.721 (18)
Br1 ^{iv} —Ba1—Br1 ^{vii}	71.12 (2)	Ba2viii—Br2—Ba2xvii	105.06 (3)
Br1 ^v —Ba1—Br1 ^{vii}	71.12 (2)	Ba2—Br2—Ba2 ^{xvii}	111.721 (15)
Br1 ^{vi} —Ba1—Br1 ^{vii}	108.88 (2)	Ba3—Br3—La1 ^{xi}	108.43 (6)
Br3—Ba2—Br4 ^{viii}	117.68 (4)	Ba3—Br3—Ba3 ^{xi}	108.43 (6)
Br3—Ba2—Br4 ⁱⁱⁱ	163.70 (4)	La1 ^{xi} —Br3—Ba3 ^{xi}	0.00 (4)
Br4 ^{viii} —Ba2—Br4 ⁱⁱⁱ	74.71 (4)	Ba3—Br3—Ba2	113.28 (2)
Br3—Ba2—Br1 ⁱⁱ	65.68 (3)	La1 ^{xi} —Br3—Ba2	104.54 (3)
Br4 ^{viii} —Ba2—Br1 ⁱⁱ	165.89 (4)	Ba3 ^{xi} —Br3—Ba2	104.54 (3)
Br4 ⁱⁱⁱ —Ba2—Br1 ⁱⁱ	99.72 (4)	Ba3—Br3—Ba2 ^{xvi}	104.54 (3)
Br3—Ba2—Br1	112.77 (4)	La1 ^{xi} —Br3—Ba2 ^{xvi}	113.28 (2)
Br4 ^{viii} —Ba2—Br1	119.38 (4)	Ba3 ^{xi} —Br3—Ba2 ^{xvi}	113.28 (2)
Br4 ⁱⁱⁱ —Ba2—Br1	64.74 (4)	Ba2—Br3—Ba2 ^{xvi}	112.90 (6)
Br1 ⁱⁱ —Ba2—Br1	67.68 (4)	La2—Br4—Ba2 ^{xvii}	101.10 (4)
Br3—Ba2—Br2	71.02 (3)	La2—Br4—Ba2 ⁱⁱ	113.66 (4)
Br4 ^{viii} —Ba2—Br2	68.12 (3)	Ba2 ^{xvii} —Br4—Ba2 ⁱⁱ	105.29 (4)
Br4 ⁱⁱⁱ —Ba2—Br2	107.03 (3)	La2—Br4—Ba2	108.06 (4)
Br1 ⁱⁱ —Ba2—Br2	102.06 (3)	Ba2 ^{xvii} —Br4—Ba2	112.89 (4)
Br1—Ba2—Br2	164.16 (3)	Ba2 ⁱⁱ —Br4—Ba2	115.03 (4)
Br3—Ba2—Br4	100.23 (3)	La2—Br5—La1 ^{xviii}	141.14 (6)
Br4 ^{viii} —Ba2—Br4	103.12 (3)	La2—Br5—Ba3 ^{xviii}	141.14 (6)
Br4 ⁱⁱⁱ —Ba2—Br4	65.29 (4)	La1 ^{xviii} —Br5—Ba3 ^{xviii}	0.0
Br1 ⁱⁱ —Ba2—Br4	62.95 (4)	La2—Br5—Ba2 ^{xix}	95.25 (4)
Br1—Ba2—Br4	98.68 (4)	La1 ^{xviii} —Br5—Ba2 ^{xix}	96.92 (4)
Br2—Ba2—Br4	65.52 (3)	Ba3 ^{xviii} —Br5—Ba2 ^{xix}	96.92 (4)
Br3—Ba2—Br5 ^{ix}	115.10 (4)	La2—Br5—Ba2 ^x	93.81 (4)
Br4 ^{viii} —Ba2—Br5 ^{ix}	66.41 (4)	La1 ^{xviii} —Br5—Ba2 ^x	96.46 (4)

Br4 ⁱⁱⁱ —Ba2—Br5 ^{ix}	78.89 (4)	Ba3 ^{xviii} —Br5—Ba2 ^x	96.46 (4)
Br1 ⁱⁱ —Ba2—Br5 ^{ix}	125.90 (4)	$Ba2^{xix}$ —Br5—Ba 2^{x}	145.74 (5)
Br1—Ba2—Br5 ^{ix}	63.14 (3)	La1 ^{xv} —Br6A—Ba3 ^{xv}	0.00 (5)
Br2—Ba2—Br5 ^{ix}	130.45 (3)	La1 ^{xv} —Br6A—Ba3	136.81 (11)
Br4—Ba2—Br5 ^{ix}	144.17 (4)	Ba3 ^{xv} —Br6A—Ba3	136.81 (11)
Br3—Ba2—Br5 ^x	63.25 (3)	La1 ^{xv} —Br6A—Ba2 ^{xvi}	95.61 (4)
Br4 ^{viii} —Ba2—Br5 ^x	64.40 (3)	$Ba3^{xv}$ —Br6A—Ba 2^{xvi}	95.61 (4)
Br4 ⁱⁱⁱ —Ba2—Br5 ^x	132.90 (4)	Ba3—Br6A—Ba2 ^{xvi}	95.48 (4)
$Br1^{ii}$ — $Ba2$ — $Br5^{x}$	125.20 (4)	$La1^{xv}$ —Br6A—Ba 2^{xi}	95.61 (4)
$Br1 - Ba2 - Br5^{x}$	116.55 (4)	$Ba3^{xv}$ — $Br6A$ — $Ba2^{xi}$	95.61 (4)
$Br2 Ba2 Br5^{x}$	79 13 (3)	$Ba3 Br6A Ba2^{xi}$	95 48 (4)
Br2 Br2 Br2 Br4-Br2-Br5 ^x	144 49 (4)	$Ba2^{xvi}$ Br6A Ba 2^{xi}	149 57 (9)
$Br5^{ix}$ Ba2 Br5 ^x	64 33 (5)	Br6B ^{xii} —Br6B—Br6B ^{xv}	90,000,(7)
$Br3 Ba2 Br6 A^{xi}$	60 17 (4)	Br6B ^{xii} —Br6B—Br6B ^{xx}	45,000 (3)
$Br4^{viii}$ $Ba2$ $Br6A^{xi}$	120.71 (6)	Br6B ^{xv} —Br6B—Br6B ^{xx}	45,000 (9)
$Br4^{iii}$ $Ba2$ $Br6A^{xi}$	120.71(0) 124.53(5)	Br6B ^{xii} —Br6B—Ba3	174.7(13)
$Br1^{ii}$ $Br2$ $Br6A^{xi}$	73 22 (5)	Br6B ^{xv} Br6B Ba3	847(13)
$\mathbf{Pr1} = \mathbf{Pa2} = \mathbf{Pr6} \mathbf{A}^{\mathrm{xi}}$	(5.22 (3))	$Br6B^{XX}$ $Br6B$ $Bo3$	1207(13)
$Br_1 - Ba_2 - Br_0 A^{xi}$	128 40 (4)	$\mathbf{Br} \mathbf{G} \mathbf{R}^{\text{xii}} \mathbf{Br} \mathbf{G} \mathbf{R}^{\text{xii}} \mathbf{h}^{\text{xii}}$	129.7(13)
\mathbf{D}_{12} \mathbf{D}_{22} \mathbf{D}_{10} \mathbf{D}_{10}	126.40(4) 126.16(5)	$\mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}}$	166.8(13)
DI4 - Da2 - DI0A Dr5ix Do2 Dr6Axi	130.10(3)	DIOD - DIOD - Lal	100.8(13)
DIJ^{m} $Da2$ $DIJA^{m}$	(5, 21, (5))	$BI0D^{} - BI0D - La1^{}$	121.8(15)
$Br5^{}-Ba2^{}-Br6A^{}$	05.51(5)	$Ba_3 - BroB - La1^{aa}$	108.5(3)
BroA ^{xii} —Ba3—BroA	133.19 (11)		/0.8 (13)
$BroA^{AII} - Ba3 - BroA^{AIII}$	80.78 (4)	$BroB^{X}$ — $BroB$ — $Ba3^{XH}$	166.8 (13)
Br6A—Ba3—Br5 ^{xiii}	81.22 (4)	$Br6B^{AA}$ — $Br6B$ — $Ba3^{AB}$	121.8 (13)
$Br6A^{AII}$ — $Ba3$ — $Br5^{AIV}$	80.78 (4)	Ba3—Br6B—Ba3 ^{xii}	108.5 (3)
Br6A—Ba3—Br5 ^{xiv}	81.22 (4)	$La1^{xii}$ —Br6B—Ba3 ^{xii}	0.00 (3)
Br5 ^{xin} —Ba3—Br5 ^{xiv}	133.61 (7)	$Br5-La2-Br5^{v_1}$	124.10 (7)
Br6A ^{xn} —Ba3—Br1 ⁿ	74.74 (6)	Br5—La2—Br5 ⁿ	77.31 (3)
Br6A—Ba3—Br1 ⁿ	137.40 (4)	$Br5^{v_1}$ —La2— $Br5^n$	77.31 (3)
$Br5^{xin}$ — $Ba3$ — $Br1^{in}$	140.84 (5)	Br5—La2—Br5 ^m	77.31 (3)
Br5 ^{xiv} —Ba3—Br1 ⁱⁱ	71.89 (4)	$Br5^{vi}$ —La2—Br5 ⁱⁱⁱ	77.31 (3)
Br6A ^{xii} —Ba3—Br1 ⁱ	74.74 (6)	Br5 ⁱⁱ —La2—Br5 ⁱⁱⁱ	124.10 (7)
Br6A—Ba3—Br1 ⁱ	137.40 (4)	Br5—La2—Br4	140.14 (3)
Br5 ^{xiii} —Ba3—Br1 ⁱ	71.89 (4)	Br5 ^{vi} —La2—Br4	75.01 (4)
Br5 ^{xiv} —Ba3—Br1 ⁱ	140.84 (5)	Br5 ⁱⁱ —La2—Br4	73.67 (4)
Br1 ⁱⁱ —Ba3—Br1 ⁱ	72.44 (5)	Br5 ⁱⁱⁱ —La2—Br4	142.20 (4)
Br6A ^{xii} —Ba3—Br3	140.27 (4)	Br5—La2—Br4 ⁱⁱⁱ	73.67 (4)
Br6A—Ba3—Br3	70.23 (5)	Br5 ^{vi} —La2—Br4 ⁱⁱⁱ	142.20 (3)
Br5 ^{xiii} —Ba3—Br3	138.90 (5)	Br5 ⁱⁱ —La2—Br4 ⁱⁱⁱ	75.01 (4)
Br5 ^{xiv} —Ba3—Br3	71.25 (4)	Br5 ⁱⁱⁱ —La2—Br4 ⁱⁱⁱ	140.14 (4)
Br1 ⁱⁱ —Ba3—Br3	70.13 (3)	Br4—La2—Br4 ⁱⁱⁱ	72.85 (3)
Br1 ⁱ —Ba3—Br3	110.56 (5)	Br5—La2—Br4 ⁱⁱ	142.20 (3)
Br6A ^{xii} —Ba3—Br3 ^{xi}	140.27 (4)	Br5 ^{vi} —La2—Br4 ⁱⁱ	73.67 (4)
Br6A—Ba3—Br3 ^{xi}	70.23 (5)	Br5 ⁱⁱ —La2—Br4 ⁱⁱ	140.14 (4)
Br5 ^{xiii} —Ba3—Br3 ^{xi}	71.25 (4)	Br5 ⁱⁱⁱ —La2—Br4 ⁱⁱ	75.01 (4)
Br5 ^{xiv} —Ba3—Br3 ^{xi}	138.90 (5)	Br4—La2—Br4 ⁱⁱ	72.85 (3)
Br1 ⁱⁱ —Ba3—Br3 ^{xi}	110.56 (5)	Br4 ⁱⁱⁱ —La2—Br4 ⁱⁱ	114.21 (6)

supporting information

Br1 ⁱ —Ba3—Br3 ^{xi}	70.13 (3)	Br5—La2—Br4 ^{vi}	75.01 (4)
Br3—Ba3—Br3 ^{xi}	71.57 (6)	Br5 ^{vi} —La2—Br4 ^{vi}	140.14 (3)
Br6A ^{xii} —Ba3—Br6B	58.0 (2)	Br5 ⁱⁱ —La2—Br4 ^{vi}	142.20 (4)
Br6A—Ba3—Br6B	75.1 (2)	Br5 ⁱⁱⁱ —La2—Br4 ^{vi}	73.67 (4)
Br5 ^{xiii} —Ba3—Br6B	67.04 (4)	Br4—La2—Br4 ^{vi}	114.21 (6)
Br5 ^{xiv} —Ba3—Br6B	67.04 (4)	Br4 ⁱⁱⁱ —La2—Br4 ^{vi}	72.85 (3)
Br1 ⁱⁱ —Ba3—Br6B	120.51 (17)	Br4 ⁱⁱ —La2—Br4 ^{vi}	72.85 (3)
Br1 ⁱ —Ba3—Br6B	120.51 (17)		
Br1 ⁱ —Ba1—Br1—La1 ⁱⁱⁱ	53.75 (5)	Br5 ^{ix} —Ba2—Br3—Ba2 ^{xvi}	126.62 (4)
Br1 ⁱⁱ —Ba1—Br1—La1 ⁱⁱⁱ	113.02 (6)	Br5 ^x —Ba2—Br3—Ba2 ^{xvi}	87.13 (3)
Br1 ⁱⁱⁱ —Ba1—Br1—La1 ⁱⁱⁱ	-126.25 (5)	Br6A ^{xi} —Ba2—Br3—Ba2 ^{xvi}	162.64 (5)
Br1 ^{iv} —Ba1—Br1—La1 ⁱⁱⁱ	-41 (100)	Br3—Ba2—Br4—La2	-174.93 (4)
Br1 ^v —Ba1—Br1—La1 ⁱⁱⁱ	-6.61 (5)	Br4 ^{viii} —Ba2—Br4—La2	63.28 (6)
Br1 ^{vi} —Ba1—Br1—La1 ⁱⁱⁱ	173.39 (5)	Br4 ⁱⁱⁱ —Ba2—Br4—La2	-2.80 (5)
Br1 ^{vii} —Ba1—Br1—La1 ⁱⁱⁱ	-66.98 (6)	Br1 ⁱⁱ —Ba2—Br4—La2	-119.13 (5)
Br1 ⁱ —Ba1—Br1—Ba3 ⁱⁱⁱ	53.75 (5)	Br1—Ba2—Br4—La2	-59.75 (5)
Br1 ⁱⁱ —Ba1—Br1—Ba3 ⁱⁱⁱ	113.02 (6)	Br2—Ba2—Br4—La2	121.51 (4)
Br1 ⁱⁱⁱ —Ba1—Br1—Ba3 ⁱⁱⁱ	-126.25 (5)	Br5 ^{ix} —Ba2—Br4—La2	-4.45 (8)
Br1 ^{iv} —Ba1—Br1—Ba3 ⁱⁱⁱ	-41 (100)	Br5 ^x —Ba2—Br4—La2	127.37 (6)
Br1 ^v —Ba1—Br1—Ba3 ⁱⁱⁱ	-6.61 (5)	Br6A ^{xi} —Ba2—Br4—La2	-117.74 (7)
Br1 ^{vi} —Ba1—Br1—Ba3 ⁱⁱⁱ	173.39 (5)	Br3—Ba2—Br4—Ba2 ^{xvii}	74.12 (5)
Br1 ^{vii} —Ba1—Br1—Ba3 ⁱⁱⁱ	-66.98 (6)	Br4viii—Ba2—Br4—Ba2xvii	-47.66 (4)
Br1 ⁱ —Ba1—Br1—Ba2 ⁱⁱⁱ	175.49 (4)	Br4 ⁱⁱⁱ —Ba2—Br4—Ba2 ^{xvii}	-113.75 (4)
Br1 ⁱⁱ —Ba1—Br1—Ba2 ⁱⁱⁱ	-125.24 (2)	Br1 ⁱⁱ —Ba2—Br4—Ba2 ^{xvii}	129.92 (5)
Br1 ⁱⁱⁱ —Ba1—Br1—Ba2 ⁱⁱⁱ	-4.51 (4)	Br1-Ba2-Br4-Ba2 ^{xvii}	-170.70 (4)
Br1 ^{iv} —Ba1—Br1—Ba2 ⁱⁱⁱ	81 (100)	Br2—Ba2—Br4—Ba2 ^{xvii}	10.56 (3)
Br1 ^v —Ba1—Br1—Ba2 ⁱⁱⁱ	115.12 (3)	Br5 ^{ix} —Ba2—Br4—Ba2 ^{xvii}	-115.39 (6)
Br1 ^{vi} —Ba1—Br1—Ba2 ⁱⁱⁱ	-64.88 (3)	Br5 ^x —Ba2—Br4—Ba2 ^{xvii}	16.43 (8)
Br1 ^{vii} —Ba1—Br1—Ba2 ⁱⁱⁱ	54.76 (2)	Br6A ^{xi} —Ba2—Br4—Ba2 ^{xvii}	131.31 (6)
Br1 ⁱ —Ba1—Br1—Ba2	-54.85 (2)	Br3—Ba2—Br4—Ba2 ⁱⁱ	-46.75 (5)
Br1 ⁱⁱ —Ba1—Br1—Ba2	4.42 (4)	Br4 ^{viii} —Ba2—Br4—Ba2 ⁱⁱ	-168.54 (4)
Br1 ⁱⁱⁱ —Ba1—Br1—Ba2	125.15 (2)	Br4 ⁱⁱⁱ —Ba2—Br4—Ba2 ⁱⁱ	125.38 (3)
Br1 ^{iv} —Ba1—Br1—Ba2	-150 (100)	Br1 ⁱⁱ —Ba2—Br4—Ba2 ⁱⁱ	9.05 (4)
Br1 ^v —Ba1—Br1—Ba2	-115.21 (3)	Br1—Ba2—Br4—Ba2 ⁱⁱ	68.43 (4)
Br1 ^{vi} —Ba1—Br1—Ba2	64.79 (3)	Br2—Ba2—Br4—Ba2 ⁱⁱ	-110.31 (4)
Br1 ^{vii} —Ba1—Br1—Ba2	-175.58 (4)	Br5 ^{ix} —Ba2—Br4—Ba2 ⁱⁱ	123.73 (5)
Br3—Ba2—Br1—La1 ⁱⁱⁱ	-69.57 (4)	Br5 ^x —Ba2—Br4—Ba2 ⁱⁱ	-104.45 (7)
Br4viii—Ba2—Br1—La1iii	74.96 (5)	Br6A ^{xi} —Ba2—Br4—Ba2 ⁱⁱ	10.44 (8)
Br4 ⁱⁱⁱ —Ba2—Br1—La1 ⁱⁱⁱ	128.07 (4)	Br6A ^{xii} —Ba3—Br6A—La1 ^{xv}	0.0
Br1 ⁱⁱ —Ba2—Br1—La1 ⁱⁱⁱ	-118.64 (4)	Br5 ^{xiii} —Ba3—Br6A—La1 ^{xv}	-68.45 (3)
Br2—Ba2—Br1—La1 ⁱⁱⁱ	-170.37 (10)	Br5 ^{xiv} —Ba3—Br6A—La1 ^{xv}	68.45 (3)
Br4—Ba2—Br1—La1 ⁱⁱⁱ	-174.58 (4)	Br1 ⁱⁱ —Ba3—Br6A—La1 ^{xv}	119.19 (8)
Br5 ^{ix} —Ba2—Br1—La1 ⁱⁱⁱ	38.07 (4)	Br1 ⁱ —Ba3—Br6A—La1 ^{xv}	-119.19 (8)
Br5 ^x —Ba2—Br1—La1 ⁱⁱⁱ	0.80 (5)	Br3—Ba3—Br6A—La1 ^{xv}	141.58 (3)
Br6Axi—Ba2—Br1—La1 ⁱⁱⁱ	-36.35 (5)	Br3 ^{xi} —Ba3—Br6A—La1 ^{xv}	-141.58 (3)
Br3—Ba2—Br1—Ba3 ⁱⁱⁱ	-69.57 (4)	Br6B—Ba3—Br6A—La1 ^{xv}	0.0
Br4viii—Ba2—Br1—Ba3iii	74.96 (5)	Br6B ^{xv} —Ba3—Br6A—La1 ^{xv}	0.0

Br4 ⁱⁱⁱ —Ba2—Br1—Ba3 ⁱⁱⁱ	128.07 (4)	Br6A ^{xii} —Ba3—Br6A—Ba3 ^{xv}	0.0
Br1 ⁱⁱ —Ba2—Br1—Ba3 ⁱⁱⁱ	-118.64 (4)	Br5 ^{xiii} —Ba3—Br6A—Ba3 ^{xv}	-68.45 (3)
Br2—Ba2—Br1—Ba3 ⁱⁱⁱ	-170.37 (10)	Br5 ^{xiv} —Ba3—Br6A—Ba3 ^{xv}	68.45 (3)
Br4—Ba2—Br1—Ba3 ⁱⁱⁱ	-174.58 (4)	Br1 ⁱⁱ —Ba3—Br6A—Ba3 ^{xv}	119.19 (8)
Br5 ^{ix} —Ba2—Br1—Ba3 ⁱⁱⁱ	38.07 (4)	Br1 ⁱ —Ba3—Br6A—Ba3 ^{xv}	-119.19 (8)
Br5 ^x —Ba2—Br1—Ba3 ⁱⁱⁱ	0.80 (5)	Br3—Ba3—Br6A—Ba3 ^{xv}	141.58 (3)
Br6A ^{xi} —Ba2—Br1—Ba3 ⁱⁱⁱ	-36.35 (5)	Br3 ^{xi} —Ba3—Br6A—Ba3 ^{xv}	-141.58 (3)
Br3—Ba2—Br1—Ba1	44.70 (5)	Br6B—Ba3—Br6A—Ba3 ^{xv}	0.0
Br4viii—Ba2—Br1—Ba1	-170.76 (4)	Br6B ^{xv} —Ba3—Br6A—Ba3 ^{xv}	0.0
Br4 ⁱⁱⁱ —Ba2—Br1—Ba1	-117.65 (4)	Br6A ^{xii} —Ba3—Br6A—Ba2 ^{xvi}	-104.22 (5)
Br1 ⁱⁱ —Ba2—Br1—Ba1	-4.36 (4)	Br5 ^{xiii} —Ba3—Br6A—Ba2 ^{xvi}	-172.66 (6)
Br2—Ba2—Br1—Ba1	-56.10 (13)	Br5 ^{xiv} —Ba3—Br6A—Ba2 ^{xvi}	-35.77 (5)
Br4—Ba2—Br1—Ba1	-60.30 (4)	Br1 ⁱⁱ —Ba3—Br6A—Ba2 ^{xvi}	14.97 (12)
Br5 ^{ix} —Ba2—Br1—Ba1	152.34 (5)	Br1 ⁱ —Ba3—Br6A—Ba2 ^{xvi}	136.60 (6)
Br5 ^x —Ba2—Br1—Ba1	115.08 (4)	Br3—Ba3—Br6A—Ba2 ^{xvi}	37.37 (5)
Br6A ^{xi} —Ba2—Br1—Ba1	77.92 (6)	Br3 ^{xi} —Ba3—Br6A—Ba2 ^{xvi}	114.20 (7)
Br3—Ba2—Br1—Ba2 ⁱⁱⁱ	171.61 (3)	Br6B—Ba3—Br6A—Ba2 ^{xvi}	-104.22 (5)
Br4 ^{viii} —Ba2—Br1—Ba2 ⁱⁱⁱ	-43.86 (6)	Br6B ^{xv} —Ba3—Br6A—Ba2 ^{xvi}	-104.22 (5)
Br4 ⁱⁱⁱ —Ba2—Br1—Ba2 ⁱⁱⁱ	9.25 (4)	Br6A ^{xii} —Ba3—Br6A—Ba2 ^{xi}	104.22 (5)
Br1 ⁱⁱ —Ba2—Br1—Ba2 ⁱⁱⁱ	122.54 (3)	Br5 ^{xiii} —Ba3—Br6A—Ba2 ^{xi}	35.77 (5)
Br2—Ba2—Br1—Ba2 ⁱⁱⁱ	70.81 (12)	Br5 ^{xiv} —Ba3—Br6A—Ba2 ^{xi}	172.66 (6)
Br4—Ba2—Br1—Ba2 ⁱⁱⁱ	66.60 (4)	Br1 ⁱⁱ —Ba3—Br6A—Ba2 ^{xi}	-136.60 (6)
Br5 ^{ix} —Ba2—Br1—Ba2 ⁱⁱⁱ	-80.75 (5)	Br1 ⁱ —Ba3—Br6A—Ba2 ^{xi}	-14.97 (12)
Br5 ^x —Ba2—Br1—Ba2 ⁱⁱⁱ	-118.02 (5)	Br3—Ba3—Br6A—Ba2 ^{xi}	-114.20(7)
Br6A ^{xi} —Ba2—Br1—Ba2 ⁱⁱⁱ	-155.17 (7)	Br3 ^{xi} —Ba3—Br6A—Ba2 ^{xi}	-37.37 (5)
Br3—Ba2—Br2—Ba2 ^{xvi}	0.0	Br6B—Ba3—Br6A—Ba2 ^{xi}	104.22 (5)
Br4viii—Ba2—Br2—Ba2xvi	-131.87(3)	Br6B ^{xv} —Ba3—Br6A—Ba2 ^{xi}	104.22 (5)
Br4 ⁱⁱⁱ —Ba2—Br2—Ba2 ^{xvi}	162.98 (4)	Br6Axii—Ba3—Br6B—Br6Bxii	180.0
Br1 ⁱⁱ —Ba2—Br2—Ba2 ^{xvi}	58.74 (3)	Br6A—Ba3—Br6B—Br6B ^{xii}	0.0
Br1—Ba2—Br2—Ba2 ^{xvi}	106.71 (12)	Br5 ^{xiiii} —Ba3—Br6B—Br6B ^{xii}	86.61 (10)
Br4—Ba2—Br2—Ba2 ^{xvi}	111.28 (3)	Br5 ^{xiv} —Ba3—Br6B—Br6B ^{xii}	-86.61 (10)
Br5 ^{ix} —Ba2—Br2—Ba2 ^{xvi}	-107.23 (4)	Br1 ⁱⁱ —Ba3—Br6B—Br6B ^{xii}	-136.69 (10)
Br5 ^x —Ba2—Br2—Ba2 ^{xvi}	-65.25 (3)	Br1 ⁱ —Ba3—Br6B—Br6B ^{xii}	136.69 (10)
Br6A ^{xi} —Ba2—Br2—Ba2 ^{xvi}	-19.29 (6)	Br3—Ba3—Br6B—Br6B ^{xii}	-48.58 (14)
Br3—Ba2—Br2—Ba2 ^{viii}	121.314 (8)	Br3 ^{xi} —Ba3—Br6B—Br6B ^{xii}	48.58 (14)
Br4viii—Ba2—Br2—Ba2viii	-10.56(3)	Br6B ^{xv} —Ba3—Br6B—Br6B ^{xii}	0.0
Br4 ⁱⁱⁱ —Ba2—Br2—Ba2 ^{viii}	-75.71 (4)	Br6Axii-Ba3-Br6B-Br6Bxv	180.0
Br1 ⁱⁱ —Ba2—Br2—Ba2 ^{viiii}	-179.94(3)	Br6A—Ba3—Br6B—Br6B ^{xv}	0.0
Br1—Ba2—Br2—Ba2viii	-131.98 (12)	Br5 ^{xiii} —Ba3—Br6B—Br6B ^{xv}	86.61 (10)
Br4—Ba2—Br2—Ba2 ^{viii}	-127.41 (3)	Br5 ^{xiv} —Ba3—Br6B—Br6B ^{xv}	-86.61 (10)
Br5 ^{ix} —Ba2—Br2—Ba2 ^{viii}	14.08 (4)	Br1 ⁱⁱ —Ba3—Br6B—Br6B ^{xv}	-136.69 (10)
Br5 ^x —Ba2—Br2—Ba2 ^{viii}	56.06 (2)	Br1 ⁱ —Ba3—Br6B—Br6B ^{xv}	136.69 (10)
Br6A ^{xi} —Ba2—Br2—Ba2 ^{viii}	102.03 (6)	Br3—Ba3—Br6B—Br6B ^{xv}	-48.58 (14)
Br3—Ba2—Br2—Ba2 ^{xvii}	-121.314 (12)	Br3 ^{xi} —Ba3—Br6B—Br6B ^{xv}	48.58 (14)
Br4viii—Ba2—Br2—Ba2xvii	106.82 (3)	Br6A ^{xii} —Ba3—Br6B—Br6B ^{xx}	180.0
Br4 ⁱⁱⁱ —Ba2—Br2—Ba2 ^{xvii}	41.67 (4)	Br6A—Ba3—Br6B—Br6B ^{xx}	0.0
Br1 ⁱⁱ —Ba2—Br2—Ba2 ^{xvii}	-62.57 (2)	Br5 ^{xiii} —Ba3—Br6B—Br6B ^{xx}	86.61 (10)
Br1—Ba2—Br2—Ba2 ^{xvii}	-14.60 (11)	Br5 ^{xiv} —Ba3—Br6B—Br6B ^{xx}	-86.61 (10)
	× /		()

Br4—Ba2—Br2—Ba2 ^{xvii}	-10.03 (3)	Br1 ⁱⁱ —Ba3—Br6B—Br6B ^{xx}	-136.69 (10)
Br5 ^{ix} —Ba2—Br2—Ba2 ^{xvii}	131.46 (5)	Br1 ⁱ —Ba3—Br6B—Br6B ^{xx}	136.69 (10)
Br5 ^x —Ba2—Br2—Ba2 ^{xvii}	173.43 (3)	Br3—Ba3—Br6B—Br6B ^{xx}	-48.58 (14)
Br6A ^{xi} —Ba2—Br2—Ba2 ^{xvii}	-140.60(6)	Br3 ^{xi} —Ba3—Br6B—Br6B ^{xx}	48.58 (14)
Br6A ^{xii} —Ba3—Br3—La1 ^{xi}	-150.15 (11)	Br6B ^{xv} —Ba3—Br6B—Br6B ^{xx}	0.0
Br6A—Ba3—Br3—La1 ^{xi}	74.99 (4)	Br6Axii—Ba3—Br6B—La1xii	0.0
Br5 ^{xiii} —Ba3—Br3—La1 ^{xi}	26.19 (6)	Br6A—Ba3—Br6B—La1 ^{xii}	180.0
Br5 ^{xiv} —Ba3—Br3—La1 ^{xi}	162.16 (4)	Br5 ^{xiii} —Ba3—Br6B—La1 ^{xii}	-93.39 (10)
Br1 ⁱⁱ —Ba3—Br3—La1 ^{xi}	-120.93 (4)	Br5 ^{xiv} —Ba3—Br6B—La1 ^{xii}	93.39 (10)
Br1 ⁱ —Ba3—Br3—La1 ^{xi}	-59.49 (3)	Br1 ⁱⁱ —Ba3—Br6B—La1 ^{xii}	43.31 (10)
Br3 ^{xi} —Ba3—Br3—La1 ^{xi}	0.0	Br1 ⁱ —Ba3—Br6B—La1 ^{xii}	-43.31 (10)
Br6B—Ba3—Br3—La1 ^{xi}	125.4 (2)	Br3—Ba3—Br6B—La1 ^{xii}	131.42 (14)
Br6B ^{xv} —Ba3—Br3—La1 ^{xi}	110.05 (17)	Br3 ^{xi} —Ba3—Br6B—La1 ^{xii}	-131.42 (14)
Br6A ^{xii} —Ba3—Br3—Ba3 ^{xi}	-150.15 (11)	Br6B ^{xv} —Ba3—Br6B—La1 ^{xii}	180.0
Br6A—Ba3—Br3—Ba3 ^{xi}	74.99 (4)	Br6A ^{xii} —Ba3—Br6B—Ba3 ^{xii}	0.0
Br5 ^{xiii} —Ba3—Br3—Ba3 ^{xi}	26.19 (6)	Br6A—Ba3—Br6B—Ba3 ^{xii}	180.0
Br5 ^{xiv} —Ba3—Br3—Ba3 ^{xi}	162.16 (4)	Br5 ^{xiii} —Ba3—Br6B—Ba3 ^{xii}	-93.39 (10)
Br1 ⁱⁱ —Ba3—Br3—Ba3 ^{xi}	-120.93 (4)	Br5 ^{xiv} —Ba3—Br6B—Ba3 ^{xii}	93.39 (10)
Br1 ⁱ —Ba3—Br3—Ba3 ^{xi}	-59.49 (3)	Br1 ⁱⁱ —Ba3—Br6B—Ba3 ^{xii}	43.31 (10)
Br3 ^{xi} —Ba3—Br3—Ba3 ^{xi}	0.0	Br1 ⁱ —Ba3—Br6B—Ba3 ^{xii}	-43.31 (10)
Br6B—Ba3—Br3—Ba3 ^{xi}	125.4 (2)	Br3—Ba3—Br6B—Ba3 ^{xii}	131.42 (14)
Br6B ^{xv} —Ba3—Br3—Ba3 ^{xi}	110.05 (17)	Br3 ^{xi} —Ba3—Br6B—Ba3 ^{xii}	-131.42 (14)
Br6Axii—Ba3—Br3—Ba2	-34.59 (12)	Br6B ^{xv} —Ba3—Br6B—Ba3 ^{xii}	180.0
Br6A—Ba3—Br3—Ba2	-169.45 (6)	La1 ^{xviii} —Br5—La2—Br5 ^{vi}	0.77 (6)
Br5 ^{xiii} —Ba3—Br3—Ba2	141.75 (7)	Ba3 ^{xviii} —Br5—La2—Br5 ^{vi}	0.77 (6)
Br5 ^{xiv} —Ba3—Br3—Ba2	-82.28 (5)	Ba2 ^{xix} —Br5—La2—Br5 ^{vi}	-107.10 (4)
Br1 ⁱⁱ —Ba3—Br3—Ba2	-5.37 (4)	Ba2 ^x —Br5—La2—Br5 ^{vi}	105.98 (3)
Br1 ⁱ —Ba3—Br3—Ba2	56.07 (6)	La1 ^{xviii} —Br5—La2—Br5 ⁱⁱ	-64.11 (7)
Br3 ^{xi} —Ba3—Br3—Ba2	115.56 (4)	Ba3 ^{xviii} —Br5—La2—Br5 ⁱⁱ	-64.11 (7)
Br6B—Ba3—Br3—Ba2	-119.1 (2)	Ba2 ^{xix} —Br5—La2—Br5 ⁱⁱ	-171.99 (3)
Br6B ^{xv} —Ba3—Br3—Ba2	-134.39 (17)	Ba2 ^x —Br5—La2—Br5 ⁱⁱ	41.09 (5)
Br6Axii—Ba3—Br3—Ba2xvi	88.72 (10)	La1xviii—Br5—La2—Br5 ⁱⁱⁱ	65.66 (7)
Br6A—Ba3—Br3—Ba2 ^{xvi}	-46.14 (4)	Ba3 ^{xviii} —Br5—La2—Br5 ⁱⁱⁱ	65.66 (7)
Br5 ^{xiii} —Ba3—Br3—Ba2 ^{xvi}	-94.93 (8)	Ba2 ^{xix} —Br5—La2—Br5 ⁱⁱⁱ	-42.21 (6)
Br5 ^{xiv} —Ba3—Br3—Ba2 ^{xvi}	41.04 (4)	Ba2 ^x —Br5—La2—Br5 ⁱⁱⁱ	170.87 (3)
Br1 ⁱⁱ —Ba3—Br3—Ba2 ^{xvi}	117.95 (5)	La1 ^{xviii} —Br5—La2—Br4	-108.12 (10)
Br1 ⁱ —Ba3—Br3—Ba2 ^{xvi}	179.38 (4)	Ba3 ^{xviii} —Br5—La2—Br4	-108.12 (10)
Br3 ^{xi} —Ba3—Br3—Ba2 ^{xvi}	-121.12 (3)	Ba2 ^{xix} —Br5—La2—Br4	144.01 (7)
Br6B—Ba3—Br3—Ba2xvi	4.2 (2)	Ba2 ^x —Br5—La2—Br4	-2.91 (9)
Br6B ^{xv} —Ba3—Br3—Ba2 ^{xvi}	-11.07 (17)	La1 ^{xviii} —Br5—La2—Br4 ⁱⁱⁱ	-141.98 (8)
Br4 ^{viii} —Ba2—Br3—Ba3	169.88 (4)	Ba3 ^{xviii} —Br5—La2—Br4 ⁱⁱⁱ	-141.98 (8)
Br4 ⁱⁱⁱ —Ba2—Br3—Ba3	32.77 (17)	Ba2 ^{xix} —Br5—La2—Br4 ⁱⁱⁱ	110.15 (4)
Br1 ⁱⁱ —Ba2—Br3—Ba3	5.14 (4)	Ba2 ^x —Br5—La2—Br4 ⁱⁱⁱ	-36.77 (4)
Br1—Ba2—Br3—Ba3	-44.94 (5)	La1 ^{xviii} —Br5—La2—Br4 ⁱⁱ	109.38 (11)
Br2—Ba2—Br3—Ba3	118.59 (4)	Ba3 ^{xviii} —Br5—La2—Br4 ⁱⁱ	109.38 (11)
Br4—Ba2—Br3—Ba3	59.07 (5)	Ba2 ^{xix} —Br5—La2—Br4 ⁱⁱ	1.51 (10)
Br5 ^{ix} —Ba2—Br3—Ba3	-114.79 (4)	Ba2 ^x —Br5—La2—Br4 ⁱⁱ	-145.42 (8)
Br5 ^x —Ba2—Br3—Ba3	-154.28 (6)	La1 ^{xviii} —Br5—La2—Br4 ^{vi}	141.89 (9)
	× /		

Br6A ^{xi} —Ba2—Br3—Ba3	-78.77 (7)	Ba3 ^{xviii} —Br5—La2—Br4 ^{vi}	141.89 (9)
Br4viii—Ba2—Br3—La1xi	-72.27 (6)	$Ba2^{xix}$ Br5 La2 Br4 ^{vi}	34.02 (4)
Br4 ⁱⁱⁱ —Ba2—Br3—La1 ^{xi}	150.61 (13)	Ba2 ^x —Br5—La2—Br4 ^{vi}	-112.90 (4)
Br1 ⁱⁱ —Ba2—Br3—La1 ^{xi}	122.99 (5)	Ba2 ^{xvii} —Br4—La2—Br5	87.56 (9)
Br1—Ba2—Br3—La1 ^{xi}	72.91 (4)	Ba2 ⁱⁱ —Br4—La2—Br5	-160.15 (7)
Br2—Ba2—Br3—La1 ^{xi}	-123.56(3)	Ba2—Br4—La2—Br5	-31.19 (10)
Br4—Ba2—Br3—La1 ^{xi}	176.92 (4)	Ba2 ^{xvii} —Br4—La2—Br5 ^{vi}	-38.25 (4)
Br5 ^{ix} —Ba2—Br3—La1 ^{xi}	3.06 (5)	Ba2 ⁱⁱ —Br4—La2—Br5 ^{vi}	74.05 (5)
Br5 ^x —Ba2—Br3—La1 ^{xi}	-36.43 (3)	Ba2—Br4—La2—Br5 ^{vi}	-157.00 (5)
Br6A ^{xi} —Ba2—Br3—La1 ^{xi}	39.07 (6)	Ba2 ^{xvii} —Br4—La2—Br5 ⁱⁱ	42.63 (4)
Br4 ^{viii} —Ba2—Br3—Ba3 ^{xi}	-72.27 (6)	Ba2 ⁱⁱ —Br4—La2—Br5 ⁱⁱ	154.93 (5)
Br4 ⁱⁱⁱ —Ba2—Br3—Ba3 ^{xi}	150.61 (13)	Ba2—Br4—La2—Br5 ⁱⁱ	-76.12 (4)
Br1 ⁱⁱ —Ba2—Br3—Ba3 ^{xi}	122.99 (5)	Ba2 ^{xvii} —Br4—La2—Br5 ⁱⁱⁱ	-82.52 (9)
Br1—Ba2—Br3—Ba3 ^{xi}	72.91 (4)	Ba2 ⁱⁱ —Br4—La2—Br5 ⁱⁱⁱ	29.78 (11)
Br2—Ba2—Br3—Ba3 ^{xi}	-123.56 (3)	Ba2—Br4—La2—Br5 ⁱⁱⁱ	158.74 (8)
Br4—Ba2—Br3—Ba3 ^{xi}	176.92 (4)	Ba2 ^{xvii} —Br4—La2—Br4 ⁱⁱⁱ	121.58 (5)
Br5 ^{ix} —Ba2—Br3—Ba3 ^{xi}	3.06 (5)	Ba2 ⁱⁱ —Br4—La2—Br4 ⁱⁱⁱ	-126.12 (2)
Br5 ^x —Ba2—Br3—Ba3 ^{xi}	-36.43 (3)	Ba2—Br4—La2—Br4 ⁱⁱⁱ	2.83 (5)
Br6A ^{xi} —Ba2—Br3—Ba3 ^{xi}	39.07 (6)	Ba2 ^{xvii} —Br4—La2—Br4 ⁱⁱ	-115.43 (5)
Br4viii—Ba2—Br3—Ba2 ^{xvi}	51.29 (3)	Ba2 ⁱⁱ —Br4—La2—Br4 ⁱⁱ	-3.13 (5)
Br4 ⁱⁱⁱ —Ba2—Br3—Ba2 ^{xvi}	-85.82 (14)	Ba2—Br4—La2—Br4 ⁱⁱ	125.82 (2)
Br1 ⁱⁱ —Ba2—Br3—Ba2 ^{xvi}	-113.45 (3)	Ba2 ^{xvii} —Br4—La2—Br4 ^{vi}	-176.92 (4)
Br1—Ba2—Br3—Ba2 ^{xvi}	-163.52 (4)	$Ba2^{ii}$ —Br4—La2—Br4 vi	-64.63 (4)
Br2—Ba2—Br3—Ba2 ^{xvi}	0.0	Ba2—Br4—La2—Br4 ^{vi}	64.33 (3)
Br4—Ba2—Br3—Ba2 ^{xvi}	-59.51 (2)		

Symmetry codes: (i) y, -x+2, -z; (ii) y, -x+2, z; (iii) -y+2, x, z; (iv) -x+2, -y+2, -z; (v) x, y, -z; (vi) -x+2, -y+2, z; (vii) -y+2, x, -z; (viii) y+1/2, -x+3/2, -z+1/2; (ix) -y+5/2, x-1/2, -z+1/2; (x) -x+5/2, -y+3/2, -z+1/2; (xi) -x+2, -y+1, -z; (xii) y+1/2, -y+1, x, z; (xiii) x-1/2, y-1/2, z-1/2; (xiv) x-1/2, y-1/2, -z+1/2; (xv) y, -x+1, -z; (xvi) -x+2, -y+1, z; (xvii) x+1/2, y+1/2, z+1/2; (xix) y+1/2, -x+5/2, -z+1/2; (xx) -x+1, -y+1, -z.