Acta Crystallographica Section E

 Structure Reports

 Structure Reports
 Online
 ISSN 1600-5368
 [Bis(4-methyl-1,3-thiazol-2-yl- κ N)-methane]tricarbonyldichloridotungsten(II)

Christoph E. Strasser,* Stephanie Cronje and Helgard G. Raubenheimer

Department of Chemistry and Polymer Science, University of Stellenbosch, Private
Bag X1, Matieland, 7602, South Africa
Correspondence e-mail: ce.strasser@gmx.net
Received 8 September 2011; accepted 18 September 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$; R factor $=0.042 ; w R$ factor $=0.099$; data-to-parameter ratio $=16.5$.

The title compound, $\left[\mathrm{WCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)(\mathrm{CO})_{3}\right]$, is a heptacoordinate tungsten(II) complex with a capped-octahedral coordination sphere in which one CO ligand caps a face formed by a chloro ligand and the two other carbonyls. The chloro ligands are mutually trans positioned at an angle of 156.98 (7) ${ }^{\circ}$. The chelating bis(4-methyl-1,3-thiazol-2-yl)methane ligand coordinates with the imine N atoms. In the crystal, molecules are linked into chains parallel to [201] by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts between the CH_{2} group of the bis(4-methylthiazol-2-yl)methane ligand and the O atom of the capping CO group.

Related literature

For related compounds, see: Baker et al. (1986); Moss \& Smith (1983); Stiddard (1962); Szymanska-Buzar (1989); Tripathi et al. (1976). For related structures, see: Baker et al. $(1996,2000)$; Drew et al. (1988, 1995); Hillhouse et al. (1982); Shiu et al. (1990). For the isolation of the title compound, see: Strasser et al. (2009).

Experimental

Crystal data
$\left[\mathrm{WCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=549.10$
$V=1604.9(5) \AA^{3}$
Monoclinic, $P 2_{1} / c$
$Z=4$
$a=8.6876$ (17) \AA
Mo $K \alpha$ radiation
$b=12.912$ (2) A
$\mu=7.80 \mathrm{~mm}^{-1}$
$c=14.851$ (3) \AA
$T=100 \mathrm{~K}$
$\beta=105.550$ (3) ${ }^{\circ}$
$0.13 \times 0.13 \times 0.04 \mathrm{~mm}$

Data collection

Bruker APEX CCD diffractometer
9133 measured reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.549, T_{\text {max }}=0.772$ 3310 independent reflections 2843 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042 \quad 201$ parameters
$w R\left(F^{2}\right)=0.099$
H -atom parameters constrained
$S=1.07$
3310 reflections
$\Delta \rho_{\text {max }}=3.92 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-2.06 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O}_{2}{ }^{\mathrm{i}}$	0.99	2.38	$3.28(1)$	151

Symmetry code: (i) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001; Atwood \& Barbour, 2003); software used to prepare material for publication: X-SEED.

We would like to thank the National Research Foundation (NRF) of South Africa for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2300).

References

Atwood, J. L. \& Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.
Baker, P. K., Fraser, S. G. \& Keys, E. M. (1986). J. Organomet. Chem. 309, 319321.

Baker, P. K., Muldoon, D. J., Hursthouse, M. B., Coles, S. J., Lavery, A. J. \& Shawcross, A. (1996). Z. Naturforsch. B Chem. Sci. 51, 263-266.
Baker, P. K., Samson, E., Veale, P. L. \& Drew, M. G. B. (2000). Polyhedron, 19, 147-153.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison WI, USA.
Bruker (2003). SAINT. Bruker AXS Inc., Madison WI, USA.
Drew, M. G. B., Baker, P. K., Armstrong, E. M. \& Fraser, S. G. (1988). Polyhedron, 7, 245-247.
Drew, M. G. B., Baker, P. K., Armstrong, E. M., Fraser, S. G., Muldoon, D. J., Lavery, A. J. \& Shawcross, A. (1995). Polyhedron, 14, 617-620
Hillhouse, G. L., Goeden, G. V. \& Haymore, B. L. (1982). Inorg. Chem. 21, 2064-2071.
Moss, J. R. \& Smith, B. J. (1983). S. Afr. J. Chem. 36, 32-35.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shiu, K.-B., Liou, K.-S., Wang, S.-L. \& Wei, S.-C. (1990). Organometallics, 9, 669-675.
Stiddard, M. H. B. (1962). J. Chem. Soc. pp. 4712-4715.

supporting information

Acta Cryst. (2011). E67, m1460 [https://doi.org/10.1107/S1600536811038104]

[Bis(4-methyl-1,3-thiazol-2-yl- κ N) methane]tricarbonyldichloridotungsten(II)

Christoph E. Strasser, Stephanie Cronje and Helgard G. Raubenheimer

S1. Comment

Heptacoordinate $\mathrm{W}(\mathrm{II})$ complexes are common due to the 18 -electron configuration at the metal centre. The title compound, shown in Fig. 1, was obtained through unclear side reactions which involve the formation of bis(4-methyl-1,3-thiazol-2-yl)methane from the anionic (4-methyl-1,3-thiazol-2-yl)carbonyl or activated (4-methyl-1,3-thiazol-2$\mathrm{yl})($ trichloromethoxycarbonyl)methylene ligands as well as concomitant oxidation of $\mathrm{W}(0)$ to $\mathrm{W}(\mathrm{II})$.

Complexes of the type $\left[\mathrm{W} X_{2}(\mathrm{CO})_{3}(L)_{2}\right](X=\mathrm{Cl}, \mathrm{Br}$ or I; $L=N$-donor ligand) have been synthesized by photochemical reaction of e.g. $\left[\mathrm{W}(\mathrm{CO})_{6}\right], \mathrm{CCl}_{4}$ and 2,2'-bipyridine (bipy) to yield $\left[\mathrm{WCl}_{2}(\mathrm{CO})_{3}(\right.$ bipy $\left.)\right]$ (Szymanska-Buzar, 1989), oxidation of $\left[\mathrm{W}(\mathrm{CO})_{4}(L)_{2}\right]$ (Stiddard et al., 1962) or $\left[\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]$ (Baker et al., 1986) with bromine or iodine or reaction of $\left[\mathrm{W} X_{3}(\mathrm{CO})_{4}\right]^{-}(X=\mathrm{Br}$ or I) with bipy (Moss \& Smith, 1983).

This is the first structural determination of a $\left[\mathrm{W} X_{2}(\mathrm{CO})_{3}(L)_{2}\right]$-type complex with chloro ligands. Such complexes $(X=$ Cl) with monodentate $L=$ nitriles (Baker et al., 1986) and $L=$ alkylamines (Tripathi et al., 1976) were reported to be highly unstable. It is therefore surprising that for the present compound no decomposition, e.g. decarbonylation (Shiu et al., 1990) was encountered when crystals were briefly exposed to oxygen, room temperature and light during set-up of the X-ray diffraction experiment. The chelating bis(4-methylthiazol-2-yl)methane ligand may exert additional stabilizing properties when compared to the ligands used in the literature.

Crystal and molecular structures of seven-coordinate complexes of the type $\left[\mathrm{W} X_{2}(\mathrm{CO})_{3}(R \mathrm{CN})_{2}\right](R \mathrm{CN}$ is an organic nitrile) have been reported by Baker et al. $(1986,1996,2000)$ and Drew et al. $(1988,1995)$. The W-N bond distances in these nitrile complexes are shorter than those found in the title compound while other geometrical parameters are similar. The nitrile complexes also exhibit capped-octahedral geometry with trans-disposed iodo ligands. They possess a mirror plane that bisects the molecule while in the title compound the whole molecule is asymmetric; the position of the carbonyl ligands with respect to the bidentate bis(thiazolyl)methane is incompatible with C_{s} symmetry. Hillhouse et al. (1982) report coordination of a tetraarylphosphazide $\left(P h N N N P P h_{3}\right)$ to a dibromotricarbonyltungsten fragment which is different from the title compound and the structures mentioned here in that it contains a set of cis-bromo ligands, possibly caused by the smaller bite angle of the tetraarylphosphazide ($\mathrm{N}-\mathrm{W}-\mathrm{N}$ angle of 56.7 (2) ${ }^{\circ}$ as opposed to the N 1 —W1—N2 angle measuring $83.3(2)^{\circ}$ in the title compound). Finally, a geometrically very similar complex to the one reported here but utilizing a bis(azolyl)methane ligand was prepared by Shiu et al., (1990) $\left[\mathrm{WBr}_{2}\left(\mathrm{CO}_{3}\right)_{3}\left(\mathrm{CH}_{2} R_{2}\right)\right](R=$ 3,4,5-trimethyl- $1 H$-pyrazol-1-yl- κN^{2}).

The significantly longer W1-Cl2 bond $(2.528(2) \AA)$ in the title compound is adjacent to the capping CO ligand while the W1—Cl1 bond is undisturbed by a capping ligand and measures $2.4708(17) \AA$. The same effect is observed to a variable degree in all structures mentioned here for comparison. The individual molecules of the title compound are arranged into chains parallel to the [$\left.\begin{array}{lll}2 & 0 & 1\end{array}\right]$ line by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts between the CH_{2} group of the bis(4-methyl-thiazol-2-yl)methane ligand and O 2 of the capping CO group.

S2. Experimental

A crystal of the tile compound was isolated when tetramethylammonium pentacarbonyl[(4-methyl-1,3-thiazol-5-yl)carbonyl]tungstate(1-) was treated with bis(trichloromethyl)carbonate and pyridine to obtain the carbyne complex $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{4} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Cl}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]$ by oxide abstraction (Strasser et al., 2009). Decomposition concomitant with development of a green colour was noticed; the reaction mixture was chromatographed on Florisil at 243 K using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetonitrile mixtures and an yellow fraction was obtained containing the title compound which was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane at 253 K .

S3. Refinement

All H atoms were positioned geometrically $\left(\mathrm{C}-\mathrm{H}=0.95 \AA, 0.99 \AA\right.$ and $0.98 \AA$ for $\mathrm{CH}, \mathrm{CH}_{2}$ and CH_{3} groups, respectively) and constrained to ride on their parent atoms; $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {cq }}(\mathrm{C})$ for $\mathrm{CH}-$ and $\mathrm{CH}_{2}-$ groups and $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for CH_{3}-groups.
The maximum residual electron density of $3.92 \mathrm{e} \times \AA^{-3}$ is located $0.79 \AA$ near W1.

Figure 1

Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Bis(4-methyl-1,3-thiazol-2-yl- $\kappa \mathrm{N}$)methane]tricarbonyldichloridotungsten(II)

Crystal data

$\left[\mathrm{WCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=549.10$
Monoclinic, $P 2_{1} / c$

Hall symbol: -P 2ybc
$a=8.6876$ (17) \AA
$b=12.912$ (2) \AA
$c=14.851$ (3) \AA
$\beta=105.550(3)^{\circ}$
$V=1604.9(5) \AA^{3}$
$Z=4$
$F(000)=1040$
$D_{\mathrm{x}}=2.273 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Data collection

Bruker APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω-scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min }=0.549, T_{\max }=0.772$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.099$
$S=1.07$
3310 reflections
201 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Cell parameters from 2900 reflections
$\theta=2.9-26.4^{\circ}$
$\mu=7.80 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, yellow
$0.13 \times 0.13 \times 0.04 \mathrm{~mm}$

> 9133 measured reflections
> 3310 independent reflections
> 2843 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.037$
> $\theta_{\max }=26.5^{\circ}, \theta_{\min }=2.1^{\circ}$
> $h=-9 \rightarrow 10$
> $k=-14 \rightarrow 16$
> $l=-18 \rightarrow 16$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
W1	$0.71470(4)$	$0.28785(2)$	$0.11943(2)$	$0.01491(11)$
C11	$0.9818(2)$	$0.29333(15)$	$0.09055(14)$	$0.0206(4)$
S1	$0.9434(2)$	$0.05707(15)$	$0.36702(13)$	$0.0172(4)$
O1	$0.7129(7)$	$0.1221(5)$	$-0.0344(4)$	$0.0299(15)$
N1	$0.7939(7)$	$0.1559(5)$	$0.2219(4)$	$0.0133(13)$
C1	$0.7098(10)$	$0.1829(7)$	$0.0212(6)$	$0.0224(18)$
C12	$0.5130(2)$	$0.28940(16)$	$0.21453(15)$	$0.0252(4)$
S2	$1.0291(3)$	$0.44059(16)$	$0.39914(14)$	$0.0211(4)$
O2	$0.3687(8)$	$0.2745(6)$	$-0.0173(5)$	$0.0399(17)$
N2	$0.8330(7)$	$0.3872(5)$	$0.2453(4)$	$0.0133(13)$

C2	$0.4955(11)$	$0.2788(7)$	$0.0348(6)$	$0.0260(19)$
O3	$0.6745(7)$	$0.4803(4)$	$-0.0140(4)$	$0.0226(13)$
C3	$0.6882(9)$	$0.4116(6)$	$0.0370(5)$	$0.0148(15)$
C10	$1.0349(9)$	$0.2488(6)$	$0.3165(6)$	$0.0171(16)$
H10B	1.1001	0.2476	0.2710	0.020^{*}
H10A	1.1078	0.2383	0.3796	0.020^{*}
C11	$0.9176(9)$	$0.1625(6)$	$0.2950(5)$	$0.0132(15)$
C12	$0.7790(9)$	$-0.0001(6)$	$0.2943(5)$	$0.0171(16)$
H12	0.7394	-0.0665	0.3044	0.020^{*}
C13	$0.7126(9)$	$0.0615(6)$	$0.2203(5)$	$0.0169(16)$
C14	$0.5711(9)$	$0.0317(6)$	$0.1437(6)$	$0.0202(17)$
H14A	0.6049	0.0153	0.0874	0.030^{*}
H14B	0.4949	0.0894	0.1304	0.030^{*}
H14C	0.5200	-0.0291	0.1626	0.030^{*}
C21	$0.9561(9)$	$0.3533(6)$	$0.3128(5)$	$0.0143(15)$
C22	$0.8855(10)$	$0.5279(6)$	$0.3436(6)$	$0.0211(17)$
H22	0.8738	0.5955	0.3663	0.025^{*}
C23	$0.7924(10)$	$0.4884(6)$	$0.2641(6)$	$0.0182(16)$
C24	$0.6582(10)$	$0.5456(6)$	$0.1992(6)$	$0.0202(17)$
H24A	0.6305	0.6063	0.2313	0.030^{*}
H24B	0.5650	0.5000	0.1797	0.030^{*}
H24C	0.6911	0.5681	0.1441	0.030^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
W1	$0.01665(17)$	$0.01210(17)$	$0.01458(17)$	$0.00270(13)$	$0.00174(11)$	$-0.00111(12)$
C11	$0.0161(9)$	$0.0220(10)$	$0.0258(10)$	$0.0004(8)$	$0.0093(8)$	$-0.0014(8)$
S1	$0.0171(9)$	$0.0187(10)$	$0.0165(9)$	$0.0016(8)$	$0.0059(7)$	$0.0038(7)$
O1	$0.032(4)$	$0.031(4)$	$0.031(3)$	$-0.008(3)$	$0.016(3)$	$-0.011(3)$
N1	$0.014(3)$	$0.011(3)$	$0.017(3)$	$0.001(2)$	$0.008(3)$	$-0.003(2)$
C1	$0.021(4)$	$0.019(4)$	$0.029(5)$	$-0.009(3)$	$0.011(4)$	$-0.007(4)$
C12	$0.0244(10)$	$0.0221(10)$	$0.0326(11)$	$-0.0001(8)$	$0.0137(9)$	$-0.0007(9)$
S2	$0.0273(11)$	$0.0214(11)$	$0.0154(9)$	$-0.0090(8)$	$0.0070(8)$	$-0.0049(8)$
O2	$0.024(4)$	$0.048(5)$	$0.042(4)$	$-0.002(3)$	$-0.002(3)$	$0.010(3)$
N2	$0.014(3)$	$0.012(3)$	$0.016(3)$	$0.000(2)$	$0.009(3)$	$-0.001(2)$
C2	$0.030(5)$	$0.030(5)$	$0.019(4)$	$0.000(4)$	$0.007(4)$	$0.003(4)$
O3	$0.024(3)$	$0.021(3)$	$0.025(3)$	$0.006(2)$	$0.010(3)$	$0.004(2)$
C3	$0.016(4)$	$0.014(4)$	$0.015(4)$	$0.008(3)$	$0.005(3)$	$-0.003(3)$
C10	$0.014(4)$	$0.016(4)$	$0.020(4)$	$0.000(3)$	$0.003(3)$	$0.001(3)$
C11	$0.013(4)$	$0.012(4)$	$0.015(4)$	$0.003(3)$	$0.004(3)$	$0.001(3)$
C12	$0.019(4)$	$0.014(4)$	$0.022(4)$	$0.003(3)$	$0.011(3)$	$-0.002(3)$
C13	$0.015(4)$	$0.016(4)$	$0.024(4)$	$0.000(3)$	$0.012(3)$	$-0.005(3)$
C14	$0.017(4)$	$0.016(4)$	$0.028(4)$	$-0.003(3)$	$0.007(3)$	$-0.005(3)$
C21	$0.014(4)$	$0.012(4)$	$0.019(4)$	$-0.004(3)$	$0.007(3)$	$-0.004(3)$
C22	$0.031(5)$	$0.014(4)$	$0.022(4)$	$-0.008(3)$	$0.015(4)$	$-0.004(3)$
C23	$0.027(4)$	$0.012(4)$	$0.022(4)$	$-0.003(3)$	$0.016(3)$	$0.001(3)$
C24	$0.026(4)$	$0.015(4)$	$0.023(4)$	$0.003(3)$	$0.013(3)$	$-0.001(3)$

Geometric parameters ($A,{ }^{\circ}$)

W1-C1	1.983 (8)	O3-C3	1.151 (9)
W1-C2	1.984 (9)	C10-C11	1.487 (11)
W1-C3	1.989 (8)	C10-C21	1.506 (11)
W1-N1	2.265 (6)	C10-H10B	0.9900
W1-N2	2.273 (6)	C10-H10A	0.9900
W1-Cl1	2.4708 (19)	C12-C13	1.354 (11)
W1-Cl2	2.528 (2)	C12-H12	0.9500
S1-C11	1.708 (7)	C13-C14	1.484 (11)
$\mathrm{S} 1-\mathrm{C} 12$	1.710 (8)	C14-H14A	0.9800
O1-C1	1.145 (10)	C14-H14B	0.9800
N1-C11	1.310 (9)	C14-H14C	0.9800
N1-C13	1.405 (10)	C22-C23	1.340 (11)
S2-C21	1.698 (7)	C22-H22	0.9500
S2-C22	1.720 (9)	C23-C24	1.493 (11)
O2-C2	1.165 (11)	C24-H24A	0.9800
N2-C21	1.328 (10)	C24-H24B	0.9800
N2-C23	1.402 (10)	C24-H24C	0.9800
C1-W1-C2	70.5 (4)	C21-C10-H10B	109.1
C1-W1-C3	96.9 (3)	C11-C10-H10A	109.1
C2-W1-C3	74.0 (3)	C21-C10-H10A	109.1
$\mathrm{C} 1-\mathrm{W} 1-\mathrm{N} 1$	85.6 (3)	H10B-C10-H10A	107.8
C2-W1-N1	116.6 (3)	N1-C11-C10	126.1 (7)
C3-W1-N1	169.2 (3)	N1-C11-S1	114.1 (6)
$\mathrm{C} 1-\mathrm{W} 1-\mathrm{N} 2$	155.0 (3)	C10-C11-S1	119.7 (5)
$\mathrm{C} 2-\mathrm{W} 1-\mathrm{N} 2$	134.4 (3)	C13-C12-S 1	111.1 (6)
C3-W1-N2	90.3 (3)	C13-C12-H12	124.4
N1-W1-N2	83.3 (2)	S1-C12-H12	124.4
C1-W1-Cl1	74.2 (2)	C12-C13-N1	113.1 (7)
C2-W1-Cl1	132.7 (2)	C12-C13-C14	123.7 (7)
C3-W1-Cl1	80.2 (2)	N1-C13-C14	123.2 (7)
N1-W1-Cl1	90.47 (16)	C13-C14-H14A	109.5
N2-W1-Cl1	83.58 (16)	C13-C14-H14B	109.5
$\mathrm{C} 1-\mathrm{W} 1-\mathrm{Cl} 2$	122.3 (2)	H14A-C14-H14B	109.5
C2-W1-Cl2	70.3 (3)	C13-C14-H14C	109.5
C3-W1-Cl2	110.8 (2)	H14A-C14-H14C	109.5
N1-W1-Cl2	76.20 (16)	H14B-C14-H14C	109.5
N2-W1-C12	76.36 (16)	N2-C21-C10	126.1 (7)
$\mathrm{Cl} 1-\mathrm{W} 1-\mathrm{Cl} 2$	156.98 (7)	N2-C21-S2	114.4 (6)
C11-S1-C12	90.1 (4)	C10-C21-S2	119.5 (6)
C11-N1-C13	111.6 (6)	C23-C22-S2	111.2 (6)
C11-N1-W1	122.8 (5)	$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	124.4
C13-N1-W1	125.4 (5)	S2-C22-H22	124.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{W} 1$	177.5 (8)	C22-C23-N2	113.9 (7)
C21-S2-C22	89.8 (4)	C22-C23-C24	124.2 (7)
C21-N2-C23	110.6 (6)	N2-C23-C24	121.8 (7)

$\mathrm{C} 21-\mathrm{N} 2-\mathrm{W} 1$	$122.0(5)$
$\mathrm{C} 23-\mathrm{N} 2-\mathrm{W} 1$	$127.4(5)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{W} 1$	$177.8(8)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{W} 1$	$176.7(6)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 21$	$112.6(6)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.1
$\mathrm{C} 1-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 11$	$130.7(6)$
$\mathrm{C} 2-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 11$	$-163.7(6)$
$\mathrm{C} 3-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 11$	$26.9(16)$
$\mathrm{N} 2-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 11$	$-26.9(6)$
$\mathrm{C} 11-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 11$	$56.6(5)$
$\mathrm{C} 12-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 11$	$-104.4(6)$
$\mathrm{C} 1-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 13$	$-54.4(6)$
$\mathrm{C} 2-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 13$	$11.1(7)$
$\mathrm{C} 3-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 13$	$-158.2(12)$
$\mathrm{N} 2-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 13$	$148.0(6)$
$\mathrm{C} 11-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 13$	$-128.6(5)$
$\mathrm{C} 12-\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 13$	$70.4(5)$
$\mathrm{C} 1-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 21$	$-34.2(10)$
$\mathrm{C} 2-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 21$	$151.0(6)$
$\mathrm{C} 3-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 21$	$-141.4(6)$
$\mathrm{N} 1-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 21$	$29.9(6)$
$\mathrm{C} 11-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 21$	$-61.3(5)$
$\mathrm{C} 12-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 21$	$107.3(6)$
$\mathrm{C} 1-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 23$	$145.4(7)$
$\mathrm{C} 2-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 23$	$-29.4(8)$
$\mathrm{C} 3-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 23$	$38.2(6)$
$\mathrm{N} 1-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 23$	$-150.5(6)$
$\mathrm{C} 11-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 23$	$118.3(6)$
$\mathrm{C} 12-\mathrm{W} 1-\mathrm{N} 2-\mathrm{C} 23$	$-73.1(6)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$176.7(7)$
$\mathrm{W} 1-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$-7.8(10)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 11-\mathrm{S} 1$	
	$8)$

C23-C24-H24A	109.5
C23-C24-H24B	109.5
H24A-C24-H24B	109.5
C23-C24-H24C	109.5
H24A-C24-H24C	109.5
H24B-C24-H24C	109.5
W1-N1-C11-S1	174.8 (3)
$\mathrm{C} 21-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$	51.6 (10)
C21-C10-C11-S1	-131.1 (6)
C12-S1-C11-N1	0.5 (6)
C12-S1-C11-C10	-177.1 (6)
C11-S1-C12-C13	-0.1 (6)
S1-C12-C13-N1	-0.2 (8)
S1-C12-C13-C14	178.2 (6)
C11-N1-C13-C12	0.6 (9)
W1-N1-C13-C12	-174.8 (5)
C11-N1-C13-C14	-177.8(7)
W1-N1-C13-C14	6.8 (10)
C23-N2-C21-C10	-179.1 (7)
W1-N2-C21-C10	0.6 (10)
C23-N2-C21-S2	-1.0 (8)
W1-N2-C21-S2	178.7 (3)
C11-C10-C21-N2	-47.1 (10)
C11-C10-C21-S2	134.8 (6)
C22-S2-C21-N2	0.8 (6)
C22-S2-C21-C10	179.1 (6)
C21-S2-C22-C23	-0.5 (6)
S2-C22-C23-N2	0.0 (9)
S2-C22-C23-C24	-179.1 (6)
C21-N2-C23-C22	0.6 (9)
W1-N2-C23-C22	-179.1 (5)
C21-N2-C23-C24	179.7 (7)
W1-N2-C23-C24	0.0 (10)

Hydrogen-bond geometry ($\dot{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.99	2.38	$3.28(1)$	151

Symmetry code: (i) $x+1,-y+1 / 2, z+1 / 2$.

