

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(4-Bromoanilino)-3-(4-chlorophenyl)-1-phenylpropan-1-one

Mehrdad Pourayoubi,^a* Zohreh Shobeiri,^a Giuseppe Bruno^b and Hadi Amiri Rudbari^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 24 August 2011; accepted 12 September 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.084; data-to-parameter ratio = 17.3.

The asymmetric C atom in the title compound, C₂₁H₁₇BrClNO, is in a slightly distorted tetrahedral environment and the NH unit adopts a gauche orientation with respect to the CO group. In the crystal, pairs of intermolecular $N-H \cdots O$ hydrogen bonds form centrosymmetric dimers.

Related literature

For background to β -amino ketones, see: Scettri *et al.* (2008). For related structures, see: Shobeiri et al. (2011); Zhang et al. (2008). For hydrogen-bond motifs and their graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

C ₂₁ H ₁₇ BrClNO	a = 10.6571 (4) Å
$M_r = 414.72$	b = 17.2432 (6) Å
Monoclinic, $P2_1/n$	c = 10.8602 (4) Å

 $\beta = 113.571 \ (2)^{\circ}$ V = 1829.19 (12) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.589, T_{\max} = 0.746$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.084$ S = 1.033983 reflections 230 parameters

 $0.35 \times 0.31 \times 0.11 \text{ mm}$

69312 measured reflections 3983 independent reflections 3274 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H \cdots O1^i$	0.81 (3)	2.23 (3)	2.992 (3)	156 (2)
Symmetry code: (i	-r - v + 2 - z	+1		

Symmetry code: (i) -x, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2027).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Scettri, A., Massa, A., Palombi, L., Villano, R. & Acocella, M. R. (2008). Tetrahedron Asymmetry, 19, 2149-2152.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Shobeiri, Z., Pourayoubi, M., Heydari, A., Percino, T. M. & Leyva Ramírez, M. A. (2011). C. R. Chim. 14, 597-603.
- Zhang, L.-P., Wei, L.-J., Chen, M.-Q. & Zhang, Z.-H. (2008). Acta Cryst. E64, 01327.

 $\mu = 2.40 \text{ mm}^{-1}$

T = 296 K

supporting information

Acta Cryst. (2011). E67, o2647 [https://doi.org/10.1107/S1600536811036932]

3-(4-Bromoanilino)-3-(4-chlorophenyl)-1-phenylpropan-1-one

Mehrdad Pourayoubi, Zohreh Shobeiri, Giuseppe Bruno and Hadi Amiri Rudbari

S1. Comment

 β -Amino ketones, of the formula [R^1]CH[NH R^2][CH₂C(O) R^3], such as the title compound have attracted attention because of their roles as important intermediates for the synthesis of natural products and chiral auxiliaries (Scettri *et al.*, 2008). In the previous work, the structure determination of 3-(4-bromophenylamino)-1-phenyl-3-*p*-tolylpropan-1-one (Shobeiri *et al.*, 2011) has been investigated. Here, we report the synthesis and crystal structure of the title molecule, [4-Cl—C₆H₄]CH[NHC₆H₄-4-Br][CH₂C(O)C₆H₅]. The asymmetric C atom has a slightly distorted tetrahedral configuration (Fig 1) with the bond angles in the range of 107.92 (16)° [N(1)—C(9)—C(8)] to 114.69 (16)° [N(1)—C(9)—C(10)]. In the crystal, pairs of intermolecular N—H···O(C) hydrogen bonds (Table 1) form centrosymmetric dimers as R_2^2 (12) rings (for graph-set notation, see Bernstein *et al.*, 1995). A view of crystal packing is shown in Fig. 2.

S2. Experimental

To a magnetically stirred mixture of 3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (0.24 g, 1.0 mmol) and $Ag_3PW_{12}O_{40}$ (0.32 g, 0.10 mmol) as catalyst, in ethanol (5 ml), 4-bromoaniline (0.20 g, 1.2 mmol) was added at room temperature. The reaction completion was monitored by thin layer chromatography (TLC). The catalyst $Ag_3PW_{12}O_{40}$ was collected by centrifugation. The reaction mixture was extracted with distilled water and ether (2×10 ml). The combined organic layer was evaporated to obtain crude product which was washed with hexane to give pure product. Single crystals of the product were obtained from a solution of CHCl₃/CH₃OH at room temperature.

S3. Refinement

H atoms of N—H was found in a difference Fourier map and refined isotropically with a distance restraint of N1—H = 0.81 (3) Å. The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93(aromatic CH), 0.97(CH2) and 0.98 (aliphatic CH) Å and with $U_{iso}(H) = 1.2$ and 1.5 $U_{eq}(C)$.

An ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level.

Figure 2

Part of the crystal packing of the title compound showing a centrosymmetric H-bonded (dashed lines) dimer. Only H atoms involving in hydrogen bonds are shown.

3-(4-Bromoanilino)-3-(4-chlorophenyl)-1-phenylpropan-1-one

Crystal data

```
C<sub>21</sub>H<sub>17</sub>BrClNO
                                                                              F(000) = 840
M_r = 414.72
                                                                              D_{\rm x} = 1.506 {\rm Mg} {\rm m}^{-3}
                                                                              Mo K\alpha radiation, \lambda = 0.71073 Å
Monoclinic, P2_1/n
Hall symbol: -P 2yn
                                                                              Cell parameters from 9986 reflections
a = 10.6571 (4) Å
                                                                              \theta = 2.4 - 23.8^{\circ}
                                                                              \mu = 2.40 \text{ mm}^{-1}
b = 17.2432 (6) Å
                                                                              T = 296 \text{ K}
c = 10.8602 (4) Å
\beta = 113.571 \ (2)^{\circ}
                                                                              Irregular, colorless
V = 1829.19 (12) \text{ Å}^3
                                                                              0.35 \times 0.31 \times 0.11 \text{ mm}
Z = 4
Data collection
Bruker APEXII CCD
                                                                              69312 measured reflections
   diffractometer
                                                                              3983 independent reflections
Radiation source: fine-focus sealed tube
                                                                              3274 reflections with I > 2\sigma(I)
Graphite monochromator
                                                                              R_{\rm int} = 0.036
\varphi and \omega scans
                                                                              \theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}
Absorption correction: multi-scan
                                                                              h = -13 \rightarrow 13
   (SADABS; Sheldrick, 2004)
                                                                              k = -22 \rightarrow 22
                                                                              l = -13 \rightarrow 13
T_{\rm min} = 0.589, T_{\rm max} = 0.746
```

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.084$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
3983 reflections	and constrained refinement
230 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0314P)^2 + 1.4336P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.86 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br	-0.04722 (3)	0.80334 (2)	-0.19048 (3)	0.06568 (12)	
Cl	-0.16806 (9)	0.56173 (4)	0.49694 (7)	0.0721 (2)	
01	0.17572 (18)	1.03398 (10)	0.6206 (2)	0.0634 (5)	
N1	0.08682 (19)	0.90054 (10)	0.38597 (18)	0.0371 (4)	
C18	-0.0066 (2)	0.83266 (15)	-0.0093 (2)	0.0450 (5)	
C17	0.0762 (3)	0.78643 (15)	0.0933 (2)	0.0494 (6)	
H17	0.1118	0.7409	0.0743	0.059*	
C16	0.1072 (2)	0.80736 (13)	0.2259 (2)	0.0450 (5)	
H16	0.1635	0.7757	0.2953	0.054*	
C21	0.0549 (2)	0.87508 (12)	0.2558 (2)	0.0351 (4)	
C9	0.1518 (2)	0.85036 (11)	0.5014 (2)	0.0341 (4)	
Н9	0.2417	0.8351	0.5049	0.041*	
C8	0.1731 (2)	0.89759 (12)	0.6286 (2)	0.0385 (5)	
H8A	0.0848	0.9064	0.6323	0.046*	
H8B	0.2281	0.8673	0.7069	0.046*	
C7	0.2419 (2)	0.97478 (12)	0.6350 (2)	0.0389 (5)	
C6	0.3887 (2)	0.97840 (12)	0.65830 (19)	0.0358 (4)	
C5	0.4741 (2)	0.91441 (13)	0.6986 (2)	0.0405 (5)	
Н5	0.4400	0.8672	0.7132	0.049*	
C4	0.6101 (2)	0.92042 (15)	0.7171 (2)	0.0498 (6)	
H4	0.6673	0.8774	0.7450	0.060*	
C3	0.6605 (2)	0.98986 (17)	0.6944 (3)	0.0556 (6)	
Н3	0.7514	0.9934	0.7053	0.067*	
C20	-0.0291 (2)	0.92111 (13)	0.1491 (2)	0.0437 (5)	

supporting information

H20	-0.0654	0.9667	0.1670	0.052*
C19	-0.0594 (2)	0.90066 (15)	0.0179 (2)	0.0486 (5)
H19	-0.1149	0.9323	-0.0520	0.058*
C10	0.0717 (2)	0.77732 (11)	0.5009 (2)	0.0336 (4)
C11	0.1383 (2)	0.70874 (13)	0.5539(2)	0.0455 (5)
H11	0.2335	0.7072	0.5888	0.055*
C12	0.0668 (3)	0.64243 (14)	0.5562 (3)	0.0538 (6)
H12	0.1129	0.5967	0.5926	0.065*
C13	-0.0743 (3)	0.64527 (13)	0.5035 (2)	0.0460 (5)
C14	-0.1434 (2)	0.71292 (14)	0.4522 (2)	0.0460 (5)
H14	-0.2385	0.7144	0.4188	0.055*
C15	-0.0702 (2)	0.77871 (12)	0.4507 (2)	0.0409 (5)
H15	-0.1166	0.8246	0.4156	0.049*
C2	0.5775 (3)	1.05403 (16)	0.6559 (3)	0.0565 (6)
H2	0.6125	1.1010	0.6417	0.068*
C1	0.4420 (2)	1.04882 (13)	0.6382 (2)	0.0463 (5)
H1	0.3862	1.0924	0.6129	0.056*
Н	0.031 (3)	0.9290 (15)	0.396 (3)	0.046 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
Br	0.04927 (16)	0.1060 (3)	0.03996 (14)	-0.00352 (14)	0.01597 (11)	-0.00835 (13)
Cl	0.0956 (5)	0.0517 (4)	0.0638 (4)	-0.0335 (4)	0.0266 (4)	0.0014 (3)
01	0.0462 (10)	0.0427 (9)	0.0988 (15)	0.0070 (8)	0.0262 (10)	-0.0028 (9)
N1	0.0382 (9)	0.0331 (9)	0.0392 (9)	0.0026 (8)	0.0145 (8)	0.0021 (7)
C18	0.0366 (11)	0.0616 (14)	0.0372 (11)	-0.0081 (10)	0.0153 (9)	-0.0005 (10)
C17	0.0552 (14)	0.0516 (13)	0.0476 (13)	0.0056 (11)	0.0271 (11)	-0.0006 (11)
C16	0.0483 (12)	0.0469 (13)	0.0403 (11)	0.0105 (10)	0.0183 (10)	0.0080 (10)
C21	0.0319 (10)	0.0349 (10)	0.0376 (10)	-0.0048 (8)	0.0129 (8)	0.0024 (8)
C9	0.0296 (9)	0.0346 (10)	0.0368 (10)	0.0004 (8)	0.0117 (8)	0.0005 (8)
C8	0.0347 (10)	0.0433 (11)	0.0375 (11)	-0.0052 (9)	0.0144 (9)	-0.0027 (9)
C7	0.0371 (11)	0.0393 (11)	0.0370 (10)	-0.0010 (9)	0.0114 (9)	-0.0042 (9)
C6	0.0348 (10)	0.0375 (11)	0.0324 (10)	-0.0048 (8)	0.0106 (8)	-0.0037 (8)
C5	0.0361 (10)	0.0406 (11)	0.0395 (11)	-0.0032 (9)	0.0094 (9)	0.0001 (9)
C4	0.0366 (11)	0.0565 (14)	0.0495 (13)	0.0017 (10)	0.0100 (10)	-0.0039 (11)
C3	0.0380 (12)	0.0771 (18)	0.0495 (14)	-0.0132 (12)	0.0151 (10)	-0.0062 (13)
C20	0.0407 (11)	0.0390 (11)	0.0453 (12)	0.0026 (9)	0.0107 (10)	0.0040 (9)
C19	0.0398 (11)	0.0565 (14)	0.0406 (12)	0.0000 (10)	0.0068 (9)	0.0100 (10)
C10	0.0356 (10)	0.0316 (10)	0.0327 (9)	-0.0010 (8)	0.0127 (8)	-0.0009 (8)
C11	0.0405 (12)	0.0405 (12)	0.0484 (13)	0.0045 (9)	0.0104 (10)	0.0056 (10)
C12	0.0652 (16)	0.0361 (12)	0.0516 (14)	0.0019 (11)	0.0143 (12)	0.0081 (10)
C13	0.0624 (15)	0.0373 (12)	0.0386 (11)	-0.0157 (10)	0.0206 (11)	-0.0041 (9)
C14	0.0410 (12)	0.0478 (13)	0.0486 (13)	-0.0085 (10)	0.0173 (10)	-0.0052 (10)
C15	0.0363 (11)	0.0341 (10)	0.0493 (12)	0.0005 (8)	0.0141 (9)	0.0003 (9)
C2	0.0559 (15)	0.0589 (16)	0.0519 (14)	-0.0240 (13)	0.0186 (12)	0.0009 (12)
C1	0.0491 (13)	0.0408 (12)	0.0441 (12)	-0.0060 (10)	0.0134 (10)	0.0007 (10)

Geometric parameters (Å, °)

Br—C18	1.906 (2)	C5—C4	1.385 (3)	
Cl—C13	1.738 (2)	С5—Н5	0.9300	
O1—C7	1.215 (3)	C4—C3	1.374 (4)	
N1-C21	1.386 (3)	C4—H4	0.9300	
N1—C9	1.451 (3)	C3—C2	1.374 (4)	
N1—H	0.81 (3)	С3—Н3	0.9300	
C18—C17	1.367 (3)	C20—C19	1.375 (3)	
C18—C19	1.382 (4)	C20—H20	0.9300	
C17—C16	1.391 (3)	C19—H19	0.9300	
С17—Н17	0.9300	C10—C11	1.381 (3)	
C16—C21	1.387 (3)	C10—C15	1.388 (3)	
С16—Н16	0.9300	C11—C12	1.380 (3)	
C21—C20	1.395 (3)	C11—H11	0.9300	
C9—C10	1.520 (3)	C12—C13	1.379 (4)	
C9—C8	1.540 (3)	C12—H12	0.9300	
С9—Н9	0.9800	C13—C14	1.373 (3)	
C8—C7	1.507 (3)	C14—C15	1.381 (3)	
C8—H8A	0.9700	C14—H14	0.9300	
C8—H8B	0.9700	C15—H15	0.9300	
С7—С6	1.483 (3)	C2—C1	1.381 (4)	
C6—C5	1.385 (3)	С2—Н2	0.9300	
C6—C1	1.394 (3)	C1—H1	0.9300	
C21—N1—C9	121.99 (17)	C3—C4—C5	120.0 (2)	
C21—N1—H	115.5 (18)	С3—С4—Н4	120.0	
С9—N1—Н	111.7 (18)	С5—С4—Н4	120.0	
C17—C18—C19	120.4 (2)	C2—C3—C4	120.4 (2)	
C17—C18—Br	119.53 (19)	С2—С3—Н3	119.8	
C19—C18—Br	120.11 (17)	C4—C3—H3	119.8	
C18—C17—C16	120.1 (2)	C19—C20—C21	121.5 (2)	
С18—С17—Н17	119.9	C19—C20—H20	119.3	
С16—С17—Н17	119.9	C21—C20—H20	119.3	
C21—C16—C17	120.6 (2)	C20-C19-C18	119.5 (2)	
C21—C16—H16	119.7	C20-C19-H19	120.3	
С17—С16—Н16	119.7	C18-C19-H19	120.3	
N1-C21-C16	123.20 (19)	C11—C10—C15	118.5 (2)	
N1-C21-C20	118.79 (19)	C11—C10—C9	120.90 (19)	
C16—C21—C20	117.9 (2)	C15—C10—C9	120.61 (18)	
N1-C9-C10	114.69 (16)	C12—C11—C10	121.4 (2)	
N1—C9—C8	107.92 (16)	C12—C11—H11	119.3	
С10—С9—С8	108.81 (16)	C10—C11—H11	119.3	
N1—C9—H9	108.4	C13—C12—C11	118.8 (2)	
С10—С9—Н9	108.4	C13—C12—H12	120.6	
С8—С9—Н9	108.4	C11—C12—H12	120.6	
С7—С8—С9	113.74 (17)	C14—C13—C12	121.2 (2)	
С7—С8—Н8А	108.8	C14—C13—Cl	118.75 (19)	

C9—C8—H8A	108.8	C12—C13—Cl	120.06 (19)
$C_{1} = C_{2} = 118B$	108.8	$C_{13} = C_{14} = C_{13}$	119.3 (2)
H84 - C8 - H8B	107.7	C_{15} C_{14} H_{14}	120.4
01 - C7 - C6	120 3 (2)	C_{14} C_{15} C_{10}	120.4 120.9(2)
01 - 07 - 08	120.3(2) 119.32(19)	C_{14} C_{15} H_{15}	120.9 (2)
C6-C7-C8	120.35(18)	C_{10} C_{15} H_{15}	119.6
C_{5} C_{6} C_{1}	119 1 (2)	$C_{3} - C_{2} - C_{1}$	119.0 120.0(2)
$C_{5} - C_{6} - C_{7}$	$122 \ 37 \ (19)$	C_{3} C_{2} H_{2}	120.0 (2)
C1 - C6 - C7	118 56 (19)	C1 - C2 - H2	120.0
C4-C5-C6	1202(2)	$C_{2} - C_{1} - C_{6}$	120.2(2)
C4—C5—H5	119.9	C2-C1-H1	119.9
С6—С5—Н5	119.9	С6—С1—Н1	119.9
C19—C18—C17—C16	0.4 (4)	C16—C21—C20—C19	-0.2 (3)
Br—C18—C17—C16	179.65 (18)	C21—C20—C19—C18	0.6 (3)
C18—C17—C16—C21	0.0 (4)	C17—C18—C19—C20	-0.7 (4)
C9—N1—C21—C16	-14.4 (3)	Br—C18—C19—C20	-179.93 (17)
C9—N1—C21—C20	168.47 (19)	N1-C9-C10-C11	145.8 (2)
C17—C16—C21—N1	-177.2 (2)	C8—C9—C10—C11	-93.3 (2)
C17—C16—C21—C20	-0.1 (3)	N1—C9—C10—C15	-36.2 (3)
C21—N1—C9—C10	-59.1 (2)	C8—C9—C10—C15	84.8 (2)
C21—N1—C9—C8	179.46 (17)	C15-C10-C11-C12	0.8 (3)
N1—C9—C8—C7	-50.4 (2)	C9-C10-C11-C12	178.8 (2)
C10—C9—C8—C7	-175.40 (17)	C10-C11-C12-C13	0.3 (4)
C9—C8—C7—O1	109.1 (2)	C11—C12—C13—C14	-1.5 (4)
C9—C8—C7—C6	-70.7 (2)	C11—C12—C13—Cl	176.77 (19)
O1—C7—C6—C5	168.4 (2)	C12—C13—C14—C15	1.5 (4)
C8—C7—C6—C5	-11.8 (3)	Cl-C13-C14-C15	-176.77 (18)
O1—C7—C6—C1	-11.9 (3)	C13—C14—C15—C10	-0.4 (3)
C8—C7—C6—C1	167.93 (19)	C11—C10—C15—C14	-0.7 (3)
C1—C6—C5—C4	-0.7 (3)	C9-C10-C15-C14	-178.8 (2)
C7—C6—C5—C4	179.0 (2)	C4—C3—C2—C1	-0.7 (4)
C6—C5—C4—C3	-0.6 (4)	C3—C2—C1—C6	-0.5 (4)
C5—C4—C3—C2	1.3 (4)	C5—C6—C1—C2	1.2 (3)
N1-C21-C20-C19	177.1 (2)	C7—C6—C1—C2	-178.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1— H ···O1 ⁱ	0.81 (3)	2.23 (3)	2.992 (3)	156 (2)

Symmetry code: (i) -x, -y+2, -z+1.