

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine-1,4-diium dichloride monohydrate

Jing Wang,* Yongli Wang and Caiqin Yang

School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China Correspondence e-mail: jingwang@home.ipe.ac.cn

Received 29 July 2011; accepted 14 September 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.046; *wR* factor = 0.138; data-to-parameter ratio = 14.6.

In the title compound, $C_{27}H_{31}FN_2O^{2+}\cdot 2Cl^-\cdot H_2O$, the piperazine ring adopts a chair conformation and both N atoms are protonated. The Cl⁻ anions form strong hydrogen bonds to these protons. $O/N-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds link the anions, cations and water of hydration into a threedimensional network.

Related literature

For a related structure, see: Zhou & Jin (1986). For the synthesis of 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]-piperazine, see: Wang *et al.* (2003).

Experimental

Crystal data

 $\begin{array}{l} C_{27}H_{31}\text{FN}_2\text{O}^{2+}\cdot2\text{Cl}^-\cdot\text{H}_2\text{O}\\ M_r = 507.45\\ \text{Monoclinic, } C2/c\\ a = 39.2849 \ (14) \ \text{\AA}\\ b = 7.3369 \ (3) \ \text{\AA}\\ c = 19.5158 \ (7) \ \text{\AA}\\ \beta = 107.773 \ (2)^\circ \end{array}$

 $V = 5356.6 \text{ (3) } \text{Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.28 \text{ mm}^{-1}$ T = 298 K $0.37 \times 0.21 \times 0.11 \text{ mm}$ Data collection

```
Siemens SMART CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.933, T<sub>max</sub> = 0.970
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	Н
$vR(F^2) = 0.138$	
S = 1.03	
566 reflections	Δ
313 parameters	Δ
3 restraints	

19739 measured reflections 4566 independent reflections 3644 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1\cdots Cl1^{i}$	1.01 (2)	2.24 (2)	3.248 (3)	176 (2)
$C6-H6A\cdots O1W^{ii}$	0.93	2.55	3.397 (4)	152
$C14-H14B\cdots O1^{iii}$	0.97	2.38	3.148 (3)	136
$N1 - H1A \cdots Cl2$	0.91	2.09	2.990 (2)	171
$O1W - H2 \cdot \cdot \cdot Cl2$	1.01 (2)	2.20(2)	3.207 (3)	172 (2)
$N2 - H2B \cdots Cl1$	0.91	2.18	3.070 (2)	167

Symmetry codes: (i) x, y + 1, z; (ii) $-x + \frac{1}{2}, y - \frac{3}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{5}{2}, -z$.

Data collection: *SMART* (Siemens, 1994); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support for this work by the Hebei Province Natural Science Fund of China (C2006001035), the Science Fund (2009148) of the Education Department and the Science Fund (20090059) of the Health Department of Hebei Province of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2438).

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1994). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wang, Y. L., Chen, Z. M. & Bao, C. H. (2003). Chinese Patent CN 1654461A. Zhou, G. D. & Jin, S. (1986). J. Struct. Chem. 5, 49–51.

supporting information

Acta Cryst. (2011). E67, o2719 [https://doi.org/10.1107/S1600536811037378]

1-Diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine-1,4-diium dichloride monohydrate

Jing Wang, Yongli Wang and Caiqin Yang

S1. Comment

The crystal structure of 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine has been reported (Zhou & Jin, 1986). In this article we report the structure of its dihydrochloride monohydrate.

In the title compound (Fig. 1), the piperazine ring adopts a chair conformation with the piperizine-N atoms protonated. The Cl⁻ anions form strong halogen hydrogen bonds to these protons. Two chlorine ions and one hydrone bridge piperazine cations through the O—H···Cl and N—H···Cl halogen hydrogen bonds result in a one-dimensional chain structure. Moreover, these hydrogen bonds, as well as C=O···H hydrogen bonds (Table 1), link the molecular moieties into a two dimensional sheet in the *b*-*c* plane. The water of hydration further consolidates the structure via hydrogen bonds of the type O—H···C. Overall, the individual molecule packs together into a three-dimensional network with a spiral structure motif (Fig. 2).

S2. Experimental

The 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine base was synthesized according to a reported procedure (Wang *et al.*, 2003). The title compound was prepared by passing dry hydrochloride gas (100 mg) through a solution of 200 mg base in ethanol (2 ml). The single-crystals of the title compound suitable for X-ray analysis were obtained by vapor diffusion in a solution of chloroform in which the compound was soluble by benzene acting as anti-solvent.

S3. Refinement

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.91 Å and C—H = 0.93, 0.97 and 0.98 Å, for aryl, methylene and methyne type H-atoms, respectively, with $U_{iso}(H) = 1.2 U_{eq}(C/N)$. H atoms of water molecule were located in difference Fourier maps and were refined freely with isotropic displacement parameters.

Figure 1

A view of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Figure 2

Packing diagram of the title compound showing hydrogen bonds with dotted lines.

1-Diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine-1,4-diium dichloride monohydrate

Crystal data	
$C_{27}H_{31}FN_2O^{2+}\cdot 2Cl^-\cdot H_2O$	F(000) = 2144
$M_r = 507.45$	$D_{\rm x} = 1.258 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71070$ Å
Hall symbol: -C 2yc	Cell parameters from 6877 reflections
a = 39.2849 (14) Å	$\theta = 4.6-65.2^{\circ}$
b = 7.3369 (3) Å	$\mu=0.28~\mathrm{mm^{-1}}$
c = 19.5158 (7) Å	T = 298 K
$\beta = 107.773 \ (2)^{\circ}$	Prismatic, colorless
$V = 5356.6 (3) \text{ Å}^3$	$0.37 \times 0.21 \times 0.11 \text{ mm}$
Z = 8	

Data collection

Siemens SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.933, T_{\max} = 0.970$	19739 measured reflections 4566 independent reflections 3644 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 24.9^{\circ}, \theta_{min} = 1.1^{\circ}$ $h = -46 \rightarrow 44$ $k = -8 \rightarrow 7$ $l = -22 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.138$ S = 1.03 4566 reflections 313 parameters 3 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0742P)^2 + 3.1528P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å ⁻³ $\Delta\rho_{min} = -0.37$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.40283 (5)	0.3181 (3)	0.13299 (11)	0.1153 (7)	
C11	0.113600 (17)	0.81655 (8)	0.10513 (4)	0.0702 (2)	
Cl2	0.231844 (18)	1.53814 (9)	0.16249 (4)	0.0760 (2)	
N1	0.19895 (4)	1.1685 (2)	0.12880 (9)	0.0468 (4)	
H1A	0.2087	1.2821	0.1339	0.056*	
N2	0.12309 (4)	1.2321 (2)	0.10926 (8)	0.0441 (4)	
H2B	0.1166	1.1127	0.1041	0.053*	
01	0.31404 (6)	1.0374 (3)	0.04357 (12)	0.0918 (7)	
O1W	0.17734 (9)	1.6776 (4)	0.24451 (15)	0.1295 (9)	
C1	0.37946 (8)	0.4599 (4)	0.11920 (14)	0.0765 (8)	
C2	0.38710 (7)	0.6077 (5)	0.08508 (15)	0.0792 (8)	
H2A	0.4078	0.6117	0.0714	0.095*	
C3	0.36369 (7)	0.7509 (4)	0.07114 (13)	0.0674 (6)	
H3A	0.3688	0.8540	0.0482	0.081*	
C4	0.33248 (6)	0.7454 (3)	0.09058 (11)	0.0541 (5)	

C5	0.32535 (7)	0.5884 (3)	0.12420 (12)	0.0643 (6)
H5A	0.3044	0.5807	0.1368	0.077*
C6	0.34905 (8)	0.4448 (4)	0.13884 (14)	0.0771 (8)
H6A	0.3445	0.3403	0.1615	0.092*
C7	0.30841 (6)	0.9070 (3)	0.07606 (12)	0.0572 (5)
C8	0.27859 (7)	0.9051 (4)	0.10829 (17)	0.0789 (8)
H8A	0.2890	0.9003	0.1602	0.095*
H8B	0.2652	0.7931	0.0936	0.095*
С9	0.25220 (6)	1.0625 (3)	0.09051 (14)	0.0641 (6)
H9A	0.2646	1.1783	0.1017	0.077*
H9B	0.2385	1.0613	0.0399	0.077*
C10	0.22818 (6)	1.0325 (3)	0.13699 (13)	0.0596 (6)
H10A	0.2175	0.9126	0.1263	0.072*
H10B	0.2429	1.0319	0.1869	0.072*
C11	0.18253(5)	1 1380 (3)	0 18779 (11)	0.0537(5)
H11A	0 2003	1 1619	0 2337	0.064*
H11B	0.1754	1.0113	0.1873	0.064*
C12	0.15059(5)	1.2567 (3)	0.18091 (11)	0.0541(5)
H12A	0.1402	1.2264	0.2187	0.065*
H12R	0.1580	1 3833	0.1868	0.065*
C13	0.1300 0.14022(5)	1.2799 (3)	0.05275(11)	0.000
H13A	0.1484	1.4053	0.0591	0.0502 (5)
H13R	0.1227	1.4055	0.0055	0.060*
C14	0.1227 0.17127 (5)	1.1568 (3)	0.05701 (11)	0.000
H14A	0.17127 (5)	1.0321	0.03701 (11)	0.0500(5)
H14R	0.1029	1.005	0.0482	0.001
C15	0.1818 0.08087 (5)	1.1905	0.0133	0.001
U15A	0.08987 (5)	1.3409 (3)	0.10174 (11)	0.0491(3) 0.050*
C16	0.0975	1.4740 1.3107(3)	0.1041 0.02871 (11)	0.059
C10 C17	0.00201(5) 0.04723(6)	1.3197(3) 1.4723(4)	-0.01065(13)	0.0319(3)
U17A	0.04723(0)	1.4723 (4)	0.01005 (15)	0.0031 (0)
П1/А С19	0.0333	1.3070	0.0003	0.078°
	0.02014 (7)	1.4343 (3)	-0.07310(13)	0.0855 (9)
П18А	0.0100	1.3380	-0.1008	0.100°
U10A	0.00813 (7)	1.2854 (5)	-0.10126 (14)	0.0830 (9)
HI9A C20	-0.0099	1.2742	-0.1449	0.100^{*}
C20	0.02270(7)	1.1333 (4)	-0.06319 (14)	0.0780(8)
H20A	0.0146	1.0187	-0.0810	0.094*
C21	0.04927(6)	1.1494 (4)	0.00130 (13)	0.0667 (6)
HZIA	0.0589	1.0450	0.0270	0.080*
C22	0.07512(5)	1.3157 (3)	0.16414 (11)	0.0517(5)
C23	0.06211 (7)	1.1488 (4)	0.17/95 (13)	0.0659 (6)
H23A	0.0631	1.0490	0.1493	0.079*
C24	0.04770 (8)	1.1286 (5)	0.23378 (15)	0.0806 (8)
H24A	0.0392	1.0157	0.2427	0.097*
C25	0.04600 (8)	1.2757 (5)	0.27604 (15)	0.0833 (9)
H25A	0.0360	1.2629	0.3133	0.100*
C26	0.05902 (8)	1.4419 (5)	0.26328 (15)	0.0822 (8)
H26A	0.0579	1.5415	0.2920	0.099*

supporting information

C27	0.07369 (6)	1.4609 (4)	0.20780 (13)	0.0645 (6)	
H27A	0.0827	1.5733	0.1998	0.077*	
H2	0.1952 (5)	1.647 (4)	0.2183 (13)	0.080*	
H1	0.1574 (5)	1.726 (4)	0.2022 (12)	0.080*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
F1	0.1138 (14)	0.1047 (15)	0.1215 (14)	0.0581 (12)	0.0270 (12)	0.0098 (11)
Cl1	0.0742 (4)	0.0398 (4)	0.0921 (5)	-0.0111 (3)	0.0189 (3)	0.0043 (3)
Cl2	0.0754 (4)	0.0481 (4)	0.1010 (5)	-0.0194 (3)	0.0220 (3)	-0.0042 (3)
N1	0.0441 (9)	0.0382 (10)	0.0579 (9)	-0.0057 (7)	0.0152 (7)	0.0007 (7)
N2	0.0423 (8)	0.0386 (9)	0.0499 (9)	-0.0064 (7)	0.0121 (7)	0.0007 (7)
01	0.1009 (14)	0.0751 (13)	0.1225 (16)	0.0187 (11)	0.0686 (13)	0.0393 (12)
O1W	0.144 (2)	0.123 (2)	0.125 (2)	0.0220 (19)	0.0457 (18)	0.0110 (17)
C1	0.0786 (17)	0.079 (2)	0.0646 (15)	0.0263 (15)	0.0118 (13)	-0.0046 (13)
C2	0.0598 (14)	0.098 (2)	0.0800 (17)	0.0155 (15)	0.0208 (13)	-0.0043 (16)
C3	0.0631 (14)	0.0712 (17)	0.0712 (15)	0.0020 (13)	0.0254 (12)	0.0036 (12)
C4	0.0599 (12)	0.0560 (14)	0.0480 (11)	0.0000 (10)	0.0188 (9)	-0.0041 (10)
C5	0.0777 (15)	0.0558 (15)	0.0665 (14)	0.0032 (12)	0.0326 (12)	-0.0030 (11)
C6	0.109 (2)	0.0569 (16)	0.0660 (15)	0.0144 (15)	0.0272 (15)	0.0042 (12)
C7	0.0627 (13)	0.0557 (14)	0.0581 (12)	-0.0010 (11)	0.0255 (10)	0.0012 (11)
C8	0.0805 (17)	0.0615 (17)	0.111 (2)	0.0126 (14)	0.0531 (16)	0.0169 (15)
C9	0.0617 (13)	0.0576 (15)	0.0790 (15)	0.0048 (11)	0.0304 (12)	0.0067 (12)
C10	0.0559 (12)	0.0500 (14)	0.0749 (14)	0.0084 (10)	0.0229 (11)	0.0085 (11)
C11	0.0470 (11)	0.0611 (14)	0.0518 (11)	-0.0029 (10)	0.0134 (9)	0.0033 (10)
C12	0.0461 (11)	0.0627 (14)	0.0508 (11)	-0.0054 (10)	0.0108 (9)	-0.0042 (10)
C13	0.0486 (11)	0.0508 (13)	0.0513 (11)	-0.0047 (9)	0.0155 (9)	0.0072 (9)
C14	0.0520 (11)	0.0502 (13)	0.0511 (11)	-0.0057 (9)	0.0179 (9)	0.0006 (9)
C15	0.0452 (11)	0.0420 (12)	0.0593 (12)	-0.0013 (9)	0.0150 (9)	0.0017 (9)
C16	0.0440 (11)	0.0548 (14)	0.0586 (12)	-0.0001 (9)	0.0182 (9)	0.0064 (10)
C17	0.0606 (13)	0.0635 (16)	0.0716 (15)	0.0045 (11)	0.0210 (11)	0.0164 (12)
C18	0.0712 (17)	0.103 (2)	0.0725 (17)	0.0185 (16)	0.0164 (14)	0.0345 (17)
C19	0.0618 (15)	0.116 (3)	0.0626 (15)	0.0045 (17)	0.0036 (12)	0.0000 (16)
C20	0.0600 (14)	0.087 (2)	0.0766 (16)	-0.0051 (14)	0.0030 (13)	-0.0089 (15)
C21	0.0544 (13)	0.0627 (16)	0.0728 (15)	-0.0016 (11)	0.0041 (11)	0.0014 (12)
C22	0.0399 (10)	0.0559 (14)	0.0568 (12)	0.0007 (9)	0.0109 (9)	0.0013 (10)
C23	0.0673 (14)	0.0645 (16)	0.0715 (15)	-0.0109 (12)	0.0296 (12)	-0.0033 (12)
C24	0.0774 (17)	0.090 (2)	0.0803 (17)	-0.0155 (15)	0.0334 (14)	0.0072 (16)
C25	0.0710 (17)	0.120 (3)	0.0631 (15)	-0.0051 (17)	0.0271 (13)	-0.0011 (16)
C26	0.0793 (18)	0.098 (2)	0.0704 (16)	0.0046 (17)	0.0243 (14)	-0.0194 (15)
C27	0.0610 (13)	0.0642 (16)	0.0665 (14)	-0.0005 (11)	0.0167 (11)	-0.0079 (12)

Geometric parameters (Å, °)

F1—C1	1.359 (3)	C11—H11B	0.9700
N1—C14	1.491 (3)	C12—H12A	0.9700
N1—C10	1.493 (3)	C12—H12B	0.9700

N1—C11	1.498 (3)	C13—C14	1.500 (3)
N1—H1A	0.9100	C13—H13A	0.9700
N2—C12	1.494 (3)	C13—H13B	0.9700
N2—C13	1.498 (2)	C14—H14A	0.9700
N2—C15	1.522 (3)	C14—H14B	0.9700
N2—H2B	0.9100	C15—C22	1.517 (3)
O1—C7	1.206 (3)	C15—C16	1.522 (3)
O1W—H2	1.012 (16)	С15—Н15А	0.9800
O1W—H1	1.013 (16)	C16—C17	1.381 (3)
C1—C2	1.353 (4)	C16—C21	1.391 (3)
C1—C6	1.366 (4)	C17—C18	1.384 (4)
C2—C3	1.368 (4)	С17—Н17А	0.9300
C2—H2A	0.9300	C18—C19	1.369 (4)
C3—C4	1.390 (3)	C18—H18A	0.9300
С3—НЗА	0.9300	C19—C20	1.365 (4)
C4—C5	1.396 (3)	C19—H19A	0.9300
C4—C7	1.489 (3)	C20—C21	1.373 (3)
C5—C6	1.377 (4)	C20—H20A	0.9300
C5—H5A	0.9300	C21—H21A	0.9300
С6—Н6А	0.9300	C22—C27	1.376 (3)
С7—С8	1.489 (3)	C22—C23	1.384 (3)
C8—C9	1.519 (4)	C23—C24	1.381 (4)
C8—H8A	0.9700	C23—H23A	0.9300
C8—H8B	0.9700	C24—C25	1.372 (4)
C9—C10	1.511 (3)	C24—H24A	0.9300
С9—Н9А	0.9700	C25—C26	1.374 (4)
С9—Н9В	0.9700	С25—Н25А	0.9300
C10—H10A	0.9700	C26—C27	1.380 (4)
C10—H10B	0.9700	C26—H26A	0.9300
C11—C12	1.499 (3)	С27—Н27А	0.9300
C11—H11A	0.9700		
C14—N1—C10	112.26 (17)	N2—C12—H12A	109.4
C14—N1—C11	110.60 (15)	C11—C12—H12A	109.4
C10—N1—C11	108.40 (16)	N2—C12—H12B	109.4
C14—N1—H1A	108.5	C11—C12—H12B	109.4
C10—N1—H1A	108.5	H12A—C12—H12B	108.0
C11—N1—H1A	108.5	N2-C13-C14	111.04 (16)
C12—N2—C13	107.56 (15)	N2—C13—H13A	109.4
C12—N2—C15	112.16 (16)	C14—C13—H13A	109.4
C13—N2—C15	111.36 (15)	N2—C13—H13B	109.4
C12—N2—H2B	108.6	C14—C13—H13B	109.4
C13—N2—H2B	108.6	H13A—C13—H13B	108.0
C15—N2—H2B	108.6	N1—C14—C13	111.42 (17)
H2—O1W—H1	98.6 (16)	N1-C14-H14A	109.3
C2—C1—F1	118.2 (3)	C13—C14—H14A	109.3
C2—C1—C6	123.2 (3)	N1-C14-H14B	109.3
F1—C1—C6	118.6 (3)	C13—C14—H14B	109.3

C1—C2—C3	118.5 (3)	H14A—C14—H14B	108.0
C1—C2—H2A	120.8	C22—C15—C16	112.97 (16)
C3—C2—H2A	120.8	C22—C15—N2	111.43 (16)
C2—C3—C4	121.2 (3)	C16—C15—N2	111.58 (16)
С2—С3—НЗА	119.4	С22—С15—Н15А	106.8
С4—С3—НЗА	119.4	C16—C15—H15A	106.8
C3—C4—C5	118.2 (2)	N2—C15—H15A	106.8
C3—C4—C7	119.1 (2)	C17—C16—C21	118.3 (2)
C5—C4—C7	122.6 (2)	C17—C16—C15	118.3 (2)
C6—C5—C4	120.6 (2)	C21—C16—C15	123.32 (19)
С6—С5—Н5А	119.7	C16—C17—C18	120.3 (3)
C4—C5—H5A	119.7	С16—С17—Н17А	119.8
C1—C6—C5	118.3 (3)	C18—C17—H17A	119.8
C1—C6—H6A	120.9	C19 - C18 - C17	1204(3)
C5-C6-H6A	120.9	C19—C18—H18A	119.8
01-C7-C4	121.6(2)	C17—C18—H18A	119.8
01 - C7 - C8	121.6(2)	C_{20} C_{19} C_{18}	119.8(2)
C4-C7-C8	121.0(2)	C_{20} C_{19} H_{19A}	120.1
$C_{7} - C_{8} - C_{9}$	117.8 (2)	C18 - C19 - H19A	120.1
C7 - C8 - H8A	107.9	C19 - C20 - C21	120.1 120.3(3)
C9 - C8 - H8A	107.9	C19 - C20 - H20A	119.8
C7 - C8 - H8B	107.9	C_{21} C_{20} H_{20A}	119.8
C_{9} C_{8} H_{8B}	107.9	C_{20} C_{20} C_{20} C_{21} C_{16}	119.8
$H_{8} = C_{8} = H_{8} B$	107.2	C_{20} C_{21} H_{21}	110.6
C10 C9 C8	107.2	$C_{20} = C_{21} = H_{21A}$	119.6
$C_{10} = C_{9} = C_{8}$	110.7	$C_{10} = C_{21} = H_{21} = H_{21}$	119.0 118.5(2)
C_{8} C_{9} H9A	110.7	$C_{27} = C_{22} = C_{23}$	118.5(2)
$C_{10} = C_{10} = H_{10}$	110.7	$C_{23} = C_{22} = C_{15}$	110.5(2)
C_{8} C_{9} HOB	110.7	$C_{23} = C_{22} = C_{13}$	123.0(2) 120.0(3)
H_{0} C_{0} H_{0} H_{0}	108.8	$C_{24} = C_{23} = C_{22}$	120.9 (5)
N1 C10 C9	116.04 (10)	$C_{24} = C_{23} = H_{23} \Lambda$	119.6
N1 = C10 = H10A	108.2	$C_{22} = C_{23} = H_{23} = H$	119.0
C_{0} C_{10} H_{10A}	108.3	$C_{23} = C_{24} = C_{23}$	119.8 (5)
N1 C10 H10P	108.3	$C_{23} = C_{24} = H_{24A}$	120.1
$C_0 = C_{10} = H_{10}$	108.3	$C_{23} = C_{24} = H_{24} + K$	120.1
	108.3	$C_{24} = C_{25} = C_{20}$	120.0 (3)
N1 C11 C12	107.4 112.02(17)	$C_{24} = C_{25} = H_{25} A$	120.0
N1 = C11 = U11 A	112.92 (17)	$C_{20} = C_{23} = H_{23} \times C_{23}$	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0	$C_{23} = C_{20} = C_{27}$	120.0 (3)
N1 C11 H11P	109.0	$C_{23} = C_{20} = H_{20} A$	120.0
$N_1 = C_1 = H_1 B$	109.0	$C_2 = C_2 $	120.0
	109.0	$C_{22} = C_{27} = C_{20}$	120.9 (3)
$\frac{111}{1000}$	107.0	C_{22} C_{27} H_{27A}	119.0
N2	111.11 (17)	$C_{20} - C_{2} - \pi_{2} / A$	119.0
F1—C1—C2—C3	-179.9 (2)	N2-C13-C14-N1	-59.1 (2)
C6—C1—C2—C3	1.7 (4)	C12—N2—C15—C22	-52.4 (2)
C1—C2—C3—C4	-0.8 (4)	C13—N2—C15—C22	-172.96 (17)
C2—C3—C4—C5	-0.7 (4)	C12—N2—C15—C16	-179.67 (17)

C2—C3—C4—C7	178.3 (2)	C13—N2—C15—C16	59.7 (2)
C3—C4—C5—C6	1.3 (3)	C22-C15-C16-C17	103.2 (2)
C7—C4—C5—C6	-177.7 (2)	N2-C15-C16-C17	-130.3 (2)
C2-C1-C6-C5	-1.1 (4)	C22-C15-C16-C21	-73.2 (3)
F1—C1—C6—C5	-179.5 (2)	N2-C15-C16-C21	53.3 (3)
C4—C5—C6—C1	-0.4 (4)	C21—C16—C17—C18	0.9 (3)
C3—C4—C7—O1	5.1 (4)	C15—C16—C17—C18	-175.7 (2)
C5-C4-C7-O1	-176.0 (2)	C16—C17—C18—C19	-1.2 (4)
C3—C4—C7—C8	-170.5 (2)	C17—C18—C19—C20	0.7 (5)
C5—C4—C7—C8	8.4 (3)	C18—C19—C20—C21	0.2 (5)
O1—C7—C8—C9	8.1 (4)	C19—C20—C21—C16	-0.5 (4)
C4—C7—C8—C9	-176.2 (2)	C17—C16—C21—C20	0.0 (4)
C7—C8—C9—C10	-173.9 (2)	C15—C16—C21—C20	176.4 (2)
C14—N1—C10—C9	68.0 (3)	C16—C15—C22—C27	-115.0 (2)
C11—N1—C10—C9	-169.6 (2)	N2-C15-C22-C27	118.5 (2)
C8—C9—C10—N1	-178.9 (2)	C16—C15—C22—C23	63.2 (3)
C14—N1—C11—C12	-51.4 (2)	N2-C15-C22-C23	-63.4 (3)
C10-N1-C11-C12	-174.83 (18)	C27—C22—C23—C24	0.6 (4)
C13—N2—C12—C11	-59.0 (2)	C15—C22—C23—C24	-177.5 (2)
C15—N2—C12—C11	178.27 (17)	C22—C23—C24—C25	0.4 (4)
N1-C11-C12-N2	55.8 (2)	C23—C24—C25—C26	-0.8 (4)
C12—N2—C13—C14	61.0 (2)	C24—C25—C26—C27	0.2 (4)
C15—N2—C13—C14	-175.72 (16)	C23—C22—C27—C26	-1.2 (4)
C10-N1-C14-C13	173.75 (17)	C15—C22—C27—C26	177.0 (2)
C11—N1—C14—C13	52.5 (2)	C25—C26—C27—C22	0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1 <i>W</i> —H1····Cl1 ⁱ	1.01 (2)	2.24 (2)	3.248 (3)	176 (2)
C15—H15A…Cl1 ⁱ	0.98	2.59	3.565 (2)	177
C6—H6 A ···O1 W ⁱⁱ	0.93	2.55	3.397 (4)	152
C10—H10B…Cl2 ⁱⁱⁱ	0.97	2.80	3.746 (3)	165
C14—H14 <i>B</i> ····O1 ^{iv}	0.97	2.38	3.148 (3)	136
N1—H1A···Cl2	0.91	2.09	2.990 (2)	171
O1 <i>W</i> —H2····Cl2	1.01 (2)	2.20 (2)	3.207 (3)	172 (2)
N2—H2 <i>B</i> ···Cl1	0.91	2.18	3.070 (2)	167
C12—H12B…O1W	0.97	2.45	3.374 (4)	160
C21—H21A···Cl1	0.93	2.78	3.651 (3)	155

Symmetry codes: (i) x, y+1, z; (ii) -x+1/2, y-3/2, -z+1/2; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+1/2, -y+5/2, -z.