

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(4-Dimethylamino-2-methyl-5-phenylfuran-3-yl)methyl]diethylmethylazanium iodide

Armen Ayvazyan

Molecule Structure Research Center, Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences, Republic of Armenia, Azatutyan Ave. 26, Yerevan 0014, Armenia Correspondence e-mail: armen@msrc.am

Received 7 September 2011; accepted 15 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.081; data-to-parameter ratio = 22.9.

In the title compound, $C_{19}H_{29}N_2O^+ \cdot I^-$, the dihedral angle between the mean planes of the essentially planar furan (r.m.s. deviation = 0.007 Å) and phenyl rings is 48.4 (1)°. In the crystal, cations and anions are arranged in layers lying parallel to (100).

Related literature

For the biological activities of furan derivatives, see: Chen *et al.* (2006); Meotti *et al.* (2003); Kazuo *et al.* (2001). For details of the synthesis, see: Manukyan *et al.* (2007). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{19}H_{29}N_2O^+ \cdot I^-$

 $M_r = 428.34$

Monoclinic, $P2_1/c$	
a = 17.905 (4) Å	
b = 7.2458 (14) Å	
c = 15.732 (3) Å	
$\beta = 94.84 \ (3)^{\circ}$	
V = 2033.7 (7) Å ³	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (*PLATON*; Spek, 2009) $T_{min} = 0.395$, $T_{max} = 0.430$ 6119 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.081$ S = 0.995911 reflections 258 parameters Z = 4Mo K α radiation $\mu = 1.58 \text{ mm}^{-1}$ T = 293 K $0.4 \times 0.36 \times 0.3 \text{ mm}$

5911 independent reflections 4370 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ 3 standard reflections every 60 min intensity decay: none

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.67\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.55\ e\ \mathring{A}^{-3} \end{split}$$

Data collection: *CAD-4 Software* (Enraf–Nonius, 1988); cell refinement: *SETANG* in *CAD-4 Software* (Enraf–Nonius, 1988); data reduction: *HELENA* (Spek, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The title compound was provided by M. O. Manukyan, synthesized within the framework of State Committee of Science of Armenia (grant No. 11B-1d024).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5334).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Chen, Y. L., Zhao, Y. L., Lu, C. M., Tzeng, C. C. & Wang, J. P. (2006). Bioorg. Med. Chem. 14, 4373–4378.

Enraf–Nonius (1988). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands. Kazuo, K., Akiko, Y., Tomokazu, N., Hiroshi, M., Yoshihito, F. & Masato, N. (2001). J. Antibacter. Antifung. Agents, 29, 689–696.

- Manukyan, M. O., Babakhanyan, A. V., Panosyan, H. A., Gyulnazaryan, A. Kh. & Kocharyan, S. T. (2007). Russ. J. Gen. Chem. 77, 1291–1294.
- Meotti, F. S., Silva, D. O., Dos Santos, A. R. S., Zeni, G., Rocha, J. B. T. & Nogueira, C. W. (2003). Environ. Toxicol. Pharmacol. 37, 37–44.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2693 [https://doi.org/10.1107/S1600536811037743]

[(4-Dimethylamino-2-methyl-5-phenylfuran-3-yl)methyl]diethylmethylazanium iodide

Armen Ayvazyan

S1. Comment

Compounds containing furan rings are distinguished by a number of interesting biological properties. In particular, the certain representatives of this family show antibacterial, antioxidant and anti-inflammatory activities (Chen *et al.*, 2006, Meotti *et al.*, 2003, Kazuo *et al.*, 2001). Such a diversity of biological properties of these materials stimulates the interest in their structural studies. The asymmetric unit of title compound is shown in Fig.1. The molecule contains one quaternary N⁺ cation, the positive charge on which is balanced by an iodide anion. All bond lengths (Allen *et al.*, 1987) and angles in good agreement with their standard values. In the crystal, cations and anions are arranged in layers parallel to (100) with N⁺···I⁻ distances in the range 4.429 (1) Å–5.332 (1) Å (see Fig. 2).

S2. Experimental

The title compound was synthesized *via* Stevens rearrangement by the interaction of methyl iodide and 2-phenyl-3-dimethylamino-4-diethylamino-5-methylfuran (Manukyan *et al.*, 2007). Single crystals were grown by slow evaporation of a solution of the title compound in ethanol at room temperature.

S3. Refinement

H atom positions (except of those belonging to methyl groups) were located in difference Fourier maps and their positions and U_{iso} values were freely refined. H atoms of methyl groups were positioned geometrically and refined using a riding model with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$.

Figure 1

The molecular structure with displacement displacement ellipsoids drawn at the 50% probability level (H atoms are omitted for clarity).

Figure 2

Part of the crystal structure emphasizing arrangement of cations and anions with dashed lines.

[(4-Dimethylamino-2-methyl-5-phenylfuran-3-yl)methyl]diethylmethylazanium iodide

Crystal data

C₁₉H₂₉N₂O⁺·I⁻ $M_r = 428.34$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.905 (4) Å b = 7.2458 (14) Å c = 15.732 (3) Å $\beta = 94.84$ (3)° V = 2033.7 (7) Å³ Z = 4 F(000) = 872 $D_x = 1.399 \text{ Mg m}^{-3}$ Melting point: 353 K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 13.9-16.3^{\circ}$ $\mu = 1.58 \text{ mm}^{-1}$ T = 293 KPrism, red $0.4 \times 0.36 \times 0.3 \text{ mm}$ Data collection

Enraf–Nonius CAD-4 diffractometer	5911 independent reflections 4370 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.013$
Graphite monochromator	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$
$\theta/2\theta$ scans	$h = -25 \rightarrow 25$
Absorption correction: ψ scan	$k = -10 \rightarrow 0$
(PLATON; Spek, 2009)	$l = 0 \rightarrow 22$
$T_{\min} = 0.395, T_{\max} = 0.430$	3 standard reflections every 60 min
6119 measured reflections	intensity decay: none
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: mixed
$wR(F^2) = 0.081$	H atoms treated by a mixture of independent
S = 0.99	and constrained refinement
5911 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0331P)^2 + 0.9333P]$
258 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.67$ e Å ⁻³
direct methods	$\Delta \rho_{\min} = -0.55 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ι	0.360258 (9)	0.60153 (2)	0.329552 (12)	0.05986 (7)	
01	0.17460 (9)	0.8773 (2)	0.27018 (10)	0.0496 (4)	
C2	0.22386 (12)	1.0199 (3)	0.26901 (15)	0.0467 (5)	
C3	0.23667 (11)	1.0608 (3)	0.18794 (14)	0.0440 (5)	
C4	0.19021 (11)	0.9379 (3)	0.13392 (14)	0.0444 (5)	
C5	0.15362 (12)	0.8279 (4)	0.18675 (14)	0.0465 (5)	
C6	0.10368 (12)	0.6681 (4)	0.17655 (15)	0.0497 (5)	
C7	0.03983 (15)	0.6718 (5)	0.1197 (2)	0.0673 (7)	
H7	0.0271 (19)	0.788 (5)	0.089 (2)	0.092 (11)*	
C8	-0.00691 (18)	0.5198 (6)	0.1117 (2)	0.0806 (10)	
H8	-0.046 (2)	0.519 (5)	0.073 (2)	0.094 (11)*	
C9	0.0084 (2)	0.3651 (5)	0.1599 (3)	0.0834 (11)	
H9	-0.020(2)	0.259 (5)	0.154 (2)	0.091 (11)*	
C10	0.0716 (2)	0.3597 (5)	0.2157 (3)	0.0831 (10)	
H10	0.0835 (19)	0.267 (5)	0.249 (2)	0.083 (11)*	

C11	0.11910 (17)	0.5108 (4)	0.2253 (2)	0.0659 (7)
H11	0.1584 (17)	0.506 (5)	0.2656 (19)	0.070 (9)*
N12	0.18903 (11)	0.9401 (3)	0.04386 (13)	0.0568 (5)
C13	0.19220 (18)	0.7624 (5)	0.00155 (19)	0.0816 (10)
H13A	0.2260	0.6824	0.0348	0.122*
H13B	0.2096	0.7792	-0.0540	0.122*
H13C	0.1431	0.7083	-0.0041	0.122*
C14	0.1351 (2)	1.0677 (6)	0.0018 (2)	0.0916 (11)
H14A	0.0855	1.0187	0.0034	0.137*
H14B	0.1459	1.0839	-0.0565	0.137*
H14C	0.1384	1.1845	0.0306	0.137*
C15	0.28935 (12)	1.2003 (3)	0.15767 (16)	0.0465 (5)
H15A	0.2958 (15)	1.312 (4)	0.1934 (17)	0.061 (7)*
H15B	0.2725 (13)	1.242 (3)	0.0983 (16)	0.049 (7)*
N16	0.36958 (10)	1.1291 (2)	0.15215 (12)	0.0445 (4)
C17	0.41598 (14)	1.2812 (4)	0.11586 (18)	0.0551 (6)
H17A	0.4678 (15)	1.232 (4)	0.1215 (16)	0.058 (7)*
H17B	0.4089 (17)	1.395 (4)	0.154 (2)	0.072 (9)*
C18	0.39221 (18)	1.3347 (5)	0.02513 (19)	0.0740 (8)
H18A	0.3949	1.2288	-0.0111	0.111*
H18B	0.4249	1.4294	0.0071	0.111*
H18C	0.3417	1.3800	0.0215	0.111*
C19	0.36726 (14)	0.9537 (4)	0.09966 (19)	0.0543 (6)
H19A	0.3403 (15)	0.988 (4)	0.0445 (18)	0.059 (7)*
H19B	0.3352 (17)	0.867 (4)	0.1319 (18)	0.065 (8)*
C20	0.44255 (16)	0.8662 (4)	0.0897 (2)	0.0725 (8)
H20A	0.4770	0.9588	0.0736	0.109*
H20B	0.4372	0.7728	0.0464	0.109*
H20C	0.4613	0.8114	0.1428	0.109*
C21	0.40518 (14)	1.0903 (4)	0.24027 (16)	0.0552 (6)
H21A	0.3786	0.9921	0.2655	0.083*
H21B	0.4032	1.1993	0.2747	0.083*
H21C	0.4565	1.0545	0.2369	0.083*
C22	0.25056 (17)	1.0946 (4)	0.35412 (16)	0.0636 (7)
H22A	0.2853	1.0094	0.3826	0.095*
H22B	0.2086	1.1118	0.3875	0.095*
H22C	0.2750	1.2109	0.3472	0.095*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ι	0.05869 (10)	0.04681 (9)	0.07390 (12)	0.00165 (7)	0.00458 (8)	0.00206 (8)
01	0.0473 (8)	0.0588 (10)	0.0431 (8)	-0.0070 (7)	0.0066 (6)	-0.0025 (7)
C2	0.0431 (11)	0.0487 (12)	0.0484 (12)	-0.0015 (9)	0.0054 (9)	-0.0034 (10)
C3	0.0374 (10)	0.0457 (11)	0.0484 (12)	0.0002 (8)	0.0015 (8)	-0.0017 (9)
C4	0.0362 (9)	0.0547 (13)	0.0422 (11)	-0.0021 (9)	0.0022 (8)	-0.0031 (9)
C5	0.0379 (10)	0.0556 (13)	0.0463 (12)	-0.0044 (9)	0.0044 (8)	-0.0045 (10)
C6	0.0397 (11)	0.0609 (14)	0.0496 (12)	-0.0104 (10)	0.0109 (9)	-0.0038 (11)

supporting information

C7	0.0503 (14)	0.082 (2)	0.0690 (17)	-0.0184 (14)	0.0016 (12)	-0.0006 (16)	
C8	0.0576 (16)	0.105 (3)	0.078 (2)	-0.0328 (18)	0.0029 (15)	-0.012 (2)	
C9	0.073 (2)	0.084 (2)	0.097 (2)	-0.0362 (18)	0.0300 (18)	-0.020 (2)	
C10	0.081 (2)	0.069 (2)	0.103 (3)	-0.0127 (17)	0.026 (2)	0.0092 (19)	
C11	0.0575 (15)	0.0672 (18)	0.0736 (19)	-0.0084 (14)	0.0094 (14)	0.0031 (15)	
N12	0.0507 (11)	0.0776 (15)	0.0419 (10)	-0.0121 (10)	0.0028 (8)	-0.0029 (10)	
C13	0.082 (2)	0.106 (3)	0.0587 (16)	-0.0292 (19)	0.0181 (14)	-0.0309 (17)	
C14	0.090 (2)	0.119 (3)	0.0623 (18)	-0.009 (2)	-0.0130 (16)	0.0278 (19)	
C15	0.0423 (11)	0.0432 (12)	0.0536 (13)	-0.0004 (9)	0.0014 (9)	0.0028 (10)	
N16	0.0387 (8)	0.0426 (10)	0.0517 (10)	-0.0046 (7)	0.0017 (7)	0.0016 (8)	
C17	0.0491 (13)	0.0508 (13)	0.0653 (15)	-0.0121 (11)	0.0036 (11)	0.0034 (12)	
C18	0.0786 (19)	0.077 (2)	0.0674 (18)	-0.0070 (16)	0.0140 (15)	0.0166 (16)	
C19	0.0459 (12)	0.0503 (13)	0.0667 (16)	-0.0031 (10)	0.0048 (11)	-0.0124 (12)	
C20	0.0537 (14)	0.0706 (19)	0.095 (2)	0.0021 (13)	0.0139 (14)	-0.0185 (16)	
C21	0.0529 (12)	0.0562 (14)	0.0546 (13)	0.0000 (11)	-0.0075 (10)	0.0025 (11)	
C22	0.0742 (17)	0.0670 (17)	0.0497 (13)	-0.0135 (14)	0.0061 (12)	-0.0102 (13)	

Geometric parameters (Å, °)

01—C2	1.360 (3)	C14—H14B	0.9600
O1—C5	1.382 (3)	C14—H14C	0.9600
С2—С3	1.348 (3)	C15—N16	1.536 (3)
C2—C22	1.485 (3)	C15—H15A	0.99 (3)
C3—C4	1.445 (3)	C15—H15B	1.00 (2)
C3—C15	1.488 (3)	N16—C21	1.503 (3)
C4—C5	1.359 (3)	N16—C19	1.514 (3)
C4—N12	1.415 (3)	N16—C17	1.520 (3)
С5—С6	1.463 (3)	C17—C18	1.505 (4)
C6—C11	1.388 (4)	C17—H17A	0.99 (3)
С6—С7	1.391 (4)	C17—H17B	1.04 (3)
С7—С8	1.383 (4)	C18—H18A	0.9600
С7—Н7	0.99 (4)	C18—H18B	0.9600
С8—С9	1.369 (6)	C18—H18C	0.9600
С8—Н8	0.88 (4)	C19—C20	1.510 (4)
C9—C10	1.371 (6)	C19—H19A	0.99 (3)
С9—Н9	0.92 (4)	C19—H19B	1.02 (3)
C10-C11	1.387 (5)	C20—H20A	0.9600
С10—Н10	0.86 (3)	C20—H20B	0.9600
C11—H11	0.91 (3)	C20—H20C	0.9600
N12—C13	1.452 (4)	C21—H21A	0.9600
N12-C14	1.455 (4)	C21—H21B	0.9600
C13—H13A	0.9600	C21—H21C	0.9600
C13—H13B	0.9600	C22—H22A	0.9600
С13—Н13С	0.9600	C22—H22B	0.9600
C14—H14A	0.9600	C22—H22C	0.9600
C2—O1—C5	107.99 (17)	C3—C15—H15A	114.9 (16)
C3—C2—O1	110.01 (19)	N16—C15—H15A	104.0 (16)

C3—C2—C22	134.9 (2)	C3—C15—H15B	110.6 (14)
O1—C2—C22	115.1 (2)	N16—C15—H15B	105.0 (14)
C2—C3—C4	106.6 (2)	H15A—C15—H15B	107 (2)
C2—C3—C15	128.0 (2)	C21—N16—C19	109.63 (19)
C4—C3—C15	125.4 (2)	C21—N16—C17	106.23 (18)
C5—C4—N12	130.6 (2)	C19—N16—C17	113.2 (2)
C5—C4—C3	106.6 (2)	C21—N16—C15	109.68 (19)
N12—C4—C3	122.8 (2)	C19—N16—C15	109.27 (17)
C4—C5—O1	108.81 (19)	C17—N16—C15	108.73 (18)
C4—C5—C6	135.9 (2)	C18—C17—N16	115.0 (2)
01 - C5 - C6	115.1.(2)	C18—C17—H17A	1114(15)
$C_{11} - C_{6} - C_{7}$	119.1(2) 119.0(3)	N16-C17-H17A	1041(16)
C11 - C6 - C5	119.9 (2)	C18—C17—H17B	1079(17)
C7-C6-C5	1211(3)	N16-C17-H17B	107.9(17) 105.2(17)
C8-C7-C6	1201(3)	H17A - C17 - H17B	103.2(17)
C8—C7—H7	120.1(3)	C17— $C18$ — $H18A$	109 5
C6-C7-H7	121(2) 118(2)	C17 - C18 - H18B	109.5
C9-C8-C7	1207(3)	H18A - C18 - H18B	109.5
C9-C8-H8	119 (3)	C17 - C18 - H18C	109.5
C7-C8-H8	120 (3)	H18A - C18 - H18C	109.5
C_{10} C_{9} C_{8}	1196(3)	H18B-C18-H18C	109.5
C10-C9-H9	119.0(3)	C_{20} C_{19} N_{16}	105.5 115.2(2)
C8-C9-H9	110(2) 123(2)	C_{20} C_{19} H_{19A}	112.9 (16)
$C_{0} - C_{10} - C_{11}$	$120 \ 8 \ (4)$	N16-C19-H19A	104.9(17)
$C_{2} = C_{10} = C_{11}$	120.0(+) 124(2)	C_{20} C_{19} H_{19B}	104.9(17) 109.8(16)
C_{11} C_{10} H_{10}	124(2) 115(2)	N16-C19-H19B	103.7(16)
C10-C11-C6	119(2) 1198(3)	H19A - C19 - H19B	100.7(10)
C10-C11-H11	119.0(3)	C19-C20-H20A	100 (2)
	117(2) 121(2)	$C_{19} = C_{20} = H_{20}R$	109.5
C_{4} N12 C_{13}	121(2) 1168(2)	$H_{20}A = C_{20} = H_{20}B$	109.5
C4 N12 C14	110.0(2)	C_{10} C_{20} H_{20C}	109.5
$C_{12} = N_{12} = C_{14}$	114.0(2) 112.0(3)	$H_{20A} = C_{20} = H_{20C}$	109.5
N12 C12 H13A	113.9 (3)	$H_{20} R C_{20} H_{20} C$	109.5
N12 C12 H12P	109.5	N16 C21 H21A	109.5
H12 - C13 - H13B	109.5	N16 C21 H21R	109.5
M12 C12 H12C	109.5	$H_{10} = C_{21} = H_{21B}$	109.5
$H_{12} - C_{13} - H_{13} C_{13}$	109.5	$\frac{1}{12} \frac{1}{14} \frac{1}{12} \frac$	109.5
H13A-C13-H13C	109.5	$H_{21} = H_{21} = H$	109.5
$\mathbf{N}_{12} = \mathbf{C}_{14} = \mathbf{H}_{144}$	109.5	$H_{21}R = C_{21} = H_{21}C$	109.5
N12-C14	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
	109.5	$C_2 = C_{22} = H_{22} R_{22}$	109.5
H14A - C14 - H14B	109.5	$C_2 = C_{22} = H_{22B}$	109.5
N12-C14-H14C	109.5	H22A - C22 - H22B	109.5
H14A - C14 - H14C	109.5	$C_2 = C_{22} = H_{22}C_{122}$	109.5
H14B $-C14$ $-H14C$	109.5	H22A-C22-H22C	109.5
C3-C13-N10	114.28 (18)	H22B	109.5
65 01 62 63	-1 5 (2)	C6 C7 C8 C0	0.7 (5)
$C_{5} = 01 = 02 = 022$	-1.5(3)	$C_{1} = C_{2} = C_{2} = C_{1}$	0.7(3)
03-01-02-022	1/8.2(2)	U = U = U = U = U = U = U = U = U = U =	-1.2 (6)

O1—C2—C3—C4	1.8 (3)	C8—C9—C10—C11	1.6 (6)
C22—C2—C3—C4	-177.9 (3)	C9—C10—C11—C6	-1.5 (5)
O1—C2—C3—C15	-176.7 (2)	C7—C6—C11—C10	1.0 (4)
C22—C2—C3—C15	3.7 (4)	C5-C6-C11-C10	179.8 (3)
C2—C3—C4—C5	-1.4 (3)	C5—C4—N12—C13	-43.1 (4)
C15—C3—C4—C5	177.2 (2)	C3—C4—N12—C13	134.8 (2)
C2-C3-C4-N12	-179.7 (2)	C5—C4—N12—C14	93.7 (3)
C15—C3—C4—N12	-1.2 (4)	C3—C4—N12—C14	-88.3 (3)
N12-C4-C5-O1	178.6 (2)	C2-C3-C15-N16	86.9 (3)
C3—C4—C5—O1	0.5 (3)	C4—C3—C15—N16	-91.3 (3)
N12—C4—C5—C6	3.9 (5)	C3-C15-N16-C21	-67.4 (2)
C3—C4—C5—C6	-174.3 (3)	C3-C15-N16-C19	52.8 (3)
C2	0.6 (3)	C3—C15—N16—C17	176.8 (2)
C2—O1—C5—C6	176.6 (2)	C21—N16—C17—C18	176.8 (2)
C4—C5—C6—C11	128.8 (3)	C19—N16—C17—C18	56.4 (3)
O1—C5—C6—C11	-45.7 (3)	C15—N16—C17—C18	-65.2 (3)
C4—C5—C6—C7	-52.4 (4)	C21—N16—C19—C20	-59.0 (3)
O1—C5—C6—C7	133.1 (3)	C17—N16—C19—C20	59.4 (3)
C11—C6—C7—C8	-0.5 (4)	C15—N16—C19—C20	-179.2 (2)
C5—C6—C7—C8	-179.4 (3)		