Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N,N',N'-Tetraethyl-N"-(2-fluorobenzoyl)phosphoric triamide

Atekeh Tarahhomi,^a Mehrdad Pourayoubi,^a* Arnold L. Rheingold^b and James A. Golen^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 6 August 2011; accepted 12 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.047; wR factor = 0.122; data-to-parameter ratio = 15.9.

In the title compound, C₁₅H₂₅FN₃O₂P, the phosphoryl group is in an *anti* and *syn* orientation to the C=O and N-H groups, respectively. The P atom is in a distorted tetrahedral environment. One of the ethyl groups is disordered over two sets of sites with refined occupancies of 0.755 (6) and 0.245 (6). In addition, the F atom was refined as disordered with occupancies fixed at 0.9 and 0.1. This disorder corresponds to a rotation of approximately 180° of the fluorobenzene ring about its connecting C-C bond. In the crystal, pairs of intermolecular $N-H \cdots O(=P)$ hydrogen bonds form centrosymmetric dimers.

Related literature

For background to phosphoric triamide compounds containing a C(=O)NHP(=O) skeleton, see: Pourayoubi et al. (2011a,b); Tarahhomi et al. (2011). For the synthesis of the starting material 2-F $-C_6H_4C(=O)NHP(=O)Cl_2$, see: Pourayoubi et al. (2011a). For hydrogen-bond motifs, see: Bernstein et al. (1995).

11336 measured reflections

3741 independent reflections

3056 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.051$

Experimental

Crystal data

C ₁₅ H ₂₅ FN ₃ O ₂ P	V = 1648.2 (2) Å ³
$M_r = 329.35$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.9296 (9) Å	$\mu = 0.19 \text{ mm}^{-1}$
b = 12.2221 (10) Å	$T = 100 { m K}$
c = 12.3423 (10) Å	$0.45 \times 0.40 \times 0.35 \text{ mm}$
$\beta = 91.443 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.920, \ T_{\max} = 0.937$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.122$	independent and constrained
S = 1.08	refinement
3741 reflections	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
236 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$
6 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N1 - H1N \cdots O2^{i}$	0.86 (2)	1.93 (2)	2.7714 (19)	167 (2)	
Symmetry code: (i) $-x + 1, -y + 1, -z + 1$.					

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004).

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5308).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2011a). Acta Cryst. E67, 0934.
- Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011b). Acta Cryst. C67, o265-o272.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tarahhomi, A., Pourayoubi, M., Rheingold, A. L. & Golen, J. A. (2011). Struct. Chem. 22, 201-210.

supporting information

Acta Cryst. (2011). E67, o2643 [https://doi.org/10.1107/S1600536811036944]

N,*N*,*N*',*N*'-Tetraethyl-*N*''-(2-fluorobenzoyl)phosphoric triamide

Atekeh Tarahhomi, Mehrdad Pourayoubi, Arnold L. Rheingold and James A. Golen

S1. Comment

Following our previous work on phosphoric triamides containing an XC(O)NHP(O) moiety, X = 2-F—C₆H₄ (Pourayoubi *et al.*, 2011*a*), 4-F—C₆H₄ (Tarahhomi *et al.*, 2011) and 2,6-F₂—C₆H₃ (Pourayoubi *et al.*, 2011*b*), herein, we report the synthesis and crystal structure of the title compound, P(O)[2-F—C₆H₄C(O)NH][N(C₂H₅)₂]₂ (Fig. 1).

One of the $-CH_2CH_3$ groups in the diethylamido substituent N2 is disordered over two sets of sites with refined occupancies of 0.755 (6) and 0.245 (6). The fluorine atom of the aromatic ring is disordered over two sets of sites with occupancies of 0.9 and 0.1.

In the C(=O)NHP(=O) skeleton of the title phosphoric triamide, the phosphoryl group adopts the *anti* orientation with respect to the carbonyl group; whereas it is in a *syn* position relative to the N—H unit. The tetrahedral environment at the P atom is distorted as has been noted for the other phosphoric triamides. The P=O, C=O and P—N bond lengths are within the expected values (Pourayoubi *et al.* (2011*b*) and Tarahhomi *et al.* (2011)).

In the crystal, pairs of intermolecular N—H···O(P) hydrogen bonds form a hydrogen-bonded dimer with $R_2^2(8)$ graphset notation (Bernstein *et al.*, 1995).

S2. Experimental

2-F—C₆H₄C(O)NHP(O)Cl₂ was prepared according to the literature method reported by Pourayoubi *et al.* (2011*a*).

The title compound was synthesized from the reaction of 0.40 g (1.56 mmol) 2-F—C₆H₄C(O)NHP(O)Cl₂ with 0.456 g (6.24 mmol) of diethyl amine in dry chloroform (30 ml). The amine was added dropwise to a solution of 2-F— C₆H₄C(O)NHP(O)Cl₂ at 273 K, with continuous stirring. After 17 h, the solvent was evaporated; the obtained solid was washed with distilled water and dissolved in a mixture of CH₃OH/DMF [4:1 (ν/ν)]. Single crystals were obtained from this solution after a few days at room temperature. IR (KBr, ν , cm⁻¹): 3061 (NH), 2970, 2886, 1675 (C=O), 1457, 1196, 1048, 946, 766.

S3. Refinement

Atoms C8 and C9 are disordered over two sets of sites with refined occupancies of 0.755 (6) and 0.245 (6). The fluorine atom is disordered over two positions and refined with the occupancy F1 and F1A fixed at 0.9 and 0.1 and the corresponding hydrogen atoms H1A and H5A were also treated as disordered. Hydrogen H1N was found in a Fourier difference map and refined with a N1—H1N distance was set at 0.87 (0.02) Å and allowed to refine with U_{iso} at 1.2 of parent N atom. All other hydrogen atoms were placed in calculated positions with C—H distances for CH₂ of 0.99 Å, CH₃ of 0.98 Å and C(Ar)H of 0.95 Å and with U_{iso} of 1.20 (or 1.5 for methyl H atoms) that of the parent C atom.

The molecular structure of the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii. Disordered atoms are labeled with the suffix 'A'.

N,N,N',N'-Tetraethyl-N''-(2- fluorobenzoyl)phosphoric triamide

Crystal data

C₁₅H₂₅FN₃O₂P $M_r = 329.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.9296 (9) Å b = 12.2221 (10) Å c = 12.3423 (10) Å $\beta = 91.443$ (1)° V = 1648.2 (2) Å³ Z = 4

Data collection

Bruker APEXII CCD	11336 measu
diffractometer	3741 indeper
Radiation source: fine-focus sealed tube	3056 reflection
Graphite monochromator	$R_{\rm int} = 0.051$
φ and ω scans	$\theta_{\rm max} = 28.0^{\circ},$
Absorption correction: multi-scan	$h = -14 \rightarrow 7$
(SADABS; Bruker, 2005)	$k = -16 \rightarrow 14$
$T_{\min} = 0.920, \ T_{\max} = 0.937$	$l = -15 \rightarrow 16$

F(000) = 704 $D_x = 1.327 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6938 reflections $\theta = 2.5-27.9^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.45 \times 0.40 \times 0.35 \text{ mm}$

11336 measured reflections 3741 independent reflections 3056 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -14 \rightarrow 7$ $k = -16 \rightarrow 14$ $I = -15 \rightarrow 16$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
3741 reflections	and constrained refinement
236 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0487P)^2 + 0.7763P]$
6 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(<1)
F1 $0.88953(13)$ $0.41423(11)$ $0.83105(10)$ $0.0338(3)$ 0.90 F1A $0.7449(9)$ $0.3460(7)$ $0.4748(4)$ $0.019(2)$ 0.10 O1 $0.83305(12)$ $0.57884(11)$ $0.68306(10)$ $0.0259(3)$ O2 $0.52742(11)$ $0.62160(11)$ $0.44464(10)$ $0.0230(3)$ N1 $0.66071(13)$ $0.52777(13)$ $0.58794(12)$ $0.0199(3)$ H1N $0.6116(17)$ $0.4741(15)$ $0.5750(16)$ $0.024*$ N2 $0.57927(14)$ $0.72748(13)$ $0.62914(12)$ $0.0260(4)$ N3 $0.73894(13)$ $0.70810(12)$ $0.47587(11)$ $0.0254(4)$ H1A 0.8811 0.3968 0.8066 $0.030*$ 0.10 C2 $0.91255(17)$ $0.24343(17)$ $0.75327(17)$ $0.0303(5)$	
F1A0.7449 (9)0.3460 (7)0.4748 (4)0.019 (2)0.10O10.83305 (12)0.57884 (11)0.68306 (10)0.0259 (3)O20.52742 (11)0.62160 (11)0.44464 (10)0.0230 (3)N10.66071 (13)0.52777 (13)0.58794 (12)0.0199 (3)H1N0.6116 (17)0.4741 (15)0.5750 (16)0.024*N20.57927 (14)0.72748 (13)0.62914 (12)0.0260 (4)N30.73894 (13)0.70810 (12)0.47587 (11)0.0201 (3)C10.86735 (17)0.34892 (16)0.74688 (15)0.0254 (4)H1A0.88110.39680.80660.030*0.10C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)	
O10.83305 (12)0.57884 (11)0.68306 (10)0.0259 (3)O20.52742 (11)0.62160 (11)0.44464 (10)0.0230 (3)N10.66071 (13)0.52777 (13)0.58794 (12)0.0199 (3)H1N0.6116 (17)0.4741 (15)0.5750 (16)0.024*N20.57927 (14)0.72748 (13)0.62914 (12)0.0260 (4)N30.73894 (13)0.70810 (12)0.47587 (11)0.0201 (3)C10.86735 (17)0.34892 (16)0.74688 (15)0.0254 (4)H1A0.88110.39680.80660.030*0.10C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)	
O20.52742 (11)0.62160 (11)0.44464 (10)0.0230 (3)N10.66071 (13)0.52777 (13)0.58794 (12)0.0199 (3)H1N0.6116 (17)0.4741 (15)0.5750 (16)0.024*N20.57927 (14)0.72748 (13)0.62914 (12)0.0260 (4)N30.73894 (13)0.70810 (12)0.47587 (11)0.0201 (3)C10.86735 (17)0.34892 (16)0.74688 (15)0.0254 (4)H1A0.88110.39680.80660.030*0.10C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)	
N10.66071 (13)0.52777 (13)0.58794 (12)0.0199 (3)H1N0.6116 (17)0.4741 (15)0.5750 (16)0.024*N20.57927 (14)0.72748 (13)0.62914 (12)0.0260 (4)N30.73894 (13)0.70810 (12)0.47587 (11)0.0201 (3)C10.86735 (17)0.34892 (16)0.74688 (15)0.0254 (4)H1A0.88110.39680.80660.030*0.10C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)	
H1N0.6116 (17)0.4741 (15)0.5750 (16)0.024*N20.57927 (14)0.72748 (13)0.62914 (12)0.0260 (4)N30.73894 (13)0.70810 (12)0.47587 (11)0.0201 (3)C10.86735 (17)0.34892 (16)0.74688 (15)0.0254 (4)H1A0.88110.39680.80660.030*0.10C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)	
N2 0.57927 (14) 0.72748 (13) 0.62914 (12) 0.0260 (4) N3 0.73894 (13) 0.70810 (12) 0.47587 (11) 0.0201 (3) C1 0.86735 (17) 0.34892 (16) 0.74688 (15) 0.0254 (4) H1A 0.8811 0.3968 0.8066 0.030* 0.10 C2 0.91255 (17) 0.24343 (17) 0.75327 (17) 0.0303 (5)	
N30.73894 (13)0.70810 (12)0.47587 (11)0.0201 (3)C10.86735 (17)0.34892 (16)0.74688 (15)0.0254 (4)H1A0.88110.39680.80660.030*0.10C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)	
C10.86735 (17)0.34892 (16)0.74688 (15)0.0254 (4)H1A0.88110.39680.80660.030*0.10C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)	
H1A0.88110.39680.80660.030*0.10C20.91255 (17)0.24343 (17)0.75327 (17)0.0303 (5)	
C2 0.91255 (17) 0.24343 (17) 0.75327 (17) 0.0303 (5)	
H2 0.9557 0.2194 0.8167 0.036*	
C3 0.89453 (18) 0.17367 (17) 0.66716 (17) 0.0300 (4)	
H3 0.9265 0.1014 0.6704 0.036*	
C4 0.82999 (18) 0.20843 (16) 0.57575 (16) 0.0289 (4)	
H4 0.8176 0.1603 0.5161 0.035*	
C5 0.78342 (17) 0.31405 (16) 0.57156 (15) 0.0243 (4)	
H5A 0.7374 0.3366 0.5092 0.029* 0.90	
C6 0.80224 (15) 0.38782 (15) 0.65610 (14) 0.0200 (4)	
C7 0.76718 (16) 0.50656 (15) 0.64574 (13) 0.0203 (4)	
C8 0.5579 (3) 0.8451 (2) 0.6092 (2) 0.0279 (7) 0.755	5 (6)
H8A 0.5829 0.8629 0.5347 0.034* 0.755	5 (6)
H8B 0.6103 0.8880 0.6601 0.034* 0.755	5 (6)

C9	0.4260 (3)	0.8792 (3)	0.6222 (3)	0.0463 (10)	0.755 (6)
H9A	0.4164	0.9562	0.6016	0.069*	0.755 (6)
H9B	0.4033	0.8698	0.6980	0.069*	0.755 (6)
H9C	0.3728	0.8338	0.5756	0.069*	0.755 (6)
C8A	0.4916 (9)	0.8158 (7)	0.5807 (7)	0.032 (2)	0.245 (6)
H8AA	0.5086	0.8280	0.5032	0.038*	0.245 (6)
H8AB	0.4054	0.7922	0.5867	0.038*	0.245 (6)
C9A	0.5141 (8)	0.9196 (7)	0.6449 (7)	0.033 (3)	0.245 (6)
H9AA	0.4629	0.9785	0.6147	0.049*	0.245 (6)
H9AB	0.6005	0.9403	0.6409	0.049*	0.245 (6)
H9AC	0.4935	0.9073	0.7208	0.049*	0.245 (6)
C10	0.54246 (19)	0.68425 (18)	0.73515 (15)	0.0297 (4)	
H10A	0.5370	0.7459	0.7868	0.036*	
H10B	0.6071	0.6341	0.7629	0.036*	
C11	0.4206 (2)	0.6232 (2)	0.7324 (2)	0.0485 (6)	
H11A	0.3562	0.6713	0.7029	0.073*	
H11B	0.4002	0.6010	0.8061	0.073*	
H11C	0.4271	0.5582	0.6865	0.073*	
C12	0.78030 (17)	0.66718 (17)	0.37025 (15)	0.0260 (4)	
H12A	0.8211	0.7276	0.3318	0.031*	
H12B	0.7077	0.6450	0.3259	0.031*	
C13	0.86787 (19)	0.57083 (18)	0.37903 (18)	0.0358 (5)	
H13A	0.9365	0.5897	0.4281	0.054*	
H13B	0.8989	0.5536	0.3072	0.054*	
H13C	0.8247	0.5071	0.4074	0.054*	
C14	0.82939 (17)	0.77616 (15)	0.53521 (15)	0.0241 (4)	
H14A	0.9105	0.7403	0.5329	0.029*	
H14B	0.8062	0.7812	0.6121	0.029*	
C15	0.8391 (2)	0.89111 (17)	0.48869 (18)	0.0343 (5)	
H15A	0.8554	0.8867	0.4111	0.051*	
H15B	0.9060	0.9304	0.5259	0.051*	
H15C	0.7620	0.9303	0.4991	0.051*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0162 (2)	0.0221 (3)	0.0187 (2)	0.00183 (17)	0.00024 (16)	0.00116 (17)
F1	0.0485 (8)	0.0294 (7)	0.0229 (6)	0.0034 (6)	-0.0118 (6)	-0.0017 (5)
F1A	0.025 (5)	0.014 (5)	0.018 (5)	0.003 (4)	-0.003 (4)	0.003 (4)
01	0.0268 (7)	0.0235 (7)	0.0271 (7)	-0.0039 (6)	-0.0082 (5)	0.0007 (5)
O2	0.0172 (6)	0.0280 (7)	0.0236 (6)	-0.0007 (5)	-0.0028 (5)	0.0052 (5)
N1	0.0158 (7)	0.0218 (8)	0.0220 (7)	-0.0009 (6)	-0.0011 (5)	0.0005 (6)
N2	0.0284 (8)	0.0253 (8)	0.0245 (8)	0.0068 (7)	0.0064 (6)	0.0005 (6)
N3	0.0192 (7)	0.0224 (8)	0.0186 (7)	-0.0011 (6)	-0.0006(5)	-0.0006 (6)
C1	0.0255 (9)	0.0283 (10)	0.0221 (9)	-0.0044 (8)	-0.0043 (7)	0.0018 (7)
C2	0.0247 (9)	0.0319 (11)	0.0338 (11)	0.0001 (8)	-0.0069 (8)	0.0140 (9)
C3	0.0236 (10)	0.0250 (10)	0.0414 (12)	0.0022 (8)	0.0037 (8)	0.0071 (9)
C4	0.0309 (10)	0.0237 (10)	0.0323 (10)	-0.0007 (8)	0.0043 (8)	-0.0004 (8)

supporting information

C5	0.0254 (9)	0.0253 (10)	0.0222 (9)	0.0001 (8)	-0.0007 (7)	0.0025 (7)
C6	0.0152 (8)	0.0223 (9)	0.0223 (9)	-0.0007 (7)	0.0006 (6)	0.0043 (7)
C7	0.0198 (8)	0.0241 (9)	0.0170 (8)	-0.0002 (7)	0.0011 (6)	0.0021 (7)
C8	0.0256 (16)	0.0286 (15)	0.0294 (15)	0.0069 (12)	-0.0018 (12)	-0.0034 (11)
С9	0.0295 (17)	0.0396 (19)	0.069 (2)	0.0107 (14)	-0.0061 (14)	-0.0157 (16)
C8A	0.036 (5)	0.033 (5)	0.026 (4)	0.020 (4)	-0.017 (4)	-0.011 (4)
C9A	0.038 (5)	0.029 (5)	0.031 (4)	0.013 (4)	-0.003 (4)	-0.007 (4)
C10	0.0339 (11)	0.0328 (11)	0.0229 (10)	-0.0025 (9)	0.0099 (8)	-0.0048 (8)
C11	0.0439 (14)	0.0531 (16)	0.0498 (14)	-0.0144 (12)	0.0241 (11)	-0.0154 (12)
C12	0.0223 (9)	0.0356 (11)	0.0203 (9)	-0.0060 (8)	0.0034 (7)	-0.0037 (8)
C13	0.0316 (11)	0.0344 (12)	0.0420 (12)	-0.0005 (9)	0.0155 (9)	-0.0062 (9)
C14	0.0246 (9)	0.0221 (9)	0.0255 (9)	-0.0045 (8)	-0.0025 (7)	-0.0002 (7)
C15	0.0424 (12)	0.0231 (10)	0.0375 (11)	-0.0042 (9)	0.0012 (9)	0.0017 (9)

Geometric parameters (Å, °)

P1—O2	1.4855 (13)	С9—Н9А	0.9800
P1—N2	1.6354 (16)	C9—H9B	0.9800
P1—N3	1.6387 (15)	С9—Н9С	0.9800
P1—N1	1.6885 (16)	C8A—C9A	1.513 (11)
O1—C7	1.222 (2)	C8A—H8AA	0.9900
N1—C7	1.374 (2)	C8A—H8AB	0.9900
N1—H1N	0.860 (15)	С9А—Н9АА	0.9800
N2—C8	1.476 (3)	С9А—Н9АВ	0.9800
N2-C10	1.476 (2)	С9А—Н9АС	0.9800
N2—C8A	1.553 (7)	C10—C11	1.526 (3)
N3—C14	1.473 (2)	C10—H10A	0.9900
N3—C12	1.478 (2)	C10—H10B	0.9900
C1—C2	1.382 (3)	C11—H11A	0.9800
C1—C6	1.396 (2)	C11—H11B	0.9800
C1—H1A	0.9500	C11—H11C	0.9800
C2—C3	1.373 (3)	C12—C13	1.520 (3)
C2—H2	0.9500	C12—H12A	0.9900
C3—C4	1.382 (3)	C12—H12B	0.9900
С3—Н3	0.9500	C13—H13A	0.9800
C4—C5	1.388 (3)	C13—H13B	0.9800
C4—H4	0.9500	C13—H13C	0.9800
C5—C6	1.390 (3)	C14—C15	1.522 (3)
C5—H5A	0.9500	C14—H14A	0.9900
C6—C7	1.506 (3)	C14—H14B	0.9900
C8—C9	1.514 (4)	C15—H15A	0.9800
C8—H8A	0.9900	C15—H15B	0.9800
C8—H8B	0.9900	C15—H15C	0.9800
O2—P1—N2	117.38 (8)	N2—C8A—H8AA	110.3
O2—P1—N3	110.11 (7)	С9А—С8А—Н8АВ	110.3
N2—P1—N3	106.10 (8)	N2—C8A—H8AB	110.3
O2—P1—N1	105.95 (8)	H8AA—C8A—H8AB	108.6

N2—P1—N1	105.82 (8)	С8А—С9А—Н9АА	109.5
N3—P1—N1	111.47 (8)	С8А—С9А—Н9АВ	109.5
C7—N1—P1	126.13 (13)	Н9АА—С9А—Н9АВ	109.5
C7—N1—H1N	118.0 (14)	С8А—С9А—Н9АС	109.5
P1—N1—H1N	115.7 (14)	Н9АА—С9А—Н9АС	109.5
C8—N2—C10	116.79 (17)	Н9АВ—С9А—Н9АС	109.5
C8—N2—C8A	33.4 (4)	N2-C10-C11	114.35 (18)
C10—N2—C8A	114.2 (4)	N2-C10-H10A	108.7
C8—N2—P1	119.88 (15)	C11—C10—H10A	108.7
C10 - N2 - P1	122.61 (14)	N2-C10-H10B	108 7
C8A - N2 - P1	107.7(3)	C_{11} C_{10} H_{10B}	108.7
C14 = N3 = C12	114 42 (14)	H10A - C10 - H10B	107.6
C14 N3 P1	117.72(17) 125.08(12)		107.0
$C_{14} = N_{3} = 1$	125.06(12) 117.08(12)	$C_{10} = C_{11} = H_{11}$	109.5
C_{12} $-N_{3}$ $-F_{1}$	117.90(12) 122.54(19)		109.5
$C_2 = C_1 = C_0$	122.34 (18)	HIIA—CII—HIIB	109.5
C2—CI—HIA	118.7		109.5
C6—C1—HIA	118.7	HIIA—CII—HIIC	109.5
C3—C2—C1	119.41 (18)	H11B—C11—H11C	109.5
С3—С2—Н2	120.3	N3—C12—C13	113.92 (16)
C1—C2—H2	120.3	N3—C12—H12A	108.8
C2—C3—C4	120.08 (19)	C13—C12—H12A	108.8
С2—С3—Н3	120.0	N3—C12—H12B	108.8
С4—С3—Н3	120.0	C13—C12—H12B	108.8
C3—C4—C5	119.69 (19)	H12A—C12—H12B	107.7
C3—C4—H4	120.2	C12—C13—H13A	109.5
C5—C4—H4	120.2	C12—C13—H13B	109.5
C4—C5—C6	121.87 (17)	H13A—C13—H13B	109.5
C4—C5—H5A	119.1	C12—C13—H13C	109.5
С6—С5—Н5А	119.1	H13A—C13—H13C	109.5
C5—C6—C1	116.39 (17)	H13B—C13—H13C	109.5
C_{5} C_{6} C_{7}	121.92 (15)	N3-C14-C15	112 69 (16)
$C_1 - C_6 - C_7$	121.32 (16)	N3_C14_H14A	109.1
01 - C7 - N1	121.34(10) 122.84(17)	C15 C14 H14A	109.1
O1 C7 C6	122.04(17) 121.22(15)	$N_2 C_{14} H_{14}P$	109.1
$V_1 = C_7 = C_0$	121.22(15) 115.87(15)	$C_{15} = C_{14} = H_{14}B$	109.1
$N_1 = C_2 = C_0$	113.07(13) 112.5(2)		109.1
$N_2 = C_8 = U_{8,A}$	115.5 (2)	H14A - C14 - H14B	107.8
$N_2 - C_8 - H_8 A$	108.9	CI4—CI5—HI5A	109.5
C9—C8—H8A	108.9	CI4—CI5—HI5B	109.5
N2—C8—H8B	108.9	HI5A—CI5—HI5B	109.5
С9—С8—Н8В	108.9	C14—C15—H15C	109.5
H8A—C8—H8B	107.7	H15A—C15—H15C	109.5
C9A—C8A—N2	106.9 (6)	H15B—C15—H15C	109.5
С9А—С8А—Н8АА	110.3		
O2—P1—N1—C7	158.75 (14)	C4—C5—C6—C7	171.39 (17)
N2—P1—N1—C7	-75.93 (16)	C2-C1-C6-C5	0.7 (3)
N3—P1—N1—C7	38.97 (17)	C2-C1-C6-C7	-172.59 (17)
O2—P1—N2—C8	-72.0 (2)	P1—N1—C7—O1	17.5 (3)

N3—P1—N2—C8	51.5 (2)	P1—N1—C7—C6	-159.56 (12)
N1—P1—N2—C8	170.05 (18)	C5—C6—C7—O1	-139.50 (18)
O2—P1—N2—C10	97.97 (16)	C1—C6—C7—O1	33.4 (3)
N3—P1—N2—C10	-138.49 (15)	C5-C6-C7-N1	37.6 (2)
N1—P1—N2—C10	-19.96 (17)	C1—C6—C7—N1	-149.49 (17)
O2—P1—N2—C8A	-37.8 (5)	C10-N2-C8-C9	-56.1 (3)
N3—P1—N2—C8A	85.7 (5)	C8A—N2—C8—C9	37.9 (6)
N1—P1—N2—C8A	-155.7 (5)	P1—N2—C8—C9	114.5 (2)
O2—P1—N3—C14	159.56 (14)	C8—N2—C8A—C9A	-28.3 (5)
N2—P1—N3—C14	31.58 (16)	C10-N2-C8A-C9A	74.1 (8)
N1—P1—N3—C14	-83.15 (16)	P1—N2—C8A—C9A	-146.0 (6)
O2—P1—N3—C12	-39.48 (15)	C8—N2—C10—C11	100.8 (2)
N2—P1—N3—C12	-167.46 (13)	C8A—N2—C10—C11	63.7 (5)
N1—P1—N3—C12	77.81 (15)	P1-N2-C10-C11	-69.5 (2)
C6—C1—C2—C3	0.7 (3)	C14—N3—C12—C13	77.6 (2)
C1—C2—C3—C4	-1.0 (3)	P1—N3—C12—C13	-85.37 (18)
C2—C3—C4—C5	-0.1 (3)	C12—N3—C14—C15	75.8 (2)
C3—C4—C5—C6	1.6 (3)	P1—N3—C14—C15	-122.62 (16)
C4—C5—C6—C1	-1.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1N···O2 ⁱ	0.86 (2)	1.93 (2)	2.7714 (19)	167 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.