organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(1,3-Benzothiazol-2-yl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Imane Chakib,^a Abdelfettah Zerzouf,^a Youssef Kandri Rodi,^b El Mokhtar Essassi^a and Seik Weng Ng^{c,d}*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 14 September 2011; accepted 15 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.131; data-to-parameter ratio = 17.0.

The central five-membered ring of the title compound, $C_{18}H_{15}N_3OS$, is almost planar (r.m.s. deviation = 0.028 Å) and the benzothiazole fused-ring system is close to coplanar with this ring [dihedral angle = $6.1(1)^{\circ}$]. The phenyl substituent is twisted by $62.5 (1)^{\circ}$.

Related literature

For the structure of the reactant 4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakibe et al. (2010).

Experimental

Crystal data

C ₁₈ H ₁₅ N ₃ OS	V = 1555.27 (5) Å ³
$M_r = 321.39$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.7428 (2) Å	$\mu = 0.22 \text{ mm}^{-1}$
b = 25.7551 (5) Å	T = 293 K
c = 6.9660 (1) Å	$0.50 \times 0.10 \times 0.10$ mm
$\beta = 97.460 \ (1)^{\circ}$	

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.900, T_{\max} = 0.979$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.131$ $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^-$ S = 1.01 $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ 3569 reflections

210 parameters H-atom parameters constrained

18953 measured reflections

 $R_{\rm int} = 0.053$

3569 independent reflections

2418 reflections with $I > 2\sigma(I)$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2331).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst E66 01096.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o2700 [https://doi.org/10.1107/S1600536811037652]

4-(1,3-Benzothiazol-2-yl)-1,5-dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one

Imane Chakib, Abdelfettah Zerzouf, Youssef Kandri Rodi, El Mokhtar Essassi and Seik Weng Ng

S1. Comment

In the study, the tertiary nitrogen atom of the five-membered ring of 4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (Chakibe *et al.*, 2010) is used to displace iodine from methyl iode to give the title compound; the carbon-carbon double-bond in the reactant is consequently converted to a double bond (Scheme I, Fig. 1). The central five-membered ring and the benzothiazolyl fused-ring is nearly co-planar (dihedral angle 6.1 (1) °). The phenyl substituent is twisted by 62.5 (1) ° with respect to the five-membered ring.

S2. Experimental

To a solution of (*E*)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one (1 g, 3.25 mmol) in DMF (50 ml) was added sodium carbonate (2.5 g, 23 mmol), tetra-*n*-butylammonium bromide (0.15 g, 1 mmol) and methyl iodide (7.1 g, 50 mmol). The mixture was stirred for 24 h. The solid material was removed b filtration and the solution was evaporated. The residue was washed with dichloromethane and hexane, and was recrystallized from ethanol to afford the title compound as colorless crystals.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C). Omitted from the refinement was the (0 2 0) reflection.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{18}H_{15}N_3OS$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

4-(1,3-Benzothiazol-2-yl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Crystal data

C₁₈H₁₅N₃OS $M_r = 321.39$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.7428 (2) Å b = 25.7551 (5) Å c = 6.9660 (1) Å $\beta = 97.460$ (1)° V = 1555.27 (5) Å³ Z = 4

Data collection

Bruker APEXII	18953 measured reflections
diffractometer	3569 independent reflections
Radiation source: fine-focus sealed tube	2418 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.053$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -29 \rightarrow 33$
$T_{\min} = 0.900, \ T_{\max} = 0.979$	$l = -9 \rightarrow 9$

F(000) = 672

 $\theta = 2.5 - 24.6^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K

Prism. colorless

 $0.50 \times 0.10 \times 0.10$ mm

 $D_{\rm x} = 1.373 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 3894 reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.047$ Hydrogen site location: inferred from $wR(F^2) = 0.131$ neighbouring sites S = 1.01H-atom parameters constrained 3569 reflections $w = 1/[\sigma^2(F_0^2) + (0.0644P)^2 + 0.296P]$ 210 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.92125 (7)	0.46686 (2)	0.19736 (8)	0.04602 (18)	
N1	0.8107 (2)	0.43170 (7)	0.5013 (3)	0.0485 (5)	
N2	0.6696 (2)	0.60559 (6)	0.3813 (2)	0.0450 (4)	
N3	0.6087 (2)	0.58549 (6)	0.5419 (2)	0.0436 (4)	
01	0.80712 (19)	0.57089 (6)	0.1499 (2)	0.0555 (4)	
C1	0.9552 (2)	0.40265 (8)	0.2603 (3)	0.0435 (5)	
C2	1.0365 (3)	0.36554 (8)	0.1694 (3)	0.0531 (6)	
H2	1.0832	0.3740	0.0609	0.064*	
C3	1.0459 (3)	0.31630 (9)	0.2442 (4)	0.0611 (7)	
Н3	1.1003	0.2910	0.1862	0.073*	
C4	0.9756 (3)	0.30371 (9)	0.4045 (4)	0.0682 (7)	
H4	0.9818	0.2698	0.4510	0.082*	
C5	0.8967 (3)	0.34025 (9)	0.4969 (4)	0.0657 (7)	

supporting information

Н5	0.8506	0.3313	0.6053	0.079*
C6	0.8869 (2)	0.39090 (8)	0.4253 (3)	0.0462 (5)
C7	0.8201 (2)	0.47347 (7)	0.3978 (3)	0.0399 (5)
C8	0.7531 (2)	0.56620 (8)	0.3030 (3)	0.0417 (5)
C9	0.7516 (2)	0.52318 (7)	0.4329 (3)	0.0387 (5)
C10	0.6676 (2)	0.53751 (7)	0.5781 (3)	0.0398 (5)
C11	0.6421 (3)	0.50940 (9)	0.7570 (3)	0.0514 (6)
H11A	0.5334	0.5064	0.7630	0.077*
H11B	0.6897	0.5282	0.8679	0.077*
H11C	0.6868	0.4754	0.7559	0.077*
C12	0.5534 (3)	0.62109 (9)	0.6788 (3)	0.0527 (6)
H12A	0.5437	0.6031	0.7972	0.079*
H12B	0.4546	0.6346	0.6253	0.079*
H12C	0.6252	0.6492	0.7045	0.079*
C13	0.5892 (3)	0.64466 (7)	0.2625 (3)	0.0414 (5)
C14	0.4314 (3)	0.64253 (9)	0.2115 (3)	0.0532 (6)
H14	0.3732	0.6167	0.2606	0.064*
C15	0.3615 (3)	0.67960 (10)	0.0859 (4)	0.0657 (7)
H15	0.2553	0.6787	0.0497	0.079*
C16	0.4484 (4)	0.71801 (10)	0.0139 (4)	0.0673 (8)
H16	0.4007	0.7428	-0.0705	0.081*
C17	0.6046 (4)	0.71958 (9)	0.0666 (4)	0.0627 (7)
H17	0.6629	0.7454	0.0175	0.075*
C18	0.6759 (3)	0.68310 (8)	0.1916 (3)	0.0508 (5)
H18	0.7820	0.6844	0.2281	0.061*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0543 (3)	0.0407 (3)	0.0427 (3)	0.0044 (2)	0.0050 (2)	0.0038 (2)
N1	0.0525 (11)	0.0414 (10)	0.0524 (11)	0.0046 (8)	0.0100 (9)	0.0068 (8)
N2	0.0576 (11)	0.0379 (9)	0.0397 (9)	0.0063 (8)	0.0079 (8)	0.0048 (7)
N3	0.0568 (11)	0.0403 (10)	0.0334 (9)	0.0041 (8)	0.0047 (8)	-0.0002 (7)
O1	0.0732 (11)	0.0503 (9)	0.0456 (9)	0.0109 (8)	0.0180 (8)	0.0067 (7)
C1	0.0397 (11)	0.0404 (11)	0.0480 (12)	-0.0006 (9)	-0.0033 (9)	0.0008 (9)
C2	0.0500 (13)	0.0493 (13)	0.0590 (14)	0.0057 (11)	0.0036 (11)	-0.0051 (11)
C3	0.0572 (15)	0.0471 (14)	0.0778 (17)	0.0078 (11)	0.0044 (13)	-0.0065 (12)
C4	0.0668 (17)	0.0390 (13)	0.099 (2)	0.0085 (12)	0.0103 (15)	0.0110 (13)
C5	0.0698 (16)	0.0469 (14)	0.0841 (18)	0.0074 (12)	0.0240 (14)	0.0183 (13)
C6	0.0429 (12)	0.0386 (11)	0.0560 (13)	0.0005 (9)	0.0026 (10)	0.0061 (9)
C7	0.0398 (11)	0.0391 (11)	0.0383 (10)	-0.0017 (9)	-0.0043 (8)	0.0018 (8)
C8	0.0485 (12)	0.0376 (11)	0.0381 (11)	0.0028 (9)	0.0016 (9)	-0.0011 (8)
C9	0.0424 (11)	0.0360 (10)	0.0353 (10)	0.0003 (9)	-0.0036 (8)	-0.0004 (8)
C10	0.0433 (11)	0.0389 (11)	0.0342 (10)	-0.0014 (9)	-0.0067 (8)	-0.0005 (8)
C11	0.0613 (14)	0.0524 (13)	0.0392 (11)	0.0003 (11)	0.0020 (10)	0.0049 (10)
C12	0.0629 (15)	0.0518 (13)	0.0438 (12)	0.0052 (11)	0.0077 (11)	-0.0078 (10)
C13	0.0561 (13)	0.0316 (10)	0.0365 (10)	0.0055 (9)	0.0052 (9)	-0.0033 (8)
C14	0.0567 (14)	0.0439 (12)	0.0582 (14)	0.0007 (11)	0.0043 (11)	0.0035 (10)

supporting information

C15	0.0643 (16)	0.0681 (17)	0.0617 (16)	0.0190 (13)	-0.0025 (13)	0.0022 (13)
C16	0.098 (2)	0.0560 (15)	0.0487 (14)	0.0268 (15)	0.0123 (14)	0.0137 (11)
C17	0.094 (2)	0.0384 (13)	0.0596 (15)	0.0055 (13)	0.0241 (14)	0.0075 (11)
C18	0.0626 (14)	0.0399 (12)	0.0506 (13)	-0.0025 (11)	0.0100 (11)	-0.0024 (10)

Geometric parameters (Å, °)

S1—C1	1.727 (2)	C8—C9	1.432 (3)
S1—C7	1.755 (2)	C9—C10	1.376 (3)
N1—C7	1.304 (2)	C10-C11	1.483 (3)
N1-C6	1.386 (3)	C11—H11A	0.9600
N2—C8	1.401 (3)	C11—H11B	0.9600
N2—N3	1.399 (2)	C11—H11C	0.9600
N2-C13	1.428 (2)	C12—H12A	0.9600
N3—C10	1.350(2)	C12—H12B	0.9600
N3—C12	1.451 (3)	C12—H12C	0.9600
O1—C8	1.227 (2)	C13—C18	1.377 (3)
C1—C2	1.392 (3)	C13—C14	1.381 (3)
C1—C6	1.395 (3)	C14—C15	1.382 (3)
C2—C3	1.369 (3)	C14—H14	0.9300
C2—H2	0.9300	C15—C16	1.381 (4)
C3—C4	1.382 (4)	C15—H15	0.9300
С3—Н3	0.9300	C16—C17	1.368 (4)
C4—C5	1.375 (4)	C16—H16	0.9300
C4—H4	0.9300	C17—C18	1.374 (3)
C5—C6	1.395 (3)	C17—H17	0.9300
С5—Н5	0.9300	C18—H18	0.9300
С7—С9	1.448 (3)		
C1—S1—C7	88.78 (10)	C8—C9—C7	122.65 (19)
C7—N1—C6	110.27 (18)	N3—C10—C9	109.58 (17)
C8—N2—N3	108.35 (15)	N3-C10-C11	120.60 (19)
C8—N2—C13	121.79 (16)	C9—C10—C11	129.77 (19)
N3—N2—C13	120.94 (17)	C10-C11-H11A	109.5
C10—N3—N2	108.24 (16)	C10-C11-H11B	109.5
C10—N3—C12	127.40 (17)	H11A—C11—H11B	109.5
N2-N3-C12	119.07 (16)	C10-C11-H11C	109.5
C2-C1-C6	121.6 (2)	H11A—C11—H11C	109.5
C2-C1-S1	128.56 (18)	H11B—C11—H11C	109.5
C6-C1-S1	109.83 (16)	N3—C12—H12A	109.5
C3—C2—C1	118.1 (2)	N3—C12—H12B	109.5
C3—C2—H2	120.9	H12A—C12—H12B	109.5
C1—C2—H2	120.9	N3—C12—H12C	109.5
C2—C3—C4	120.9 (2)	H12A—C12—H12C	109.5
С2—С3—Н3	119.5	H12B—C12—H12C	109.5
С4—С3—Н3	119.5	C18—C13—C14	121.0 (2)
C5—C4—C3	121.4 (2)	C18—C13—N2	117.5 (2)
С5—С4—Н4	119.3	C14—C13—N2	121.43 (19)

C3—C4—H4	119.3	C15—C14—C13	118.7 (2)
C4—C5—C6	119.0 (2)	C15—C14—H14	120.7
С4—С5—Н5	120.5	C13—C14—H14	120.7
С6—С5—Н5	120.5	C14—C15—C16	120.4 (3)
N1—C6—C5	125.6 (2)	C14—C15—H15	119.8
N1—C6—C1	115.37 (18)	C16—C15—H15	119.8
C5—C6—C1	119.0 (2)	C17—C16—C15	120.1 (2)
N1—C7—C9	125.38 (19)	C17—C16—H16	120.0
N1—C7—S1	115.75 (15)	C15—C16—H16	120.0
C9—C7—S1	118.85 (15)	C16—C17—C18	120.3 (2)
O1—C8—N2	123.08 (18)	C16—C17—H17	119.9
O1—C8—C9	131.43 (19)	C18—C17—H17	119.9
N2—C8—C9	105.45 (17)	C17—C18—C13	119.6 (2)
C10—C9—C8	107.86 (17)	C17—C18—H18	120.2
С10—С9—С7	129.34 (18)	C13—C18—H18	120.2
C9 N2 N2 C10	74(2)	N2 C8 C0 C10	1.0.(2)
$C_8 = N_2 = N_3 = C_{10}$	7.4 (2) 155 19 (17)	$N_2 = C_8 = C_9 = C_{10}$	1.0(2)
C13 - N2 - N3 - C10	155.18 (17)	01 - 08 - 09 - 07	-0.5(4)
C8 = N2 = N3 = C12	163.59 (18)	N2-C8-C9-C7	1/6.98 (18)
C13 - N2 - N3 - C12	-48.6 (3)	NI - C7 - C9 - C10	1.4 (3)
C/=SI=CI=C2	-1/9.4(2)	SI_C/_C9_C10	1/9./1 (16)
C7—S1—C1—C6	0.61 (15)	NI	-173.65 (19)
C6-C1-C2-C3	1.2 (3)	SI_C/_C9_C8	4.7 (3)
S1—C1—C2—C3	-178.77 (17)	N2—N3—C10—C9	-6.8 (2)
C1—C2—C3—C4	0.4 (4)	C12—N3—C10—C9	-160.4 (2)
C2—C3—C4—C5	-1.3 (4)	N2—N3—C10—C11	171.05 (18)
C3—C4—C5—C6	0.5 (4)	C12—N3—C10—C11	17.4 (3)
C7—N1—C6—C5	-178.3 (2)	C8—C9—C10—N3	3.6 (2)
C7—N1—C6—C1	0.0 (3)	C7—C9—C10—N3	-172.02 (19)
C4—C5—C6—N1	179.4 (2)	C8—C9—C10—C11	-174.0 (2)
C4—C5—C6—C1	1.1 (4)	C7—C9—C10—C11	10.4 (4)
C2-C1-C6-N1	179.51 (19)	C8—N2—C13—C18	-74.5 (2)
S1—C1—C6—N1	-0.5 (2)	N3—N2—C13—C18	142.02 (19)
C2—C1—C6—C5	-2.0 (3)	C8—N2—C13—C14	101.9 (2)
S1—C1—C6—C5	177.98 (18)	N3—N2—C13—C14	-41.5 (3)
C6—N1—C7—C9	178.88 (19)	C18—C13—C14—C15	0.5 (3)
C6—N1—C7—S1	0.5 (2)	N2-C13-C14-C15	-175.8 (2)
C1—S1—C7—N1	-0.67 (16)	C13—C14—C15—C16	-0.2 (4)
C1—S1—C7—C9	-179.16 (17)	C14—C15—C16—C17	0.0 (4)
N3—N2—C8—O1	172.67 (19)	C15—C16—C17—C18	-0.2 (4)
C13—N2—C8—O1	25.2 (3)	C16—C17—C18—C13	0.5 (3)
N3—N2—C8—C9	-5.1 (2)	C14—C13—C18—C17	-0.7 (3)
C13—N2—C8—C9	-152.51 (18)	N2-C13-C18-C17	175.78 (19)
O1—C8—C9—C10	-176.5 (2)		