organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2-Bis(benzyloxy)-1,2-bis(4-chlorophenyl)-3,8-dimethoxyacenaphthene

Teruhisa Takada, Daichi Hijikata, Akiko Okamoto,* Hideaki Oike and Noriyuki Yonezawa

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Received 24 August 2011; accepted 31 August 2011

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.107; data-to-parameter ratio = 13.9.

In the title compound, $C_{40}H_{32}Cl_2O_4$, the two chlorobenzene rings are in syn orientations with respect to the naphthalene ring system and make dihedral angles of 57.12(6) and $85.74 (6)^{\circ}$ with it. The benzene rings of the benzyloxy group make dihedral angles of 75.34 (6) and 83.95 (7) $^{\circ}$, with the naphthalene ring system. In the crystal, the molecules are linked by intermolecular C-H···Cl interactions between the methylene H atoms of the benzyloxy group and the Cl atoms in adjacent molecules. Furthermore, centrosymmetrically related molecules are linked into dimeric units by pairs of $C-H\cdots\pi$ interactions.

Related literature

For the synthesis of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Watanabe et al. (2010a,b); Mitsui et al. (2010); Hijikata et al. (2010); Nakaema et al. (2007).

С H₃C O_℃CH₃

Experimental

Crystal data

$C_{40}H_{32}Cl_2O_4$	$\gamma = 103.306 \ (1)^{\circ}$
$M_r = 647.56$	V = 1614.04 (5) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 10.9773 (2) Å	Cu $K\alpha$ radiation
b = 12.6514 (2) Å	$\mu = 2.15 \text{ mm}^{-1}$
c = 12.9171 (2) Å	T = 193 K
$\alpha = 102.387 \ (1)^{\circ}$	$0.50 \times 0.30 \times 0.20 \text{ mm}$
$\beta = 104.899 \ (1)^{\circ}$	

30622 measured reflections

 $R_{\rm int}=0.061$

5828 independent reflections

5503 reflections with $I > 2\sigma(I)$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: numerical (NUMABS; Higashi, 1999) $T_{\min} = 0.414, \ T_{\max} = 0.674$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	418 parameters
$wR(F^2) = 0.107$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
5828 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg6 is the centroid of the C35-C40 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C34 - H34A \cdots Cl1^{i}$ $C16 - H16 \cdots Cg6^{ii}$	0.99 0.95	2.66 2.70	3.4748 (16) 3.3962 (16)	140 131
Symmetry codes: (i) x -	1 v z: (ii)	r + 1 - v - 7	0.0002 (10)	101

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors would to express their gratitude to Mr Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for their technical advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2320).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6865. Oak Ridge National Laboratory. Tennessee, USA.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, 02902-02903.
- Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, 01790.

- Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
- Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915
- Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). *CrystalStructure*. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, 0329.
- Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, 0403.

Acta Cryst. (2011). E67, o2562–o2563 [https://doi.org/10.1107/S1600536811035495] 1,2-Bis(benzyloxy)-1,2-bis(4-chlorophenyl)-3,8-dimethoxyacenaphthene Teruhisa Takada, Daichi Hijikata, Akiko Okamoto, Hideaki Oike and Noriyuki Yonezawa

S1. Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-fluorophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), and bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010b). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly bonded in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. On the other hand, 1,8-bis(4chlorobenzoyl)-7-methoxynaphthalene-2-ol ethanol monosolvate (Mitsui et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) have been revealed that the aroyl groups attached to the naphthalene ring are oriented in the same direction, *i.e.*, syn-orientation. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of the title compound, acenaphthene derivative bearing benzyloxy and 4-chlorophenyl groups, is discussed in this article. The title compound was prepared by Zn-complexmediated pinacol coupling of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), followed by conversion of hydroxy groups to benzyloxy ones. The molecular structure of the title compound is illustrated in Fig. 1. The two intervenient benzene rings, A (C12–C17) and B (C19–C24), are in a syn orientation with respect to the naphthalene ring system (C1–C10), and make the dihedral angles of 57.12 (6) and 85.74 (6) $^{\circ}$, respectively, with the naphthalene ring system. Furthermore, the dihedral angles of the two benzene rings in the benzyloxy groups, C (C28— C33) and D (C35–C40), against the naphthalene ring system are 75.34 (6) and 83.95 (7)°, respectively. Besides, the interplanar angle between benzene rings A (C12-C17) and B (C19-C24) is smaller than that between benzene ring C (C28-C33) and D (C35-C40) [31.39 (7) and 84.68 (9)°, respectively].

In the molecular packing, the C—H···Cl interactions between the hydrogen atoms of the methylene moiety and the chloro atoms of the 4-chlorophenyl rings of the adjacent molecules are observed atom along the *a* axis [C27—H27A···Cl1ⁱ = 2.66 Å](Fig. 2). Furthermore, C—H··· π interactions between the hydrogen atom of the benzene ring A and the π -system of the benzene ring D (with centroid *Cg*6) is also observed (C16—H16···*Cg*6ⁱⁱ = 2.70 Å; Table 1), resulting in the formation of dimeric units having crystallographic inversion centre (Fig. 3).

S2. Experimental

To a solution of the pinacol compound, 1,2-bis(4-chlorophenyl)-1,2-dihydroxy-3,8-dimethoxyacenaphthene (0.1 mmol, 46 mg) in DMAc (0.1 ml), a mixture of benzyl bromide (0.22 mmol, 34 mg), NaH (0.22 mmol, 48 mg), and tetrabutyl-ammonium iodide (0.01 mmol, 2 mg) was added by portions at r.t. After the reaction mixture was stirred for 3 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with $CHCl_3$ (10 ml ×3). The combined extracts were washed with 2 *M* aqueous HCl followed by washing with brine. The organic layers thus obtained were dried over

anhydrous MgSO₄. The solvent was removed under reduced pressure to give cake (yield 27 mg, 42%). The crude material was purified by recrystallization from CHCl₃/ethanol to give the title compound as colorless platelets (isolated yield, 38%). Spectroscopic Data: ¹H NMR (300 MHz, CDCl₃) δ ;7.88, (d, 2H), 7.19–7.26(m, 12H), 6.84 (d, 8H), 4.74–4.84(m, 4H), 3.68(s, 6H); ¹³C NMR(75 MHz, CDCl₃); 154.5, 142.0, 140.3, 140.0, 132.1, 128.9, 128.9, 127.9, 127.3, 126.8, 126.7, 122.4, 122.3, 113.6, 96.7, 69.1, 55,7; IR (KBr);1623, 1502, 1259 cm⁻¹; Anal. Calcd for C₄₀H₃₂Cl₂O₄; C, 74.19; H, 4.98. Found: C, 74.176; H, 5.160%; m.p.=203.0–204.0 K.

S3. Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

The molecular structure of the title molecule, showing 50% probability displacement ellipsoids.

A dimeric pair of the title molecules, showing the intermolecular C—H···Cl interactions as double dashed line [symmetry code: (i) x - 1, y, z].

Figure 3

A dimeric pair of the title molecules. The intermolecular C—H $\cdots \pi$ interactions are observed along *c* axis (double dashed lines) [symmetry code: (ii) -*x* + 1, -*y*, -*z*].

1,2-Bis(benzyloxy)-1,2-bis(4-chlorophenyl)-3,8-dimethoxyacenaphthene

Crystal data $C_{40}H_{32}Cl_2O_4$ Z = 2F(000) = 676 $M_r = 647.56$ $D_{\rm x} = 1.332 \text{ Mg m}^{-3}$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 Cu *K* α radiation, $\lambda = 1.54187$ Å *a* = 10.9773 (2) Å Cell parameters from 29110 reflections *b* = 12.6514 (2) Å $\theta = 3.7 - 68.2^{\circ}$ c = 12.9171 (2) Å $\mu = 2.15 \text{ mm}^{-1}$ $\alpha = 102.387 (1)^{\circ}$ T = 193 K $\beta = 104.899 (1)^{\circ}$ Block, colorless $\gamma = 103.306 (1)^{\circ}$ $0.50 \times 0.30 \times 0.20 \text{ mm}$ V = 1614.04 (5) Å³ Data collection Rigaku R-AXIS RAPID Absorption correction: numerical (NUMABS; Higashi, 1999) diffractometer $T_{\min} = 0.414, T_{\max} = 0.674$ Radiation source: rotating anode Graphite monochromator 30622 measured reflections Detector resolution: 10.000 pixels mm⁻¹ 5828 independent reflections ω scans 5503 reflections with $I > 2\sigma(I)$

(Sheldrick,

$R_{\rm int} = 0.061$	$k = -15 \rightarrow 15$
$\theta_{\rm max} = 68.2^{\circ}, \theta_{\rm min} = 3.7^{\circ}$	$l = -15 \rightarrow 15$
$h = -13 \rightarrow 12$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.107$	$w = 1/[\sigma^2(F_o^2) + (0.0623P)^2 + 0.4586P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
5828 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
418 parameters	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick 2008). $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0082 (4)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	1.11323 (4)	0.16739 (4)	0.15815 (4)	0.05437 (15)	
Cl2	1.10086 (4)	0.63681 (3)	0.37022 (3)	0.04790 (14)	
01	0.49403 (9)	0.07269 (7)	0.17290 (8)	0.0276 (2)	
O2	0.51556 (9)	0.25848 (8)	0.10705 (7)	0.0285 (2)	
03	0.70682 (12)	0.05722 (9)	0.43438 (9)	0.0405 (3)	
O4	0.39937 (12)	0.43218 (10)	0.22526 (10)	0.0437 (3)	
C1	0.59210 (13)	0.17780 (11)	0.36826 (11)	0.0283 (3)	
C2	0.63214 (15)	0.12827 (12)	0.45074 (12)	0.0328 (3)	
C3	0.59278 (17)	0.15073 (14)	0.54799 (12)	0.0397 (4)	
Н3	0.6227	0.1183	0.6059	0.048*	
C4	0.51272 (17)	0.21801 (14)	0.55995 (13)	0.0413 (4)	
H4	0.4864	0.2298	0.6250	0.050*	
C5	0.46860 (15)	0.27021 (12)	0.47695 (12)	0.0354 (3)	
C6	0.38935 (16)	0.34403 (13)	0.47836 (14)	0.0409 (4)	
H6	0.3545	0.3588	0.5382	0.049*	
C7	0.36209 (16)	0.39443 (13)	0.39523 (14)	0.0403 (4)	
H7	0.3070	0.4423	0.3977	0.048*	
C8	0.41422 (14)	0.37692 (12)	0.30514 (13)	0.0337 (3)	
C9	0.48695 (13)	0.30165 (11)	0.29829 (11)	0.0284 (3)	
C10	0.51254 (13)	0.24915 (11)	0.38316 (11)	0.0293 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C11	0.60405 (13)	0.16494 (11)	0.25134 (10)	0.0256 (3)
C12	0.85295 (14)	0.19940 (12)	0.31986 (12)	0.0317 (3)
H12	0.8545	0.2269	0.3948	0.038*
C13	0.73237 (13)	0.15671 (11)	0.23323 (11)	0.0262 (3)
C14	0.97044 (14)	0.20211 (13)	0.29780 (13)	0.0367 (3)
H14	1.0524	0.2308	0.3570	0.044*
C15	0.96649 (14)	0.16232 (12)	0.18812 (13)	0.0347 (3)
C16	0.84865 (15)	0.11863(12)	0.10077 (12)	0.0330(3)
H16	0.8476	0.0912	0.0260	0.040*
C17	0 73205 (14)	0.11564(12)	0 12420 (11)	0.0295(3)
ыл Н17	0.6503	0.0850	0.0648	0.035*
C18	0.0505 0.57022(13)	0.0050	0.22371 (11)	0.035 0.0263(3)
C19	0.69953(13)	0.27037(11) 0.37403(11)	0.22371(11) 0.26034(11)	0.0205(3)
C20	0.07733(13) 0.75744(14)	0.37403(11) 0.44304(11)	0.20034(11) 0.37078(11)	0.0270(3)
U20	0.73744(14) 0.7123	0.44304 (11)	0.37078 (11)	0.0295 (3)
C21	0.7123 0.87008 (15)	0.4341 0.52457 (12)	0.4255 0.40500 (12)	0.033°
U21	0.07990 (13)	0.52457 (12)	0.40300 (12)	0.0329 (3)
H21	0.9183	0.5711	0.4604	0.039
C22	0.94520 (14)	0.53719(12)	0.32793(12) 0.21747(12)	0.0337(3)
023	0.88904 (15)	0.4/151 (13)	0.21/4/(12)	0.0358 (3)
H23	0.9340	0.4816	0.1649	0.043*
C24	0.76659 (14)	0.39090 (12)	0.18422 (12)	0.0319(3)
H24	0.7275	0.3462	0.1081	0.038*
C25	0.77576 (19)	0.02741 (16)	0.52774 (14)	0.0494 (4)
H25A	0.8308	0.0966	0.5881	0.059*
H25B	0.8320	-0.0168	0.5052	0.059*
H25C	0.7119	-0.0181	0.5541	0.059*
C26	0.3045 (2)	0.49310 (18)	0.2163 (2)	0.0608 (5)
H26A	0.2179	0.4423	0.2075	0.073*
H26B	0.2984	0.5218	0.1511	0.073*
H26C	0.3319	0.5570	0.2842	0.073*
C27	0.49115 (14)	-0.03802 (11)	0.18391 (12)	0.0310 (3)
H27A	0.5499	-0.0313	0.2589	0.037*
H27B	0.5234	-0.0781	0.1270	0.037*
C28	0.35182 (14)	-0.10438 (11)	0.16839(11)	0.0281 (3)
C29	0.26258 (15)	-0.05050 (13)	0.19605 (12)	0.0330 (3)
H29	0.2898	0.0298	0.2259	0.040*
C30	0.13410 (16)	-0.11310(15)	0.18040 (13)	0.0405 (4)
H30	0.0738	-0.0754	0.1991	0.049*
C31	0.09343 (17)	-0.23016 (15)	0.13764 (15)	0.0476 (4)
H31	0.0054	-0.2729	0.1265	0.057*
C32	0.18202 (18)	-0.28417(14)	0.11136 (15)	0.0476 (4)
H32	0.1549	-0.3646	0.0830	0.057*
C33	0 31026 (16)	-0.22221(12)	0 12593 (13)	0.0366(3)
H33	0.3700	-0.2604	0.1068	0.044*
C34	0 37626 (13)	0.20801(12)	0.05308(12)	0.0322(3)
H34A	0.3278	0.2371	0.1019	0.039*
H34R	0 3530	0.1246	0.0382	0.039*
C35	0.33847(13)	0.23730(12)	-0.05534(12)	0.0290(3)
~~~	0.0001/(10)	0.20,00(12)	0.000001(14)	0.04/0(3)

C36	0.23404 (15)	0.16125 (14)	-0.14550 (13)	0.0390 (3)
H36	0.1883	0.0911	-0.1383	0.047*
C37	0.19564 (18)	0.18624 (17)	-0.24597 (15)	0.0508 (4)
H37	0.1233	0.1337	-0.3068	0.061*
C38	0.26201 (19)	0.28700 (18)	-0.25794 (15)	0.0533 (5)
H38	0.2359	0.3039	-0.3270	0.064*
C39	0.3665 (2)	0.36332 (17)	-0.16918 (18)	0.0548 (5)
H39	0.4127	0.4328	-0.1772	0.066*
C40	0.40430 (17)	0.33878 (14)	-0.06819 (15)	0.0421 (4)
H40	0.4760	0.3920	-0.0072	0.051*

Atomic displacement parameters  $(Å^2)$ 

	$U^{11}$	U ²²	U ³³	<i>U</i> ¹²	$U^{13}$	$U^{23}$
C11	0.0299 (2)	0.0611 (3)	0.0746 (3)	0.01170 (18)	0.0276 (2)	0.0141 (2)
Cl2	0.0353 (2)	0.0478 (2)	0.0438 (2)	-0.01135 (17)	0.00949 (17)	0.00916 (17)
01	0.0228 (5)	0.0269 (5)	0.0287 (5)	0.0040 (4)	0.0044 (4)	0.0078 (4)
O2	0.0223 (5)	0.0362 (5)	0.0248 (5)	0.0045 (4)	0.0066 (4)	0.0106 (4)
O3	0.0484 (7)	0.0467 (6)	0.0331 (5)	0.0200 (5)	0.0126 (5)	0.0194 (5)
O4	0.0443 (6)	0.0435 (6)	0.0565 (7)	0.0224 (5)	0.0227 (5)	0.0232 (5)
C1	0.0249 (7)	0.0301 (6)	0.0269 (7)	0.0019 (5)	0.0100 (5)	0.0072 (5)
C2	0.0330 (7)	0.0331 (7)	0.0287 (7)	0.0028 (6)	0.0095 (6)	0.0100 (6)
C3	0.0453 (9)	0.0429 (8)	0.0285 (7)	0.0043 (7)	0.0130 (6)	0.0140 (6)
C4	0.0463 (9)	0.0443 (8)	0.0305 (7)	0.0018 (7)	0.0203 (7)	0.0080 (6)
C5	0.0343 (8)	0.0344 (7)	0.0330 (7)	0.0001 (6)	0.0172 (6)	0.0042 (6)
C6	0.0388 (8)	0.0399 (8)	0.0418 (8)	0.0051 (7)	0.0234 (7)	0.0021 (7)
C7	0.0337 (8)	0.0353 (7)	0.0509 (9)	0.0093 (6)	0.0205 (7)	0.0031 (7)
C8	0.0285 (7)	0.0303 (7)	0.0397 (8)	0.0047 (6)	0.0127 (6)	0.0072 (6)
C9	0.0233 (6)	0.0287 (6)	0.0296 (7)	0.0028 (5)	0.0099 (5)	0.0052 (5)
C10	0.0252 (7)	0.0285 (6)	0.0289 (7)	0.0000 (5)	0.0103 (5)	0.0045 (5)
C11	0.0230 (6)	0.0280 (6)	0.0234 (6)	0.0041 (5)	0.0068 (5)	0.0077 (5)
C12	0.0279 (7)	0.0360 (7)	0.0269 (7)	0.0068 (6)	0.0054 (6)	0.0078 (6)
C13	0.0242 (7)	0.0271 (6)	0.0264 (6)	0.0055 (5)	0.0075 (5)	0.0094 (5)
C14	0.0232 (7)	0.0399 (8)	0.0394 (8)	0.0052 (6)	0.0031 (6)	0.0094 (6)
C15	0.0254 (7)	0.0350 (7)	0.0475 (8)	0.0089 (6)	0.0166 (6)	0.0139 (6)
C16	0.0321 (7)	0.0364 (7)	0.0329 (7)	0.0090 (6)	0.0152 (6)	0.0106 (6)
C17	0.0257 (7)	0.0346 (7)	0.0262 (6)	0.0061 (5)	0.0069 (5)	0.0095 (5)
C18	0.0237 (6)	0.0293 (6)	0.0255 (6)	0.0062 (5)	0.0083 (5)	0.0087 (5)
C19	0.0247 (7)	0.0280 (6)	0.0286 (6)	0.0065 (5)	0.0085 (5)	0.0104 (5)
C20	0.0297 (7)	0.0309 (7)	0.0284 (7)	0.0071 (6)	0.0114 (6)	0.0090 (5)
C21	0.0326 (7)	0.0310 (7)	0.0295 (7)	0.0046 (6)	0.0068 (6)	0.0067 (6)
C22	0.0273 (7)	0.0315 (7)	0.0361 (7)	0.0006 (6)	0.0068 (6)	0.0109 (6)
C23	0.0326 (8)	0.0403 (8)	0.0335 (7)	0.0031 (6)	0.0140 (6)	0.0135 (6)
C24	0.0305 (7)	0.0349 (7)	0.0273 (7)	0.0039 (6)	0.0093 (6)	0.0092 (6)
C25	0.0537 (10)	0.0538 (10)	0.0401 (9)	0.0176 (8)	0.0058 (8)	0.0224 (8)
C26	0.0599 (12)	0.0563 (11)	0.0831 (14)	0.0353 (10)	0.0266 (11)	0.0307 (10)
C27	0.0268 (7)	0.0288 (7)	0.0348 (7)	0.0087 (5)	0.0066 (6)	0.0079 (6)
C28	0.0288 (7)	0.0323 (7)	0.0225 (6)	0.0071 (6)	0.0063 (5)	0.0115 (5)

C29	0.0328 (8)	0.0370 (7)	0.0301 (7)	0.0097 (6)	0.0115 (6)	0.0107 (6)
C30	0.0335 (8)	0.0534 (9)	0.0399 (8)	0.0117 (7)	0.0176 (7)	0.0189 (7)
C31	0.0348 (8)	0.0531 (10)	0.0529 (10)	-0.0003 (7)	0.0148 (7)	0.0258 (8)
C32	0.0456 (10)	0.0338 (8)	0.0556 (10)	-0.0004 (7)	0.0111 (8)	0.0171 (7)
C33	0.0385 (8)	0.0324 (7)	0.0375 (8)	0.0090 (6)	0.0094 (6)	0.0122 (6)
C34	0.0227 (7)	0.0374 (7)	0.0328 (7)	0.0023 (6)	0.0065 (6)	0.0130 (6)
C35	0.0245 (7)	0.0326 (7)	0.0339 (7)	0.0117 (5)	0.0110 (6)	0.0123 (6)
C36	0.0315 (8)	0.0426 (8)	0.0396 (8)	0.0075 (6)	0.0057 (6)	0.0159 (7)
C37	0.0410 (9)	0.0684 (11)	0.0380 (9)	0.0157 (8)	0.0026 (7)	0.0182 (8)
C38	0.0527 (11)	0.0813 (13)	0.0447 (9)	0.0325 (10)	0.0188 (8)	0.0392 (9)
C39	0.0545 (11)	0.0576 (11)	0.0680 (12)	0.0182 (9)	0.0243 (9)	0.0425 (10)
C40	0.0414 (9)	0.0371 (8)	0.0464 (9)	0.0072 (7)	0.0110 (7)	0.0183 (7)

Geometric parameters (Å, °)

Cl1—C15	1.7414 (15)	C20—C21	1.389 (2)
Cl2—C22	1.7435 (14)	C20—H20	0.9500
O1—C27	1.4320 (16)	C21—C22	1.382 (2)
01—C11	1.4359 (15)	C21—H21	0.9500
O2—C18	1.4167 (15)	C22—C23	1.382 (2)
O2—C34	1.4295 (16)	C23—C24	1.384 (2)
O3—C2	1.3680 (19)	С23—Н23	0.9500
O3—C25	1.4235 (18)	C24—H24	0.9500
O4—C8	1.3621 (19)	C25—H25A	0.9800
O4—C26	1.428 (2)	C25—H25B	0.9800
C1—C2	1.376 (2)	C25—H25C	0.9800
C1-C10	1.410 (2)	C26—H26A	0.9800
C1C11	1.5267 (18)	C26—H26B	0.9800
C2—C3	1.424 (2)	C26—H26C	0.9800
C3—C4	1.371 (2)	C27—C28	1.5044 (19)
С3—Н3	0.9500	C27—H27A	0.9900
C4—C5	1.416 (2)	C27—H27B	0.9900
C4—H4	0.9500	C28—C29	1.391 (2)
C5—C10	1.412 (2)	C28—C33	1.392 (2)
C5—C6	1.416 (2)	C29—C30	1.388 (2)
C6—C7	1.366 (2)	C29—H29	0.9500
С6—Н6	0.9500	C30—C31	1.384 (2)
С7—С8	1.422 (2)	С30—Н30	0.9500
С7—Н7	0.9500	C31—C32	1.380 (3)
С8—С9	1.379 (2)	C31—H31	0.9500
C9—C10	1.4006 (19)	C32—C33	1.387 (2)
C9—C18	1.5230 (19)	С32—Н32	0.9500
C11—C13	1.5089 (18)	С33—Н33	0.9500
C11—C18	1.6277 (18)	C34—C35	1.5050 (19)
C12—C14	1.385 (2)	C34—H34A	0.9900
C12—C13	1.3949 (18)	C34—H34B	0.9900
C12—H12	0.9500	C35—C36	1.386 (2)
C13—C17	1.3913 (19)	C35—C40	1.387 (2)

C14—C15	1.384 (2)	C36—C37	1.385 (2)
C14—H14	0.9500	С36—Н36	0.9500
C15—C16	1.380(2)	С37—С38	1.376 (3)
C16—C17	1.383 (2)	С37—Н37	0.9500
С16—Н16	0.9500	C38—C39	1.379 (3)
C17—H17	0.9500	C38—H38	0.9500
C18 - C19	1 5355 (18)	$C_{39}$ $C_{40}$	1.387(2)
C19-C24	1 394 (2)	C30_H30	0.9500
$C_{10} = C_{24}$	1.394(2) 1 3047(10)	C40 H40	0.9500
019-020	1.5947 (19)	C+0—11+0	0.9300
C27—O1—C11	115 90 (10)	C22_C21_H21	120.4
$C_{18} = 0^{2} = C_{34}^{24}$	119.75 (10)	$C_{22} = C_{21} = H_{21}$	120.4
$C_{2}^{2} O_{3}^{3} C_{25}^{25}$	118.60 (13)	$C_{20} = C_{21} = C_{21}$	120.4 120.94(13)
$C_2 = 0_3 = 0_2 C_2 C_3$	118.61 (14)	$C_{23} = C_{22} = C_{21}$	120.94(13) 110.27(12)
$C_{8} = 04 = 020$	110.01(14) 119.46(12)	$C_{23} = C_{22} = C_{12}$	119.27(12) 110.70(11)
$C_2 = C_1 = C_{10}$	110.40(13) 122.47(12)	$C_{21} = C_{22} = C_{12}$	119.79(11)
	133.47(13)	$C_{22} = C_{23} = C_{24}$	119.33 (14)
	107.80 (11)	C22—C23—H23	120.3
03-C2-C1	118.01 (13)	C24—C23—H23	120.3
03-C2-C3	122.65 (13)	C23—C24—C19	121.21 (13)
C1—C2—C3	119.32 (14)	C23—C24—H24	119.4
C4—C3—C2	121.51 (14)	C19—C24—H24	119.4
С4—С3—Н3	119.2	O3—C25—H25A	109.5
С2—С3—Н3	119.2	O3—C25—H25B	109.5
C3—C4—C5	121.07 (14)	H25A—C25—H25B	109.5
C3—C4—H4	119.5	O3—C25—H25C	109.5
C5—C4—H4	119.5	H25A—C25—H25C	109.5
C10—C5—C4	116.08 (14)	H25B—C25—H25C	109.5
C10—C5—C6	116.03 (14)	O4—C26—H26A	109.5
C4—C5—C6	127.84 (14)	O4—C26—H26B	109.5
C7—C6—C5	121.22 (14)	H26A—C26—H26B	109.5
С7—С6—Н6	119.4	O4—C26—H26C	109.5
С5—С6—Н6	119.4	H26A—C26—H26C	109.5
C6—C7—C8	121.50 (14)	H26B—C26—H26C	109.5
С6—С7—Н7	119.3	01-C27-C28	109.42 (11)
C8—C7—H7	119.3	01 - C27 - H27A	109.12 (11)
04 - C8 - C9	117.19(13)	$C_{28}$ $C_{27}$ $H_{27A}$	109.8
04 - C8 - C7	$123 \ 92 \ (14)$	$01 - C^{27} - H^{27B}$	109.8
$C_{1}^{0} C_{2}^{0} C_{1}^{0}$	125.52(14) 118.88(14)	$C_{28} C_{27} H_{27B}$	109.8
$C_{2}^{0} = C_{2}^{0} = C_{1}^{0}$	118.00 (13)	$H_{27}$ $H$	109.8
$C_{8}^{8} = C_{9}^{8} = C_{10}^{18}$	110.99(13) 121 40(12)	112/A = C2/=112/B	100.2
$C_{0} = C_{0} = C_{10}$	131.49(13) 109.56(12)	$C_{29} = C_{28} = C_{33}$	110.75(14)
C10 - C9 - C18	108.30(12)	$C_{29} = C_{20} = C_{27}$	121.33(12)
	113.21(12)	$C_{33} = C_{28} = C_{27}$	119.90 (13)
C9 - C10 - C5	123.21 (14)	$C_{30} = C_{29} = C_{28}$	120.52 (14)
CI = CI0 = CS	125.50 (13)	$C_{30}$ $C_{29}$ $H_{29}$	119.7
01-011-013	111.10 (10)	C28—C29—H29	119.7
	108.72 (10)	C31—C30—C29	120.34 (16)
C13—C11—C1	119.20 (11)	C31—C30—H30	119.8
O1-C11-C18	103.24 (9)	C29—C30—H30	119.8

C13—C11—C18	111.09 (10)	C32—C31—C30	119.38 (15)
C1C11C18	102.01 (10)	C32—C31—H31	120.3
C14—C12—C13	120.71 (13)	C30—C31—H31	120.3
C14—C12—H12	119.6	C31—C32—C33	120.65 (15)
C13—C12—H12	119.6	C31—C32—H32	119.7
C17—C13—C12	118.78 (13)	С33—С32—Н32	119.7
C17—C13—C11	118.42 (11)	C32—C33—C28	120.34 (15)
C12—C13—C11	122.46 (12)	С32—С33—Н33	119.8
C15—C14—C12	118.91 (13)	С28—С33—Н33	119.8
C15—C14—H14	120.5	O2—C34—C35	108.48 (11)
C12—C14—H14	120.5	O2—C34—H34A	110.0
C16—C15—C14	121.71 (13)	C35—C34—H34A	110.0
C16—C15—C11	118.59 (12)	O2—C34—H34B	110.0
C14—C15—C11	119.70 (12)	C35—C34—H34B	110.0
C15—C16—C17	118.71 (13)	H34A—C34—H34B	108.4
C15-C16-H16	120.6	$C_{36} - C_{35} - C_{40}$	118.50 (14)
C17—C16—H16	120.6	$C_{36} - C_{35} - C_{34}$	119 35 (13)
$C_{16}$ $-C_{17}$ $-C_{13}$	121.17 (13)	C40-C35-C34	122 14 (13)
$C_{16}$ $C_{17}$ $H_{17}$	119.4	$C_{37}$ $C_{36}$ $C_{35}$	122.11(15) 120.80(15)
$C_{13}$ $C_{17}$ $H_{17}$	119.4	$C_{37}$ $C_{36}$ $H_{36}$	119.6
02-C18-C9	118.69 (11)	C35 - C36 - H36	119.6
02 - C18 - C19	104 84 (10)	$C_{38} = C_{37} = C_{36}$	120.20(17)
C9-C18-C19	110 59 (11)	$C_{38} = C_{37} = H_{37}$	119.9
$0^{2}-C18-C11$	111.71 (10)	$C_{36} - C_{37} - H_{37}$	119.9
C9-C18-C11	101.83(10)	$C_{37}$ $C_{38}$ $C_{39}$	119.70 (15)
$C_{19}$ $C_{18}$ $C_{11}$	109.05(10)	C37 - C38 - H38	120.2
$C_{24}$ $C_{19}$ $C_{20}$	118 16 (13)	C39 - C38 - H38	120.2
$C_{24}$ $C_{19}$ $C_{18}$	120.05(12)	$C_{38} - C_{39} - C_{40}$	120.14 (16)
$C_{20}$ $C_{19}$ $C_{18}$	120.03(12) 121.67(12)	$C_{38}$ $C_{39}$ $H_{39}$	119.9
$C_{21}$ $C_{20}$ $C_{19}$ $C_{19}$	121.07(12) 121.12(13)	C40-C39-H39	119.9
C21-C20-H20	119.4	$C_{35} - C_{40} - C_{39}$	120.66 (16)
$C_{19}$ $C_{20}$ $H_{20}$	119.1	$C_{35}$ $-C_{40}$ $-H_{40}$	119 7
$C_{22} - C_{21} - C_{20}$	119.19 (13)	C39 - C40 - H40	119.7
022 021 020	(10)		119.7
C25—O3—C2—C1	164.83 (14)	C11—C13—C17—C16	172.21 (12)
$C_{25} - O_{3} - C_{2} - C_{3}$	-16.4(2)	$C_{34} - 0_{2} - C_{18} - C_{9}$	-31.50(16)
$C_{10}$ $C_{1}$ $C_{2}$ $C_{2}$ $C_{3}$	178.58 (12)	C34-O2-C18-C19	-155.53(11)
$C_{11} - C_{1} - C_{2} - C_{3}$	5.4 (2)	$C_{34} = 02 = C_{18} = C_{11}$	86.51 (14)
C10-C1-C2-C3	-0.2(2)	C8-C9-C18-O2	-48.2(2)
$C_{11} - C_{1} - C_{2} - C_{3}$	-173.39(14)	C10-C9-C18-O2	143.42(12)
03-C2-C3-C4	-176.86(14)	C8-C9-C18-C19	72.93 (18)
C1-C2-C3-C4	1.9 (2)	C10-C9-C18-C19	-95.42(12)
C2-C3-C4-C5	-1.6(2)	C8—C9—C18—C11	-171.29(14)
C3—C4—C5—C10	-0.4 (2)	C10—C9—C18—C11	20.36 (13)
C3—C4—C5—C6	-178.05 (15)	O1—C11—C18—O2	-39.72 (13)
C10—C5—C6—C7	-2.3 (2)	C13—C11—C18—O2	79.42 (13)
C4—C5—C6—C7	175.37 (15)	C1—C11—C18—O2	-152.50 (10)
С5—С6—С7—С8	-1.3 (2)	O1—C11—C18—C9	87.97 (11)
	. /		

C26—O4—C8—C9	167.89 (15)	C13—C11—C18—C9	-152.88 (10)
C26—O4—C8—C7	-13.6 (2)	C1—C11—C18—C9	-24.81 (12)
C6—C7—C8—O4	-174.33 (14)	O1—C11—C18—C19	-155.13 (10)
C6—C7—C8—C9	4.1 (2)	C13-C11-C18-C19	-35.98 (14)
O4—C8—C9—C10	175.50 (12)	C1-C11-C18-C19	92.09 (12)
C7—C8—C9—C10	-3.1 (2)	O2—C18—C19—C24	-27.44 (16)
O4—C8—C9—C18	8.1 (2)	C9—C18—C19—C24	-156.49 (12)
C7—C8—C9—C18	-170.44 (14)	C11—C18—C19—C24	92.32 (14)
C8—C9—C10—C1	-177.65 (12)	O2-C18-C19-C20	156.65 (12)
C18—C9—C10—C1	-7.61 (15)	C9-C18-C19-C20	27.60 (17)
C8—C9—C10—C5	-0.7 (2)	C11—C18—C19—C20	-83.59 (15)
C18—C9—C10—C5	169.36 (12)	C24—C19—C20—C21	-1.5 (2)
C2-C1-C10-C9	175.18 (12)	C18—C19—C20—C21	174.45 (12)
C11—C1—C10—C9	-10.03 (15)	C19—C20—C21—C22	0.0 (2)
C2-C1-C10-C5	-1.8 (2)	C20—C21—C22—C23	1.3 (2)
C11—C1—C10—C5	173.01 (12)	C20—C21—C22—Cl2	-178.48 (11)
C4—C5—C10—C9	-174.59 (13)	C21—C22—C23—C24	-1.0 (2)
C6—C5—C10—C9	3.4 (2)	Cl2—C22—C23—C24	178.78 (12)
C4—C5—C10—C1	2.1 (2)	C22—C23—C24—C19	-0.6 (2)
C6-C5-C10-C1	-179.96 (13)	C20-C19-C24-C23	1.8 (2)
C27—O1—C11—C13	65.90 (14)	C18—C19—C24—C23	-174.20 (13)
C27—O1—C11—C1	-67.17 (14)	C11—O1—C27—C28	138.79 (11)
C27—O1—C11—C18	-174.96 (10)	O1—C27—C28—C29	-29.00 (17)
C2-C1-C11-O1	86.75 (17)	O1—C27—C28—C33	151.23 (12)
C10-C1-C11-O1	-86.93 (12)	C33—C28—C29—C30	-0.7 (2)
C2-C1-C11-C13	-41.9 (2)	C27—C28—C29—C30	179.54 (13)
C10-C1-C11-C13	144.40 (12)	C28—C29—C30—C31	0.4 (2)
C2-C1-C11-C18	-164.62 (15)	C29—C30—C31—C32	0.4 (2)
C10-C1-C11-C18	21.69 (13)	C30—C31—C32—C33	-0.9 (3)
C14—C12—C13—C17	0.7 (2)	C31—C32—C33—C28	0.6 (2)
C14—C12—C13—C11	-172.46 (13)	C29—C28—C33—C32	0.2 (2)
O1—C11—C13—C17	35.72 (15)	C27—C28—C33—C32	179.96 (14)
C1—C11—C13—C17	163.29 (12)	C18—O2—C34—C35	159.31 (11)
C18—C11—C13—C17	-78.61 (14)	O2—C34—C35—C36	148.56 (13)
O1—C11—C13—C12	-151.08 (12)	O2—C34—C35—C40	-31.88 (19)
C1-C11-C13-C12	-23.51 (18)	C40—C35—C36—C37	-0.4 (2)
C18—C11—C13—C12	94.59 (14)	C34—C35—C36—C37	179.15 (15)
C13—C12—C14—C15	0.4 (2)	C35—C36—C37—C38	0.7 (3)
C12—C14—C15—C16	-1.0 (2)	C36—C37—C38—C39	-0.4 (3)
C12—C14—C15—Cl1	178.80 (11)	C37—C38—C39—C40	-0.2 (3)
C14-C15-C16-C17	0.5 (2)	C36—C35—C40—C39	-0.1 (2)
Cl1—C15—C16—C17	-179.31 (11)	C34—C35—C40—C39	-179.71 (16)
C15—C16—C17—C13	0.7 (2)	C38—C39—C40—C35	0.5 (3)
C12—C13—C17—C16	-1.2 (2)		

### Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C35–C40 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C34—H34A····Cl1 ⁱ	0.99	2.66	3.4748 (16)	140
С16—Н16…Сдб ^{іі}	0.95	2.70	3.3962 (16)	131

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.