organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-[3-(1H-imidazol-1-yl)propylaminol-3-nitrobenzoate

Yeong Keng Yoon,^a Mohamed Ashraf Ali,^a Tan Soo Choon,^a Wan-Sin Loh^b‡ and Hoong-Kun Fun^b*§

^aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 2 September 2011; accepted 6 September 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.173; data-to-parameter ratio = 21.0.

In the title compound, $C_{15}H_{18}N_4O_4$, the 1*H*-imidazole ring forms a dihedral angle of $67.12 (8)^{\circ}$ with the benzene ring. An S(6) ring motif is formed via an intramolecular N-H···O hydrogen bond. In the crystal, neighbouring molecules are linked by a pair of intermolecular $N-H \cdots N$ hydrogen bonds, forming an inversion dimer. The dimers are further linked by a pair of $C-H \cdots O$ hydrogen bonds, leading to the formation of chain along [021]. A C-H··· π interaction involving the centroid of the benzene ring is also observed between the chains.

Related literature

For applications of phenylenediamines, see: Sabelle (2006); Glebowska et al. (2009); Remusat et al. (2004). For hydrogenbond motifs, see: Bernstein et al. (1995).

‡ Thomson Reuters ResearcherID: C-7581-2009. § Thomson Reuters ResearcherID: A-3561-2009.

15358 measured reflections

 $R_{\rm int} = 0.021$

4470 independent reflections

3627 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART APEXII DUO
  CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\rm min} = 0.958, \ T_{\rm max} = 0.978
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of
$wR(F^2) = 0.173$	independent and constrained
S = 1.05	refinement
4470 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
213 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7-C12 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N1\cdotsO2$ $N1-H1N1\cdotsN3^{i}$ $C15-H15A\cdotsO1^{ii}$ $C1-H1A\cdotsCg1^{iii}$	0.859 (18) 0.859 (18) 0.96 0.93	2.004 (18) 2.345 (17) 2.47 2.90	2.6464 (18) 3.0281 (18) 3.346 (2) 3.5962 (16)	130.9 (15) 136.7 (15) 151 132
Symmetry codes: (i)	-x + 1, -y + 1	, -z + 1; (ii)	-x + 1, -y + 3, -	-z + 2; (iii)

x, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors wish to express their thanks to Universiti Sains Malavsia (USM). Penang, Malavsia, for providing research facilities. HKF and WSL thank USM for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2771).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Glebowska, A., Przybylski, P., Winek, M., Krzyczkowska, P., Krówczyński, A., Szydłowska, J., Pociecha, D. & Górecka, E. (2009). J. Mater. Chem. 19, 1395-1398
- Remusat, V., Terme, T., Gellis, A., Rathelot, P. & Vanelle, P. (2004). J. Heterocycl. Chem. 41, 221-225.
- Sabelle, S. (2006). US Patent 20060005323.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2606 [https://doi.org/10.1107/S1600536811036300]

Ethyl 4-[3-(1H-imidazol-1-yl)propylamino]-3-nitrobenzoate

Yeong Keng Yoon, Mohamed Ashraf Ali, Tan Soo Choon, Wan-Sin Loh and Hoong-Kun Fun

S1. Comment

Nitrophenyleneamine is an important class of compounds in organic synthetic chemistry. They are most of the time used to synthesize phenylenediamines by reducing the nitro (NO₂) group to amine (NH₂). Phenylenediamines themselves are then used as composition in making dyes (Sabelle, 2006), metallomesogens (Glebowska *et al.*, 2009) as well as ligand precursors. Condensation of substituted *o*-phenylenediamine with various diketones is then used in the preparation of a variety of pharmaceuticals (Remusat *et al.*, 2004).

In the title compound (Fig. 1), the 1*H*-imidazole (C1/C2/N3/C3/N2) is almost planar with a maximum deviation of 0.003 (2) Å at atom C3 and it forms a dihedral angle of 67.12 (8)° with the benzene ring (C7–C12). An *S*(6) ring motif (Bernstein *et al.*, 1995) is formed *via* an intramolecular N1—H1N1···O2 hydrogen bond (Table 1).

In the crystal packing (Fig. 2), pairs of intermolecular N1—H1N1…N3 and C15—H15A…O1 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers, leading to the formation of chains along the [021]. The crystal packing is further stabilized by a C—H… π interaction (Table 1), involving the centroid of the benzene ring (*Cg*1).

S2. Experimental

Ethyl-4-fluro-3-nitro benzoate (4.6 mmol) in dichloromethane (20 mL) was added into the solution of 3-(1*H*-imidazole-1yl)propane-1-amine (7.0 mmol) and *N*, *N*-diisopropylethylamine (5.6 mmol) in dichloromethane (20 mL). The reaction mixture was stirred overnight at room temperature. After completion of the reaction, evidenced by TLC analysis. The reaction mixture was washed with water (10 mL \times 2) and 10% Na₂CO₃ (10 ml \times 2). The dichloromethane layer was collected and dried over Na₂SO₄. The organic layer was concentrated under reduced pressure to afford white-colored crystals.

S3. Refinement

Atom H1N1 was located in a difference Fourier map and was refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$ (C—H = 0.93–0.97 Å). A rotating group model was applied to the methyl group. Three outliners were omitted for the final refinement, 0 -1 4, -5 0 4 and -4 0 5.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Ethyl 4-[3-(1H-imidazol-1-yl)propylamino]-3-nitrobenzoate

Crystal data

 $\begin{array}{l} C_{15}H_{18}N_4O_4\\ M_r = 318.33\\ Triclinic, P1\\ Hall symbol: -P1\\ a = 8.4860 (4) Å\\ b = 8.6175 (4) Å\\ c = 11.7507 (6) Å\\ a = 77.489 (1)^{\circ}\\ \beta = 81.732 (1)^{\circ}\\ \gamma = 67.977 (1)^{\circ}\\ V = 775.83 (7) Å^3 \end{array}$

Data collection

Bruker SMART APEXII DUO CCD area
detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.958, \ T_{\max} = 0.978$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.173$	neighbouring sites
<i>S</i> = 1.05	H atoms treated by a mixture of independent
4470 reflections	and constrained refinement
213 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1056P)^2 + 0.1039P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Z = 2

F(000) = 336 $D_x = 1.363 \text{ Mg m}^{-3}$

 $\theta = 2.6 - 32.5^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, yellow

 $0.43 \times 0.37 \times 0.23$ mm

15358 measured reflections 4470 independent reflections 3627 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$

T = 297 K

 $R_{\rm int} = 0.021$

 $h = -11 \rightarrow 11$ $k = -11 \rightarrow 12$ $l = -16 \rightarrow 16$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6626 reflections

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and is	otropic or equivalent is	otropic displacement	parameters (.	(Ų)	
--------------------------------------	--------------------------	----------------------	---------------	-----	--

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.70039 (15)	1.08819 (19)	0.76638 (14)	0.0819 (4)
O2	0.66111 (13)	0.92725 (15)	0.66648 (11)	0.0630 (3)

O3	0.28465 (12)	1.36380 (12)	1.04716 (9)	0.0495 (2)
O4	0.04276 (15)	1.30975 (15)	1.09224 (9)	0.0602 (3)
N1	0.39536 (14)	0.82823 (14)	0.71627 (10)	0.0439 (3)
N2	0.16593 (13)	0.56169 (13)	0.55424 (9)	0.0411 (2)
N3	0.32584 (19)	0.38579 (17)	0.43667 (11)	0.0598 (3)
N4	0.61326 (13)	1.01531 (14)	0.74276 (10)	0.0457 (3)
C1	0.1987 (2)	0.4015 (2)	0.61436 (12)	0.0579 (4)
H1A	0.1613	0.3702	0.6912	0.069*
C2	0.2965 (2)	0.29595 (19)	0.54111 (13)	0.0586 (4)
H2A	0.3376	0.1779	0.5601	0.070*
C3	0.2444 (2)	0.5452 (2)	0.44782 (13)	0.0605 (4)
H3A	0.2415	0.6368	0.3883	0.073*
C4	0.06090 (17)	0.72024 (18)	0.59566 (13)	0.0511 (3)
H4A	0.0024	0.6934	0.6702	0.061*
H4B	-0.0249	0.7878	0.5406	0.061*
C5	0.16440 (18)	0.82458 (16)	0.60979 (12)	0.0487 (3)
H5A	0.0879	0.9313	0.6318	0.058*
H5B	0.2240	0.8505	0.5355	0.058*
C6	0.29333 (16)	0.73156 (15)	0.70181 (11)	0.0423 (3)
H6A	0.2332	0.7064	0.7760	0.051*
H6B	0.3686	0.6242	0.6801	0.051*
C7	0.34741 (14)	0.94586 (14)	0.78555 (10)	0.0364 (2)
C8	0.18281 (16)	0.98950 (16)	0.84576 (11)	0.0432 (3)
H8A	0.1076	0.9408	0.8327	0.052*
C9	0.13241 (16)	1.10113 (16)	0.92231 (11)	0.0435 (3)
H9A	0.0238	1.1261	0.9598	0.052*
C10	0.23935 (15)	1.17874 (14)	0.94578 (10)	0.0383 (2)
C11	0.39749 (15)	1.14588 (14)	0.88549 (10)	0.0379 (2)
H11A	0.4695	1.1985	0.8982	0.045*
C12	0.44984 (14)	1.03452 (14)	0.80583 (10)	0.0361 (2)
C13	0.17697 (17)	1.28977 (15)	1.03544 (10)	0.0417 (3)
C14	0.22780 (19)	1.47706 (18)	1.13211 (12)	0.0512 (3)
H14A	0.2402	1.4115	1.2107	0.061*
H14B	0.1087	1.5475	1.1245	0.061*
C15	0.3332 (3)	1.5847 (2)	1.10987 (17)	0.0705 (5)
H15A	0.2972	1.6612	1.1648	0.106*
H15B	0.3203	1.6488	1.0319	0.106*
H15C	0.4506	1.5140	1.1185	0.106*
H1N1	0.495 (2)	0.808 (2)	0.6809 (15)	0.058 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0597 (7)	0.1035 (10)	0.1167 (11)	-0.0523 (7)	0.0326 (7)	-0.0724 (9)
O2	0.0512 (5)	0.0719 (7)	0.0792 (7)	-0.0281 (5)	0.0258 (5)	-0.0497 (6)
03	0.0513 (5)	0.0525 (5)	0.0546 (5)	-0.0209 (4)	0.0062 (4)	-0.0319 (4)
04	0.0660 (6)	0.0713 (7)	0.0563 (6)	-0.0357 (5)	0.0245 (5)	-0.0365 (5)
N1	0.0431 (5)	0.0441 (5)	0.0525 (6)	-0.0187 (4)	0.0085 (4)	-0.0272 (4)

supporting information

N2	0.0406 (5)	0.0477 (5)	0.0404 (5)	-0.0169 (4)	0.0025 (4)	-0.0202 (4)
N3	0.0698 (8)	0.0594 (7)	0.0533 (7)	-0.0226 (6)	0.0142 (6)	-0.0296 (6)
N4	0.0406 (5)	0.0446 (5)	0.0577 (6)	-0.0183 (4)	0.0090 (4)	-0.0235 (5)
C1	0.0748 (9)	0.0574 (8)	0.0400 (6)	-0.0233 (7)	0.0052 (6)	-0.0120 (6)
C2	0.0720 (9)	0.0480 (7)	0.0528 (8)	-0.0128 (6)	-0.0063 (7)	-0.0170 (6)
C3	0.0832 (10)	0.0545 (8)	0.0434 (7)	-0.0261 (7)	0.0163 (7)	-0.0186 (6)
C4	0.0396 (6)	0.0556 (7)	0.0600 (8)	-0.0093 (5)	-0.0002 (5)	-0.0302 (6)
C5	0.0544 (7)	0.0413 (6)	0.0514 (7)	-0.0126 (5)	-0.0025 (5)	-0.0194 (5)
C6	0.0470 (6)	0.0380 (5)	0.0482 (6)	-0.0172 (5)	0.0019 (5)	-0.0203 (5)
C7	0.0416 (5)	0.0336 (5)	0.0368 (5)	-0.0146 (4)	0.0032 (4)	-0.0133 (4)
C8	0.0458 (6)	0.0454 (6)	0.0478 (6)	-0.0245 (5)	0.0110 (5)	-0.0215 (5)
C9	0.0470 (6)	0.0436 (6)	0.0454 (6)	-0.0221 (5)	0.0132 (5)	-0.0193 (5)
C10	0.0463 (6)	0.0359 (5)	0.0357 (5)	-0.0165 (4)	0.0053 (4)	-0.0144 (4)
C11	0.0416 (5)	0.0356 (5)	0.0407 (5)	-0.0157 (4)	0.0012 (4)	-0.0143 (4)
C12	0.0373 (5)	0.0344 (5)	0.0386 (5)	-0.0136 (4)	0.0043 (4)	-0.0136 (4)
C13	0.0500 (6)	0.0406 (6)	0.0379 (5)	-0.0179 (5)	0.0047 (4)	-0.0159 (4)
C14	0.0616 (8)	0.0506 (7)	0.0481 (7)	-0.0195 (6)	0.0019 (6)	-0.0275 (5)
C15	0.0860 (12)	0.0714 (10)	0.0742 (10)	-0.0428 (9)	0.0087 (9)	-0.0364 (8)

Geometric parameters (Å, °)

01—N4	1.2251 (15)	C5—C6	1.5217 (19)	
O2—N4	1.2261 (14)	С5—Н5А	0.9700	
O3—C13	1.3313 (15)	С5—Н5В	0.9700	
O3—C14	1.4533 (14)	С6—Н6А	0.9700	
O4—C13	1.2067 (16)	C6—H6B	0.9700	
N1—C7	1.3449 (13)	C7—C8	1.4249 (16)	
N1-C6	1.4551 (15)	C7—C12	1.4257 (15)	
N1—H1N1	0.856 (19)	C8—C9	1.3686 (15)	
N2—C3	1.3395 (16)	C8—H8A	0.9300	
N2-C1	1.3518 (19)	C9—C10	1.3978 (17)	
N2-C4	1.4657 (15)	С9—Н9А	0.9300	
N3—C3	1.3120 (19)	C10-C11	1.3826 (16)	
N3—C2	1.346 (2)	C10—C13	1.4840 (15)	
N4—C12	1.4440 (15)	C11—C12	1.3944 (14)	
C1—C2	1.351 (2)	C11—H11A	0.9300	
C1—H1A	0.9300	C14—C15	1.476 (2)	
C2—H2A	0.9300	C14—H14A	0.9700	
С3—НЗА	0.9300	C14—H14B	0.9700	
C4—C5	1.5186 (19)	C15—H15A	0.9600	
C4—H4A	0.9700	C15—H15B	0.9600	
C4—H4B	0.9700	C15—H15C	0.9600	
C13—O3—C14	115.30 (10)	С5—С6—Н6В	108.9	
C7—N1—C6	124.49 (10)	H6A—C6—H6B	107.8	
C7—N1—H1N1	116.5 (12)	N1—C7—C8	119.86 (10)	
C6—N1—H1N1	119.0 (12)	N1—C7—C12	125.14 (10)	
C3—N2—C1	105.75 (12)	C8—C7—C12	115.00 (9)	

C3—N2—C4	127.17 (12)	C9—C8—C7	121.81 (11)
C1—N2—C4	127.05 (11)	С9—С8—Н8А	119.1
C3—N3—C2	104.48 (12)	С7—С8—Н8А	119.1
O1—N4—O2	121.58 (11)	C8—C9—C10	121.93 (11)
O1—N4—C12	119.17 (10)	С8—С9—Н9А	119.0
O2—N4—C12	119.25 (10)	С10—С9—Н9А	119.0
C2-C1-N2	106.62 (13)	C11—C10—C9	118.24 (10)
C2-C1-H1A	126.7	C11—C10—C13	123.90 (11)
N2—C1—H1A	126.7	C9-C10-C13	117.86 (10)
N3-C2-C1	110.43 (13)	C10-C11-C12	120.55 (11)
N3-C2-H2A	124.8	C10-C11-H11A	1197
C1 - C2 - H2A	124.8	C12—C11—H11A	119.7
N3-C3-N2	112 72 (13)	$C_{11} - C_{12} - C_{7}$	122 29 (10)
N3-C3-H3A	123.6	C11 - C12 - N4	116 41 (10)
N2—C3—H3A	123.6	C7-C12-N4	121 29 (9)
$N_2 - C_4 - C_5$	112,73 (10)	04-C13-O3	123.29(9) 123.64(11)
N2-C4-H4A	109.0	04-C13-C10	123.01(11) 123.26(11)
$C_5 - C_4 - H_4 A$	109.0	03-C13-C10	123.20(11) 113.10(10)
N2-C4-H4B	109.0	03-C14-C15	108.04(12)
$C_5 - C_4 - H_4B$	109.0	O_3 — C_{14} — H_{14A}	110.1
H4A—C4—H4B	107.8	C15—C14—H14A	110.1
C4-C5-C6	112 09 (11)	O_3 — C_{14} — H_{14B}	110.1
C4—C5—H5A	109.2	C15—C14—H14B	110.1
C6-C5-H5A	109.2	H_{14A} $-C_{14}$ $-H_{14B}$	108.4
C4—C5—H5B	109.2	C14— $C15$ — $H15A$	109.5
C6-C5-H5B	109.2	C14—C15—H15B	109.5
H5A-C5-H5B	107.9	H15A-C15-H15B	109.5
N1-C6-C5	113 19 (11)	C14— $C15$ — $H15C$	109.5
N1-C6-H6A	108.9	H15A - C15 - H15C	109.5
C5-C6-H6A	108.9	H15B-C15-H15C	109.5
N1-C6-H6B	108.9		109.5
	100.9		
C3—N2—C1—C2	0.29 (18)	C9—C10—C11—C12	-1.70(18)
C4—N2—C1—C2	178.23 (13)	C13—C10—C11—C12	177.37 (10)
C3—N3—C2—C1	-0.4(2)	C10—C11—C12—C7	-2.12(18)
N2-C1-C2-N3	0.0 (2)	C10—C11—C12—N4	176.86 (11)
C2—N3—C3—N2	0.6 (2)	N1-C7-C12-C11	-175.11(11)
C1-N2-C3-N3	-0.5(2)	C8-C7-C12-C11	4.66 (17)
C4—N2—C3—N3	-178.48(13)	N1—C7—C12—N4	5.96 (19)
C3—N2—C4—C5	-70.00(19)	C8-C7-C12-N4	-174.27(11)
C1-N2-C4-C5	112.49 (16)	01—N4—C12—C11	4.07 (19)
N2-C4-C5-C6	-62.97(15)	02-N4-C12-C11	-175.55(12)
C7—N1—C6—C5	85.02 (15)	01—N4—C12—C7	-176.93(13)
C4—C5—C6—N1	179.45 (10)	O2—N4—C12—C7	3.44 (19)
C6—N1—C7—C8	-3.56 (19)	C14—O3—C13—O4	-1.8 (2)
C6—N1—C7—C12	176.19 (11)	C14—O3—C13—C10	178.66 (10)
N1—C7—C8—C9	176.17 (12)	C11—C10—C13—O4	-175.61 (13)
C12—C7—C8—C9	-3.61(18)	C9—C10—C13—O4	3.5 (2)
			(-)

supporting information

C7—C8—C9—C10	0.0 (2)	C11—C10—C13—O3	3.97 (18)
C8—C9—C10—C11	2.76 (19)	C9—C10—C13—O3	-176.96 (11)
C8—C9—C10—C13	-176.37 (12)	C13—O3—C14—C15	-163.51 (13)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 benzene ring.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H… <i>A</i>
N1—H1 <i>N</i> 1…O2	0.859 (18)	2.004 (18)	2.6464 (18)	130.9 (15)
N1—H1 <i>N</i> 1····N3 ⁱ	0.859 (18)	2.345 (17)	3.0281 (18)	136.7 (15)
C15—H15A…O1 ⁱⁱ	0.96	2.47	3.346 (2)	151
C1—H1A···Cg1 ⁱⁱⁱ	0.93	2.90	3.5962 (16)	132

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+3, -*z*+2; (iii) *x*, *y*-1, *z*.