Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-{[(Benzyloxy)carbonyl]amino}butanoic acid

Taira Kimino^a and Isao Fujii^{b*}

^aDepartment of Biological Science and Technology, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan, and ^bSchool of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp

Received 27 August 2011; accepted 29 August 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.131; data-to-parameter ratio = 15.5.

In the title compound, $C_{12}H_{15}NO_4$, the butyric acid group has a stretched trans conformation. The dihedral angle between the phenyl ring and the oxycarboxyamino N-(C=O)-O-Cplane is 56.6 $(2)^{\circ}$. In the crystal, an inversion dimer is formed by a pair of $O-H \cdots O$ hydrogen bonds. The dimers are further linked by $N-H \cdots O$ hydrogen bonds between amide groups, forming a tape along the b axis.

Related literature

For general background to 3-aminobutanoic acid, see: Cohen et al. (2011). For bond-length data, see: Allen et al. (1987). For structures of related metallo-organic compounds, see: Bryan et al. (1961); Böhm & Seebach (2000); Gross & Vahrenkamo (2005).

Experimental

Crystal data

C ₁₂ H ₁₅ NO ₄
$M_r = 237.25$
Monoclinic, $P2_1/c$
a = 23.1413 (7) Å
b = 4.9589 (4) Å
c = 11.0879 (6) Å
$\beta = 103.075 \ (6)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.74, \ T_{\max} = 0.856$ 2696 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a
$wR(F^2) = 0.131$	independent and co
S = 1.02	refinement
2547 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
164 parameters	$\Delta \rho_{\min} = -0.14 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O1 - H1 \cdots O2^{i}$ $N1 - HN1 \cdots O3^{ii}$	1.18 (3) 0.85 (2)	1.48 (3) 2.04 (2)	2.650 (2) 2.865 (2)	177 (2) 165 (2)
Summatry and an (i)	x y 1 m	1. (ii) x y 1	-	

V = 1239.41 (13) Å³

2547 independent reflections

1669 reflections with $> 2\sigma(i)$

intensity decay: none

3 standard reflections every 300

atoms treated by a mixture of

independent and constrained

Cu Ka radiation $\mu = 0.8 \text{ mm}^-$

Z = 4

T = 297 K $0.4 \times 0.2 \times 0.2 \text{ mm}$

 $R_{\rm int} = 0.023$

reflections

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y - 1, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

The authors would like to thank T. Watadani of Daito Chem and Dr Y. Takahasi for their experimental support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2769).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Böhm, A. & Seebach, D. (2000). Helv. Chim. Acta. 83, 3262-3278.

Bryan, R. F., Poltak, R. J. & Tomita, K.-I. (1961). Acta Cryst. 14, 1125-1130.

Cohen, Y., Rubin, A. E. & Vaknin, M. (2011). Eur. J. Plant Pathol. 130, 13-27. Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Gross, F. & Vahrenkamo, H. (2005). Inorg. Chem. 44, 4433-4440.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2560 [https://doi.org/10.1107/S1600536811035276]

3-{[(Benzyloxy)carbonyl]amino}butanoic acid

Taira Kimino and Isao Fujii

S1. Comment

Solid-phase synthesis is now the accepted method for peptide synthesis, in which the protected natural or non-natural amino acids are widely used. 3-Aminobutanoic acid (BABA) is one of the non-protein amino acids, and it attracts attentions to building block. At the same time, BABA potentially possesses various bioactivities. Downy mildew of lettuce (*Bremia lactucae*) is a serious disease, but BABA is considered with one of the disease resistance inducers (Cohen *et al.*, 2011). Despite the agrichemical or pharmaceutical desires, crystal structures of BABA derivatives have not been cleared except for the structures of some metallo-organic compounds (Bryan *et al.*, 1961; Gross & Vahrenkamo, 2005; Böhm & Seebach, 2000) because of its difficulty in crystallization.

Fortunately, the title compound, 3-benzyloxycarbonylaminobutanoic acid (Cbz-BABA), (I), was crystallized, and we herein report on the crystal structure. The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges except for the O-H bond length at the carboxy dimer. The part of BABA is essentially similar with that reported by Gross & Vahrenkamo (2005). The butyric acid group owns a stretched *trans*-conformation (O1-C1-C2-C3-C4). At the β -position the benzyloxycarboxyamino group is attached perpendicular to the butyric acid group. The phenyl group is twisted against the least-squares plane of the oxycarboxyamino group (N1/C5/O3/O4/C6/C7) with the dihedral angle of 56.6 (2)°.

In the crystal structure, an enantiomer makes a planar structure with the intermolecular hydrogen bond (N1—HN1 \cdots O3) along the *b* axis. The planar structure is stacked to the enantiopure layer along the *c* axis. The carboxy dimer is made from the enantiomeric isomers with the intermolecular hydrogen bond (O1—H1 \cdots O2). The H atom is shared by carboxy dimer then the bond distance O1—H1 is longer than that of general carboxy group. The hydrophobic and hydrophilic layers are well separated along the *a* axis. The structure shows a herring bone stacking mode (Fig. 2).

S2. Experimental

The title compound was purchased from Aldrich-Sigma Co. Ltd. Rod-like colourless crystals suitable for X-ray diffraction were obtained by vapour-phase diffusion of an ethanol and chloroform mixture solution at 297 K.

S3. Refinement

All H atoms were located in a difference-Fourier map. H atoms bonded to N and O atoms were then refined isotropically. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing view of the title compound. Dashed lines indicate O—H···O and N—H···O interactions [symmetry codes: (i) - x, 1 - y, 1 - z; (ii) x, y - 1, z].

3-{[(Benzyloxy)carbonyl]amino}butanoic acid

Crystal data

C₁₂H₁₅NO₄ $M_r = 237.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 23.1413 (7) Å b = 4.9589 (4) Å c = 11.0879 (6) Å $\beta = 103.075$ (6)° V = 1239.41 (13) Å³ Z = 4 F(000) = 504 $D_x = 1.271 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 25 reflections $\theta = 30.0-35.0^{\circ}$ $\mu = 0.8 \text{ mm}^{-1}$ T = 297 KRod, colourless $0.4 \times 0.2 \times 0.2 \text{ mm}$ Data collection

Duiu concention	
Enraf–Nonius CAD-4 diffractometer	1669 reflections with $> 2\sigma(i)$ R _{int} = 0.023
Radiation source: sealed X-ray tube	$\theta_{\text{max}} = 74.9^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
$\omega/2\theta$ scans	$h = -28 \rightarrow 28$
Absorption correction: ψ scan	$k = -6 \rightarrow 0$
(North <i>et al.</i> , 1968)	$l = -13 \rightarrow 0$
$T_{\min} = 0.74, \ T_{\max} = 0.856$	3 standard reflections every 300 reflections
2696 measured reflections	intensity decay: none
2547 independent reflections	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of independent
$wR(F^2) = 0.131$	and constrained refinement
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0542P)^2 + 0.3091P]$
2547 reflections	where $P = (F_o^2 + 2F_c^2)/3$
164 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL9/ (Sheldrick,
Secondary atom site location: difference Fourier	2008), FC =KFC[1+0.001XFC ² Λ^3 /SIN(2 Θ)] ^{-1/4}
map	Extinction coefficient: 0.0020 (4)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.00381 (6)	0.2239 (3)	0.60261 (14)	0.0693 (5)	
O2	0.05705 (6)	0.5990 (3)	0.61469 (14)	0.0671 (5)	
03	0.20820 (7)	0.8467 (3)	0.78378 (18)	0.0841 (7)	
O4	0.25967 (6)	0.5196 (3)	0.71327 (15)	0.0686 (5)	
N1	0.18104 (7)	0.4105 (3)	0.78288 (15)	0.0513 (5)	
C1	0.04634 (8)	0.3818 (4)	0.65874 (18)	0.0501 (6)	
C2	0.07918 (8)	0.2819 (4)	0.78120 (17)	0.0536 (6)	
C3	0.13228 (8)	0.4484 (4)	0.84471 (16)	0.0511 (6)	
C4	0.15096 (11)	0.3763 (6)	0.9808 (2)	0.0862 (9)	
C5	0.21503 (8)	0.6116 (4)	0.76220 (18)	0.0536 (6)	
C6	0.29917 (11)	0.7210 (6)	0.6843 (3)	0.1074 (13)	
C7	0.34503 (10)	0.5785 (5)	0.6328 (3)	0.0770 (9)	
C8	0.40323 (12)	0.6072 (8)	0.6870 (3)	0.1103 (13)	
C9	0.44560 (14)	0.4824 (10)	0.6379 (4)	0.142 (2)	

supporting information

C10	0.4307 (2)	0.3267 (10)	0.5382 (5)	0.150 (2)
C11	0.3731 (2)	0.2940 (10)	0.4833 (4)	0.1460 (19)
C12	0.32992 (13)	0.4217 (8)	0.5303 (3)	0.1111 (13)
H1	-0.0229 (13)	0.297 (7)	0.505 (3)	0.135 (11)*
HN1	0.1926 (9)	0.252 (5)	0.7727 (19)	0.066 (6)*
H2A	0.09260	0.09990	0.77080	0.0640*
H2B	0.05180	0.27210	0.83560	0.0640*
H3	0.12080	0.63910	0.83810	0.0610*
H4A	0.16100	0.18830	0.98910	0.1290*
H4B	0.11890	0.41270	1.02020	0.1290*
H4C	0.18490	0.48230	1.01930	0.1290*
H6A	0.31780	0.82000	0.75840	0.1290*
H6B	0.27740	0.84750	0.62410	0.1290*
H8	0.41460	0.71210	0.75800	0.1320*
H9	0.48550	0.50720	0.67510	0.1710*
H10	0.45980	0.24110	0.50670	0.1790*
H11	0.36230	0.18520	0.41350	0.1750*
H12	0.29020	0.39990	0.49140	0.1330*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0694 (9)	0.0549 (8)	0.0760 (10)	-0.0139 (7)	0.0005 (7)	0.0066 (7)
O2	0.0658 (9)	0.0513 (8)	0.0775 (10)	-0.0062 (7)	0.0023 (7)	0.0186 (7)
O3	0.0803 (11)	0.0347 (7)	0.1441 (16)	0.0014 (7)	0.0394 (10)	-0.0024 (8)
O4	0.0618 (8)	0.0487 (8)	0.1039 (11)	-0.0028 (6)	0.0369 (8)	0.0035 (8)
N1	0.0533 (9)	0.0339 (8)	0.0699 (10)	0.0031 (7)	0.0207 (7)	-0.0012 (7)
C1	0.0456 (9)	0.0415 (9)	0.0642 (11)	0.0040 (8)	0.0145 (8)	0.0028 (9)
C2	0.0532 (10)	0.0466 (10)	0.0626 (12)	0.0030 (8)	0.0162 (9)	0.0091 (9)
C3	0.0533 (10)	0.0466 (10)	0.0551 (11)	0.0056 (8)	0.0161 (8)	-0.0010 (8)
C4	0.0801 (15)	0.119 (2)	0.0582 (13)	0.0027 (16)	0.0129 (11)	0.0025 (14)
C5	0.0518 (10)	0.0385 (10)	0.0696 (12)	0.0031 (8)	0.0119 (9)	0.0036 (9)
C6	0.0802 (16)	0.0665 (16)	0.194 (3)	-0.0051 (13)	0.0697 (19)	0.0239 (19)
C7	0.0555 (12)	0.0749 (16)	0.1052 (19)	-0.0028 (11)	0.0281 (12)	0.0230 (15)
C8	0.0677 (16)	0.140 (3)	0.124 (2)	-0.0100 (18)	0.0234 (16)	-0.005 (2)
C9	0.0618 (17)	0.180 (4)	0.190 (4)	0.009 (2)	0.038 (2)	0.004 (3)
C10	0.123 (3)	0.147 (4)	0.212 (5)	0.000 (3)	0.108 (3)	-0.013 (3)
C11	0.148 (3)	0.170 (4)	0.142 (3)	-0.040 (3)	0.079 (3)	-0.037 (3)
C12	0.0780 (18)	0.142 (3)	0.113 (2)	-0.017 (2)	0.0209 (17)	0.007 (2)

Geometric parameters (Å, °)

01—C1	1.301 (2)	C9—C10	1.328 (7)	
O2—C1	1.231 (2)	C10—C11	1.344 (7)	
O3—C5	1.208 (2)	C11—C12	1.381 (6)	
O4—C5	1.350 (2)	C2—H2A	0.9700	
O4—C6	1.438 (3)	C2—H2B	0.9700	
01—H1	1.18 (3)	С3—Н3	0.9800	

supporting information

N1—C3	1.459 (2)	C4—H4A	0.9600
N1—C5	1.322 (3)	C4—H4B	0.9600
N1—HN1	0.85 (2)	C4—H4C	0.9600
C1—C2	1.483 (3)	C6—H6A	0.9700
C2—C3	1.515 (3)	C6—H6B	0.9700
C3—C4	1.515 (3)	С8—Н8	0.9300
C6—C7	1 492 (4)	С9—Н9	0.9300
C7—C12	1 356 (5)	C10—H10	0.9300
C7—C8	1 353 (4)	C11—H11	0.9300
C_{8}	1 372 (5)	C12—H12	0.9300
	1.572 (5)		0.9500
O1…C2 ⁱ	3.357 (2)	H1…O1 ⁱⁱⁱ	2.74 (3)
01…01 ⁱⁱ	3.156 (2)	H1····O2 ⁱⁱⁱ	1.48 (3)
O1…O2 ⁱⁱⁱ	2.650 (2)	H1····C1 ⁱⁱⁱ	2.38 (3)
O2…O1 ⁱⁱⁱ	2.650 (2)	$H1\cdots H1^{iii}$	2.29 (5)
O2…N1	3.188 (2)	HN1····O3 ^{vii}	2.04 (2)
O2…C1 ⁱⁱⁱ	3.412 (2)	HN1…H2A	2.4300
O3…N1 ^{iv}	2.865 (2)	H2A…HN1	2.4300
O1···H2B ⁱ	2.7500	H2A····H3 ^{vii}	2.4500
01…H1 ⁱⁱⁱ	2.74 (3)	H2B···H4B	2.3800
O2···H2B ^v	2.8300	H2B···O1 ^v	2.7500
O2…H3	2.5900	H2B····O2 ⁱ	2.8300
O2…H1 ⁱⁱⁱ	1.48 (3)	H2B···C1 ⁱ	3.0000
O3…HN1 ^{iv}	2.04 (2)	H3…O2	2.5900
O3…H3	2.4600	H3…O3	2.4600
O3…H6A	2.6200	H3···H2A ^{iv}	2.4500
O3…H6B	2.6400	H4B…H2B	2.3800
O3···H12 ^{vi}	2.9200	H4B…C1 ^{ix}	2.9100
O4…H12	2.7700	H4C···H6B ^{vi}	2.3500
N102	3.188 (2)	H6A····O3	2.6200
N1···O3 ^{vii}	2.865 (2)	H6A···H8	2.3000
C1O2 ⁱⁱⁱ	3.412 (2)	H6BO3	2.6400
$C^{2}\cdots O^{1}v$	3 357 (2)	H6B···H4C ^x	2,3500
$C1\cdots H2B^{v}$	3,0000	H8H6A	2,3000
C1···H1 ⁱⁱⁱ	2.38(3)	H12····O4	2.7700
C1···H4B ^{viii}	2.9100	$H12 \cdots O3^{x}$	2.9200
	2.9100		2.9200
C5—O4—C6	115.96 (18)	C3—C2—H2B	108.00
C1—O1—H1	116.0 (16)	H2A—C2—H2B	107.00
C3—N1—C5	122.56 (16)	N1—C3—H3	108.00
C5—N1—HN1	117.3 (15)	С2—С3—Н3	108.00
C3—N1—HN1	118.9 (15)	C4—C3—H3	108.00
O1—C1—O2	122.37 (18)	C3—C4—H4A	109.00
O1—C1—C2	114.36 (17)	C3—C4—H4B	109.00
O2—C1—C2	123.24 (18)	C3—C4—H4C	109.00
C1—C2—C3	115.92 (16)	H4A—C4—H4B	110.00
C2—C3—C4	110.66 (17)	H4A—C4—H4C	109.00
N1—C3—C2	110.09 (15)	H4B—C4—H4C	109.00

N1—C3—C4	111.15 (17)	O4—C6—H6A	110.00
O3—C5—N1	125.75 (19)	O4—C6—H6B	110.00
O3—C5—O4	123.51 (18)	С7—С6—Н6А	110.00
O4—C5—N1	110.74 (17)	С7—С6—Н6В	110.00
O4—C6—C7	107.4 (2)	H6A—C6—H6B	109.00
C6—C7—C8	120.2 (3)	С7—С8—Н8	120.00
C6—C7—C12	121.4 (3)	С9—С8—Н8	120.00
C8—C7—C12	118.4 (3)	С8—С9—Н9	119.00
С7—С8—С9	120.4 (3)	С10—С9—Н9	119.00
C8—C9—C10	121.2 (4)	C9—C10—H10	120.00
C9—C10—C11	119.4 (4)	C11—C10—H10	120.00
C10-C11-C12	120.1 (4)	C10-C11-H11	120.00
C7—C12—C11	120.5 (3)	C12—C11—H11	120.00
C1—C2—H2A	108.00	C7—C12—H12	120.00
C1—C2—H2B	108.00	C11—C12—H12	120.00
C3—C2—H2A	108.00		
C6—O4—C5—O3	-1.5 (3)	O4—C6—C7—C8	-122.5 (3)
C6—O4—C5—N1	178.82 (19)	O4—C6—C7—C12	58.6 (4)
C5—O4—C6—C7	179.6 (2)	C6—C7—C8—C9	-178.2 (3)
C5—N1—C3—C2	139.00 (18)	C12—C7—C8—C9	0.7 (5)
C5—N1—C3—C4	-98.0 (2)	C6—C7—C12—C11	179.3 (3)
C3—N1—C5—O3	-4.8 (3)	C8—C7—C12—C11	0.3 (5)
C3—N1—C5—O4	174.88 (16)	C7—C8—C9—C10	-1.4 (7)
O1—C1—C2—C3	175.10 (16)	C8—C9—C10—C11	1.0 (8)
O2—C1—C2—C3	-6.8 (3)	C9-C10-C11-C12	0.1 (7)
C1-C2-C3-N1	-73.0 (2)	C10-C11-C12-C7	-0.8 (7)
C1—C2—C3—C4	163.72 (18)		

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+3/2; (ii) -*x*, -*y*, -*z*+1; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*, *y*+1, *z*; (v) -*x*, *y*+1/2, -*z*+3/2; (vi) *x*, -*y*+3/2, *z*+1/2; (vii) *x*, *y*-1, *z*; (viii) *x*, -*y*+1/2, *z*-1/2; (ix) *x*, -*y*+1/2, *z*+1/2; (x) *x*, -*y*+3/2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
01—H1…O2 ⁱⁱⁱ	1.18 (3)	1.48 (3)	2.650 (2)	177 (2)
N1—HN1···O3 ^{vii}	0.85 (2)	2.04 (2)	2.865 (2)	165 (2)
С3—Н3…О3	0.98	2.46	2.825 (3)	101

Symmetry codes: (iii) -x, -y+1, -z+1; (vii) x, y-1, z.