Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N-(Anthracen-9-ylmethylidene)-4-nitroaniline

K. Geetha,^a* D. K. Andrew Prasanna Kumar,^b D. Lakshmanan,^c R. Savitha^a and S. Murugavel^d*

^aDepartment of Chemistry, SRM University, Vadapalani Campus, Chennai 600 026, India, ^bDepartment of Physics, Voorhees College, Vellore 632 001, India, ^cDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, and ^dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India. Correspondence e-mail: geethaorgchem@gmail.com, smurugavel27@gmail.com

Received 21 August 2011; accepted 2 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.070; wR factor = 0.306; data-to-parameter ratio = 13.2.

In the title molecule, $C_{21}H_{14}N_2O_2$, the anthracenyl system is approximately planar [maximum deviation = 0.056 (4) Å] and is oriented at a dihedral angle of 73.6 $(1)^{\circ}$ with respect to the benzene ring. An intramolecular C-H···N hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by $C-H \cdot \cdot \pi$ and $\pi - \pi$ interactions [centroid–centroid distances of 3.688 (2), 3.656 (1) and 3.716 (2) Å].

Related literature

For applications of anthracene derivatives, see: de Silva et al. (1997); Klarner et al. (1998); Han et al. (2009). For hydrogenbond motifs, see: Bernstein et al. (1995). For related structures, see: Arumugam et al. (2011); Villalpando et al. (2010).

organic compounds

15391 measured reflections 2983 independent reflections

 $R_{\rm int} = 0.151$

1870 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

ł

v S

2

2	
$C_{21}H_{14}N_2O_2$	$\gamma = 75.054 \ (2)^{\circ}$
$M_r = 326.34$	V = 800.56 (7) Å ³
Triclinic, P1	Z = 2
a = 8.3634 (4) Å	Mo $K\alpha$ radiation
b = 8.9045 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.5119 (6) Å	T = 293 K
$\alpha = 75.235 \ (2)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
$\beta = 84.544 \ (3)^{\circ}$	

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker 2004) $T_{\min} = 0.924, \ T_{\max} = 0.991$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	226 parameters
$VR(F^2) = 0.306$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
983 reflections	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12 - H12 \cdots N1$ $C20 - H20 \cdots Cg1^{i}$	0.93	2.37	2.980 (4)	123
	0.93	2.86	3.717 (3)	154

Symmetry code: (i) -x + 1, -y + 2, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

SM and KG thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2315).

References

Arumugam, N., Almansour, A. I., Karama, U., Rosli, M. M. & Razak, I. A. (2011). Acta Cryst. E67, o2251.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671-1680

Klarner, G., Davey, M. H., Chen, W.-D., Scott, J. C. & Miller, R. D. (1998). Adv. Mater. 10, 993-997.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Silva, A. P. de, Gunaratne, H. Q. N. & Mc Coy, C. P. (1997). J. Am. Chem. Soc. 119, 7891-7892.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Villalpando, A., Fronczek, F. R. & Isovitsch, R. (2010). Acta Cryst. E66, o1353.

Acta Cryst. (2011). E67, o2577 [https://doi.org/10.1107/S1600536811035859]

(E)-N-(Anthracen-9-ylmethylidene)-4-nitroaniline

K. Geetha, D. K. Andrew Prasanna Kumar, D. Lakshmanan, R. Savitha and S. Murugavel

S1. Comment

Anthracene is an attractive material in its photochemical and electrochemical properties and is used as a potential medium for photoconductive (de Silva *et al.*, 1997) and electroluminescence (Klarner *et al.*, 1998) devices. Furthermore, anthracene derivatives exhibited anticancer activity has also been reported recently (Han *et al.*, 2009). Against this background and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound have been carried out.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The anthracene moiety (C1-C14) is essentially planar [maximum deviation = -0.056 (4) Å for the C11 atom] and shows a dihedral angle of 73.6 (1)° with respect to the (C16-C21) benzene ring. The nitro group is slightly twisted away from the plane of the attached benzene ring [C20-C19-N2-O1 = -4.9 (5) ° and C18-C19-N2-O2 = -6.7 (5) °]. The geometric parameters of the title molecule agrees well with those reported for similar structures (Arumugam *et al.*, 2011, Villalpando *et al.*, 2010).

In addition to van der Waals interactions, the crystal packing is stabilized by C-H…N and C-H… π hydrogen bonds as well as by π - π interactions. The intramolecular C12-H12…N1 hydrogen bond generates an S(6) ring motif (Bernstein *et al.*, 1995). The crystal packing (Fig. 2) is stabilized by C-H… π interactions between H20 and the neighbouring C1-C6 benzene ring, with a C20-H20…Cg1ⁱ separation of 2.86 Å (Fig. 2, Table 1; Cg1 is the centroid of the C1-C6 benzene ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by π - π interactions with Cg1…Cg3ⁱⁱ, Cg2…Cg2ⁱⁱ and Cg2…Cg3ⁱⁱ separations of 3.688 (2) Å, 3.656 (1) Å and 3.716 (2) Å, respectively (Fig. 2; Cg1, Cg2 and Cg3 are the centroids of the C1-C6 benzene ring, C1/C6/C7/C8/C13/C14 benzene ring and C8-C13 benzene ring , respectively, symmetry code as in Fig. 2).

S2. Experimental

Equimolar amounts of p-nitroaniline and 9-anthracenecarboxaldehyde were suspended in ethanol at a concentration of 0.1 M and the reaction mixture was refluxed overnight under vigorous stirring. Afterwards the mixture was cooled down and filtered. Recrystallization of the crude product from hexane : $CHCl_3$ (1 : 1) yielded orange crystals of title compound (Yield 74 %).

S3. Refinement

All H atoms were positioned geometrically, with C-H = 0.93 - 0.98 Å and constrained to ride on their parent atom with $U_{iso}(H)=1.2U_{eq}(C)$.

Figure 1

Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.

Figure 2

Intramolecular C-H···O, C-H··· π and π - π interactions (dotted lines) in the title compound. Cg1, Cg2 and Cg3 are the centroids of the C1-C6 benzene ring, C1/C6/C7/C8/C13/C14 benzene ring and C8-C13 benzene ring , respectively. [Symmetry code: (i) 1-x, -y, 2-z; (ii) 1-x, -y, 1-z.]

(E)-N-(Anthracen-9-ylmethylidene)-4-nitroaniline

Crystal data

C₂₁H₁₄N₂O₂ $M_r = 326.34$ Triclinic, P1 Hall symbol: -P1 a = 8.3634 (4) Å b = 8.9045 (4) Å c = 11.5119 (6) Å a = 75.235 (2)° $\beta = 84.544$ (3)° $\gamma = 75.054$ (2)° V = 800.56 (7) Å³

Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (*SADABS*; Bruker 2004) $T_{\min} = 0.924, T_{\max} = 0.991$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.306$ Z = 2 F(000) = 340 $D_x = 1.354 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5007 reflections $\theta = 2.5-25.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Flat, orange $0.30 \times 0.20 \times 0.10 \text{ mm}$

15391 measured reflections 2983 independent reflections 1870 reflections with $I > 2\sigma(I)$ $R_{int} = 0.151$ $\theta_{max} = 25.6^\circ, \ \theta_{min} = 2.5^\circ$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -13 \rightarrow 13$

S = 1.122983 reflections 226 parameters 0 restraints

Primary atom site location: structure-invariant direct methods	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.2P)^2]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} < 0.001$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.4268 (3)	-0.1323 (3)	0.7152 (2)	0.0507 (7)
C2	0.5139 (4)	-0.2566 (4)	0.8071 (2)	0.0622 (8)
H2	0.5912	-0.2354	0.8498	0.075*
C3	0.4872 (4)	-0.4052 (4)	0.8341 (3)	0.0725 (9)
H3	0.5463	-0.4840	0.8950	0.087*
C4	0.3730 (4)	-0.4430 (4)	0.7726 (3)	0.0746 (10)
H4	0.3553	-0.5455	0.7936	0.090*
C5	0.2885 (4)	-0.3314 (4)	0.6829 (3)	0.0673 (9)
Н5	0.2134	-0.3579	0.6417	0.081*
C6	0.3125 (3)	-0.1725 (3)	0.6501 (2)	0.0532 (7)
C7	0.2314 (3)	-0.0591 (3)	0.5551 (2)	0.0549 (8)
H7	0.1599	-0.0875	0.5121	0.066*
C8	0.2524 (3)	0.0973 (3)	0.5211 (2)	0.0498 (7)
C9	0.1657 (3)	0.2116 (4)	0.4241 (2)	0.0621 (8)
Н9	0.0979	0.1808	0.3798	0.075*
C10	0.1794 (4)	0.3636 (4)	0.3950 (3)	0.0703 (9)
H10	0.1211	0.4375	0.3312	0.084*
C11	0.2830 (4)	0.4104 (4)	0.4619 (3)	0.0675 (9)
H11	0.2904	0.5164	0.4427	0.081*
C12	0.3710 (3)	0.3050 (3)	0.5525 (2)	0.0588 (8)
H12	0.4395	0.3393	0.5939	0.071*
C13	0.3618 (3)	0.1421 (3)	0.5868 (2)	0.0487 (7)
C14	0.4501 (3)	0.0265 (3)	0.6825 (2)	0.0479 (7)
C15	0.5698 (3)	0.0602 (4)	0.7521 (3)	0.0584 (8)
H15	0.5835	0.0005	0.8311	0.070*
C16	0.7666 (3)	0.1767 (3)	0.7942 (2)	0.0553 (8)
C17	0.9203 (4)	0.1906 (4)	0.7470 (3)	0.0687 (9)
H17	0.9467	0.1877	0.6672	0.082*
C18	1.0355 (4)	0.2085 (4)	0.8158 (3)	0.0695 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H18	1.1407	0.2147	0.7841	0.083*	
C19	0.9936 (3)	0.2169 (3)	0.9316 (2)	0.0561 (8)	
C20	0.8419 (3)	0.2054 (4)	0.9826 (2)	0.0597 (8)	
H20	0.8168	0.2105	1.0622	0.072*	
C21	0.7263 (3)	0.1859 (3)	0.9128 (2)	0.0589 (8)	
H21	0.6214	0.1791	0.9451	0.071*	
N1	0.6547 (3)	0.1602 (3)	0.7163 (2)	0.0647 (7)	
N2	1.1188 (4)	0.2349 (4)	1.0045 (3)	0.0823 (9)	
01	1.0791 (4)	0.2499 (5)	1.1057 (3)	0.1296 (12)	
O2	1.2591 (3)	0.2269 (4)	0.9629 (2)	0.1103 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0442 (15)	0.0651 (17)	0.0434 (14)	-0.0129 (12)	0.0062 (11)	-0.0174 (12)
C2	0.0615 (18)	0.076 (2)	0.0457 (15)	-0.0128 (14)	-0.0012 (13)	-0.0120 (13)
C3	0.087 (2)	0.070(2)	0.0511 (17)	-0.0134 (17)	0.0044 (16)	-0.0059 (14)
C4	0.094 (3)	0.0552 (19)	0.073 (2)	-0.0245 (17)	0.0155 (18)	-0.0117 (15)
C5	0.0660 (19)	0.073 (2)	0.0698 (19)	-0.0249 (15)	0.0068 (15)	-0.0235 (16)
C6	0.0498 (16)	0.0619 (18)	0.0498 (15)	-0.0148 (13)	0.0074 (12)	-0.0187 (12)
C7	0.0490 (16)	0.0723 (19)	0.0503 (15)	-0.0204 (13)	-0.0009 (12)	-0.0218 (13)
C8	0.0412 (14)	0.0648 (17)	0.0423 (14)	-0.0115 (12)	0.0031 (11)	-0.0139 (12)
C9	0.0511 (17)	0.084 (2)	0.0502 (16)	-0.0143 (14)	-0.0074 (13)	-0.0139 (14)
C10	0.0645 (19)	0.076 (2)	0.0576 (18)	-0.0116 (15)	-0.0089 (15)	0.0030 (15)
C11	0.068 (2)	0.0588 (18)	0.0694 (19)	-0.0151 (15)	-0.0038 (15)	-0.0043 (14)
C12	0.0550 (17)	0.0650 (19)	0.0568 (17)	-0.0172 (13)	-0.0026 (13)	-0.0125 (13)
C13	0.0416 (14)	0.0623 (17)	0.0439 (14)	-0.0133 (12)	0.0062 (11)	-0.0176 (12)
C14	0.0405 (14)	0.0615 (17)	0.0428 (14)	-0.0133 (11)	0.0018 (11)	-0.0145 (12)
C15	0.0498 (16)	0.0717 (19)	0.0539 (16)	-0.0151 (14)	-0.0036 (12)	-0.0143 (13)
C16	0.0581 (17)	0.0556 (16)	0.0545 (16)	-0.0139 (12)	-0.0105 (13)	-0.0144 (12)
C17	0.0637 (19)	0.092 (2)	0.0553 (17)	-0.0213 (16)	0.0017 (14)	-0.0260 (15)
C18	0.0506 (17)	0.093 (2)	0.0633 (19)	-0.0197 (15)	0.0002 (14)	-0.0130 (15)
C19	0.0501 (16)	0.0639 (18)	0.0532 (16)	-0.0140 (13)	-0.0131 (13)	-0.0079 (12)
C20	0.0564 (18)	0.0771 (19)	0.0485 (15)	-0.0161 (14)	-0.0053 (13)	-0.0191 (13)
C21	0.0469 (15)	0.073 (2)	0.0600 (17)	-0.0187 (13)	0.0002 (13)	-0.0191 (14)
N1	0.0692 (16)	0.0745 (17)	0.0572 (14)	-0.0250 (13)	-0.0087 (12)	-0.0182 (12)
N2	0.068 (2)	0.113 (2)	0.0676 (18)	-0.0334 (16)	-0.0227 (15)	-0.0059 (16)
01	0.100 (2)	0.225 (4)	0.093 (2)	-0.056 (2)	-0.0209 (17)	-0.069 (2)
O2	0.0675 (17)	0.169 (3)	0.097 (2)	-0.0584 (17)	-0.0212 (15)	0.0007 (17)

Geometric parameters (Å, °)

C1—C2	1.418 (4)	C11—H11	0.9300	
C1—C14	1.428 (4)	C12—C13	1.423 (4)	
C1—C6	1.432 (4)	C12—H12	0.9300	
C2—C3	1.352 (4)	C13—C14	1.415 (4)	
С2—Н2	0.9300	C14—C15	1.471 (4)	
C3—C4	1.394 (5)	C15—N1	1.245 (3)	

С3—Н3	0.9300	C15—H15	0.9300
C4—C5	1.344 (5)	C16—C17	1.370 (4)
C4—H4	0.9300	C16—C21	1.393 (4)
C5—C6	1.430 (4)	C16—N1	1.414 (3)
C5—H5	0.9300	C17—C18	1.367 (4)
C6—C7	1 379 (4)	C17—H17	0.9300
C7—C8	1 399 (4)	C18 - C19	1 361 (4)
C7—H7	0.9300	C18—H18	0.9300
C_{8}	1 415 (4)	C19-C20	1.364(4)
C_{8} C_{13}	1.430(4)	C19 - 020	1.364(4) 1.466(4)
C_{0} C_{10}	1.450(4) 1.341(4)	$C_{10} = 102$	1.400(4) 1.385(4)
C_{0} H0	0.0300	$C_{20} = C_{21}$	0.0300
$C_{2} = 115$	0.9300	C21 H21	0.9300
C10 - C11	1.412(4)	N2 01	0.9300
C11_C12	0.9300	N2 02	1.212(4)
	1.342 (4)	N2—02	1.210 (4)
C2—C1—C14	123.9 (2)	C11—C12—H12	119.2
C2—C1—C6	117.0 (2)	C13—C12—H12	119.2
C14—C1—C6	119.0 (2)	C14—C13—C12	124.0 (2)
C3—C2—C1	121.4 (3)	C14—C13—C8	119.4 (2)
C3—C2—H2	119.3	C12—C13—C8	116.6 (2)
C1—C2—H2	119.3	C13 - C14 - C1	120.3(2)
C2-C3-C4	121.5 (3)	C_{13} C_{14} C_{15}	123.2(2)
C2—C3—H3	1193	C1 - C14 - C15	1165(2)
C4-C3-H3	119.3	N1-C15-C14	126.8(3)
$C_{5}-C_{4}-C_{3}$	1201(3)	N1-C15-H15	116.6
C5-C4-H4	119.9	C14-C15-H15	116.6
$C_3 - C_4 - H_4$	119.9	C17 - C16 - C21	110.0 119.2(2)
C4-C5-C6	120.8 (3)	C17 - C16 - N1	117.2(2)
C4—C5—H5	119.6	$C_{1} = C_{16} = N_{1}$	123.6(2)
C6-C5-H5	119.6	C18 - C17 - C16	123.0(2) 120.9(3)
$C_7 C_6 C_5$	117.0	$C_{18} = C_{17} = C_{10}$	110.6
C7 - C6 - C1	121.2(3) 1106(2)	$C_{10} = C_{17} = H_{17}$	119.0
$C_{7} = C_{6} = C_{1}$	119.0(2) 110.2(3)	$C_{10} = C_{17} = M_{17}$	119.0 118.0(3)
$C_{5} = C_{0} = C_{1}$	119.2(3) 122.5(2)	$C_{19} = C_{18} = C_{17}$	120.5
$C_{0} = C_{7} = C_{8}$	122.5 (2)	$C_{17} = C_{18} = H_{18}$	120.5
C_{0} C_{7} H_{7}	118.8	C18 C19 C20	120.3 122.6(3)
$C_{8} - C_{7} - C_{8} - C_{9}$	110.0 121.2(2)	$C_{10} = C_{10} = C_{20}$	122.0(3) 118.2(3)
$C_{7} = C_{8} = C_{9}^{12}$	121.2(2) 1101(2)	$C_{10} = C_{19} = N_2$	110.3(3) 110.1(3)
$C^{-}_{-}C^{-}_{0}C^{+}_{12}$	119.1(2) 110.7(2)	$C_{20} = C_{19} = N_2$	119.1(3) 119.2(2)
$C_{9} = C_{0} = C_{13}$	119.7(2)	$C_{19} = C_{20} = C_{21}$	110.2 (5)
$C_{10} = C_{9} = C_{8}$	121.5 (5)	$C_{19} = C_{20} = H_{20}$	120.9
$C_{10} - C_{9} - H_{9}$	119.5	$C_{21} = C_{20} = H_{20}$	120.9
$C_0 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	119.3	$C_{20} = C_{21} = C_{10}$	120.1 (3)
$C_{2} = C_{10} = C_{11}$	119.4 (3)	$U_2U \rightarrow U_2I \rightarrow H_2I$	119.9
$C_{11} = C_{10} = H_{10}$	120.3	U_{10} U_{21} H_{21} H_{21}	119.9
$C_{11} = C_{10} = H_{10}$	120.5	$\bigcup_{i=1}^{i} \sum_{j=1}^{i} \bigcup_{i=1}^{j} \bigcup_{j=1}^{i} \bigcup_{j$	120.0(2)
	121.4 (3)	U1 - N2 - U2	125.0 (3)
C12—C11—H11	119.3	O1—N2—C19	118.2 (3)

C10-C11-H11	119.3	O2—N2—C19	118.7 (3)
C11—C12—C13	121.6 (3)		
C14—C1—C2—C3	-179.8 (2)	C8—C13—C14—C1	-1.7 (4)
C6-C1-C2-C3	-1.6 (4)	C12-C13-C14-C15	-4.1 (4)
C1—C2—C3—C4	0.1 (5)	C8—C13—C14—C15	177.7 (2)
C2—C3—C4—C5	1.1 (5)	C2-C1-C14-C13	177.9 (2)
C3—C4—C5—C6	-0.7 (5)	C6-C1-C14-C13	-0.2 (4)
C4—C5—C6—C7	177.4 (3)	C2-C1-C14-C15	-1.5 (4)
C4—C5—C6—C1	-0.8 (4)	C6-C1-C14-C15	-179.6 (2)
C2-C1-C6-C7	-176.3 (2)	C13—C14—C15—N1	-28.3 (4)
C14—C1—C6—C7	2.0 (4)	C1-C14-C15-N1	151.1 (3)
C2-C1-C6-C5	2.0 (4)	C21—C16—C17—C18	2.0 (5)
C14—C1—C6—C5	-179.8 (2)	N1-C16-C17-C18	179.4 (3)
C5—C6—C7—C8	179.9 (2)	C16—C17—C18—C19	-1.8 (5)
C1—C6—C7—C8	-1.8 (4)	C17—C18—C19—C20	1.2 (5)
C6—C7—C8—C9	-179.2 (2)	C17-C18-C19-N2	179.6 (3)
C6—C7—C8—C13	0.0 (4)	C18—C19—C20—C21	-0.7 (5)
C7—C8—C9—C10	176.7 (3)	N2-C19-C20-C21	-179.0 (2)
C13—C8—C9—C10	-2.4 (4)	C19—C20—C21—C16	0.8 (4)
C8—C9—C10—C11	0.4 (4)	C17—C16—C21—C20	-1.4 (4)
C9—C10—C11—C12	1.4 (5)	N1-C16-C21-C20	-178.6 (2)
C10-C11-C12-C13	-1.1 (5)	C14-C15-N1-C16	-179.1 (2)
C11—C12—C13—C14	-179.2 (2)	C17—C16—N1—C15	136.4 (3)
C11—C12—C13—C8	-1.0 (4)	C21—C16—N1—C15	-46.3 (4)
C7—C8—C13—C14	1.8 (4)	C18—C19—N2—O1	176.6 (3)
C9—C8—C13—C14	-179.0 (2)	C20-C19-N2-O1	-4.9 (5)
C7—C8—C13—C12	-176.5 (2)	C18—C19—N2—O2	-6.7 (5)
C9—C8—C13—C12	2.7 (4)	C20-C19-N2-O2	171.8 (3)
C12—C13—C14—C1	176.5 (2)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A	D—H	Н…А	$D \cdots A$	D—H…A
C12—H12…N1	0.93	2.37	2.980 (4)	123
C20—H20···· $Cg1^i$	0.93	2.86	3.717 (3)	154

Symmetry code: (i) -x+1, -y+2, -z.