

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{5,5'-Dimethoxy-2,2'-[1,1'-(2,2-dimethylpropane-1,3-diyldinitrilo)diethylidyne]diphenolato- $\kappa^4 O, N, N', O'$ }copper(II) monohydrate

Akbar Ghaemi,^a‡ Saeed Rayati,^b Ehsan Elahi,^a Seik Weng Ng^{c,d} and Edward R. T. Tiekink^c*

^aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, ^bDepartment of Chemistry, K. N. Toosi University of Technology, PO Box, 16315-1618, Tehran, Iran, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: Edward.Tiekink@gmail.com

Received 21 September 2011; accepted 22 September 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.105; data-to-parameter ratio = 17.7.

The tetradentate dianion in the title complex hydrate, $[Cu(C_{23}H_{28}N_2O_4)]\cdot H_2O$, provides the Cu^{II} atom with a *cis*- N_2O_2 donor set. There is a significant twist from a regular square-planar geometry with the dihedral angle formed between the two six-membered CuOC₃N chelate rings being 32.14 (8)°. The water molecule forms hydrogen bonds to each of the coordinating O atoms of a given complex molecule. Supramolecular layers in the *bc* plane are formed in the crystal packing through C-H···O and C-H··· π interactions.

Related literature

For the catalytic potential of Schiff base complexes of Cu^{II}, see: Gupta & Sutar (2008); Rayati *et al.* (2010). For the structure of the ligand, see: Ghaemi *et al.* (2011). For crystal-lization conditions, see: Harrowfield *et al.* (1996).

Experimental

Crystal data

$Cu(C_{23}H_{28}N_2O_4)]\cdot H_2O$
$M_r = 478.03$
Triclinic, P1
a = 10.4721 (7) Å
b = 10.8023 (9) Å
c = 10.8487 (7) Å
$\alpha = 106.699 \ (7)^{\circ}$
$3 = 99.823 (5)^{\circ}$

Data collection

Agilent SuperNova Dual
diffractometer with Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
$T_{\rm min} = 0.643, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	6 restraints
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
5034 reflections	$\Delta \rho_{\rm min} = -0.47 \text{ e} \text{ Å}^{-3}$
285 parameters	

Table 1

Selected bond lengths (Å).

Cu-O2	1.8825 (16)	Cu-N1	1.9597 (17)
Cu-O3	1.8776 (15)	Cu-N2	1.9524 (18)

Table 2

Hydrogen-bond	geometry	(Å,	°).
2 0	0	× /	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1w - H1w \cdots O2$	0.84	2.12	2.832 (3)	142
$O1w - H2w \cdots O3$	0.84	2.32	3.035 (3)	143
$C7 - H7c \cdots O1w^{i}$	0.96	2.55	3.476 (5)	163
C16-H16c···O2 ⁱⁱ	0.96	2.52	3.409 (3)	153
$C14-H14b\cdots Cg1^{ii}$	0.97	2.62	3.426 (2)	141

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We gratefully acknowledge practical support of this study by K. N. Toosi University of Technology, Islamic Azad University (Saveh Branch), and thank the University of Malaya for supporting the crystallographic facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5100).

metal-organic compounds

 $\gamma = 100.035 \ (6)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 1.01 \text{ mm}^{-1}$ T = 294 K

 $R_{\rm int} = 0.024$

Z = 2

V = 1125.37 (14) Å³

 $0.40 \times 0.40 \times 0.20 \text{ mm}$

11143 measured reflections 5034 independent reflections

4332 reflections with $I > 2\sigma(I)$

[‡] Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.

Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, 02760.

Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.

- Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.
- (1950). *Hast. J. Chem.* **49**, 1105–1107.
 Rayati, S., Zakavi, S., Koliaei, M., Wojtczak, A. & Kozakiewicz, A. (2010).
 Inorg. Chem. Commun. **13**, 203–207.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E**67**, m1445–m1446 [https://doi.org/10.1107/S160053681103889X]

$\{5,5'$ -Dimethoxy-2,2'-[1,1'-(2,2-dimethylpropane-1,3-diyldinitrilo)diethylidyne]diphenolato- $\kappa^4 O, N, N', O'\}$ copper(II) monohydrate

Akbar Ghaemi, Saeed Rayati, Ehsan Elahi, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Synthetic copper(II) Schiff base complexes have long been of great interest because of their potential as catalysts in the oxidation of various organic compounds (Gupta & Sutar, 2008). In continuation of research in this field (Rayati *et al.*, 2010), the title complex, (I), was investigated.

The tetradentate dianion in the title monohydrate, (I), Fig. 1, provides a *cis*-N₂O₂ donor set, Table 1. Three sixmembered chelate rings are formed as a result of coordination of the dianion. The CuNC₃N ring adopts a half-chair conformation. While the CuOC₃N chelate ring containing the O3 atom approaches planarity with a r.m.s. deviation of 0.031 Å, the other ring displays significant distortions. Thus, the r.m.s. deviation for the O2-containing CuOC₃N chelate ring is 0.163 Å with maximum deviations of 0.162 (2) Å for atom O2 and -0.159 (1) Å for the Cu atom. The dihedral angle formed between the two CuOC₃N chelate rings is 32.14 (8)° indicating a significant distortion from a regular square planar geometry. Each of the methoxy groups is co-planar with the benzene ring to which it is attached as seen in the values of the C7—O1—C3—C2 and C23—O4—C20—C19 of -0.8 (4) and -179.3 (3)°, respectively. The water molecule of solvation is associated with the complex, forming a bridge *via* its hydrogen atoms between the two coordinated oxygen atoms, Table 2.

The crystal packing features C—H···O and C—H··· π interactions, Table 2, that assemble molecules into layers in the *bc* plane, Fig. 2, which stack along the *a* axis, Fig. 3.

S2. Experimental

The title complex was obtained by the template method in a branch tube (Harrowfield *et al.*, 1996). The recently described (Ghaemi *et al.*, 2011) *N*,*N*^{*}-bis(2-hydroxy-4-methoxyacetophenone)-2,2-dimethylpropane-1,3-diamine (0.40 g, 1 mmol) and copper(II) acetate monohydrate (0.199 g, 1 mmol) were placed in the main arm of a branched tube. Ethanol was added to fill both arms. The tube was sealed and the main arm immersed in an oil bath at 333 K while the other was held at ambient temperature. After one week, crystals deposited in the cooler arm. These were filtered off and air dried. Yield: 75%. FT—IR data: v(C=N) 1595 cm⁻¹.

S3. Refinement

The H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 to $1.5U_{equiv}(C)$. The water-H atoms were placed in calculated positions (O—H = 0.84 Å; $1.5U_{equiv}(O)$ on the basis of hydrogen bonding.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Supramolecular layer in the *bc* plane in (I) sustained by C—H···O and C—H··· π interactions shown as blue and black dashed lines, respectively. The O—H···O hydrogen bonds are shown as orange dashed lines.

Figure 3

A view in projection down the *c* axis of the unit-cell contents of (I), highlighting the stacking of layers along the *a* axis. The C—H···O and C—H··· π interactions shown as blue and black dashed lines, respectively, and the O—H···O hydrogen bonds are shown as orange dashed lines.

 $\{5,5'$ -Dimethoxy-2,2'-[1,1'-(2,2-dimethylpropane-1,3-diyldinitrilo)diethylidyne]diphenolato- $\kappa^4 O, N, N', O'\}$ copper(II) monohydrate

Z = 2
F(000) = 502
$D_{\rm x} = 1.411 { m Mg m^{-3}}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5694 reflections
$\theta = 2.3 - 29.3^{\circ}$
$\mu = 1.01 \text{ mm}^{-1}$
T = 294 K
Block, dark-brown
$0.40 \times 0.40 \times 0.20 \text{ mm}$

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010)	$T_{\min} = 0.643, T_{\max} = 1.000$ 11143 measured reflections 5034 independent reflections 4332 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 2.5^{\circ}$ $h = -12 \rightarrow 13$ $k = -14 \rightarrow 13$ $l = -14 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.105$ S = 0.99 5034 reflections 285 parameters 6 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 + 0.3861P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.26$ e Å ⁻³ $\Delta\rho_{min} = -0.47$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu	0.48963 (3)	0.47337 (3)	0.24182 (2)	0.04175 (11)	
01	0.04084 (19)	-0.0426 (2)	-0.1635 (2)	0.0746 (6)	
O2	0.40205 (16)	0.30214 (16)	0.12419 (15)	0.0519 (4)	
03	0.62185 (18)	0.39699 (17)	0.30882 (16)	0.0580 (5)	
O4	0.96607 (19)	0.3235 (2)	0.60237 (19)	0.0702 (5)	
O1w	0.5646 (3)	0.1173 (3)	0.1144 (3)	0.1143 (10)	
H1w	0.4956	0.1403	0.0867	0.171*	
H2w	0.6121	0.1815	0.1794	0.171*	
N1	0.40191 (19)	0.55577 (19)	0.12292 (18)	0.0440 (4)	
N2	0.54285 (18)	0.63414 (17)	0.39652 (18)	0.0404 (4)	
C1	0.2881 (2)	0.2697 (2)	0.0363 (2)	0.0429 (5)	
C2	0.2249 (2)	0.1342 (2)	-0.0152 (2)	0.0472 (5)	
H2	0.2638	0.0743	0.0155	0.057*	
C3	0.1068 (2)	0.0873 (3)	-0.1098 (2)	0.0553 (6)	
C4	0.0476 (3)	0.1766 (3)	-0.1551 (3)	0.0685 (8)	
H4	-0.0329	0.1462	-0.2182	0.082*	

C5	0.1076(2)	0 2070 (2)	0.1070(2)	0.0607(7)
U5 Н5	0.1070 (3)	0.3079 (3)	-0.1392	0.0007(7)
115 C6	0.2299 (2)	0.3623(2)	-0.0100(2)	0.075
C0 C7	0.2299(2) 0.0998(3)	-0.1364(3)	-0.1189(3)	0.0401(3)
Н7А	0.0449	-0 2245	-0.1647	0.117*
H7B	0.1071	-0.1161	-0.0255	0.117*
H7C	0.1869	-0.1317	-0.1367	0.117*
C8	0.1007 0.2965 (2)	0.1317 0 5025 (3)	0.1307	0.117
C9	0.2384(3)	0.5809 (3)	-0.0542(3)	0.0481(0)
НОА	0.2904 (5)	0.5305 (5)	-0.0212	0.0090(0)
HOR	0.1480	0.5795	-0.0475	0.104*
HIG	0.1480	0.5420	-0.1452	0.104
C10	0.2401 0.4828(3)	0.5420 0.6911 (2)	0.1452 0.1535 (2)	0.0520 (6)
H10A	0.4573	0.7230	0.1333 (2)	0.0520(0)
HIOR	0.5759	0.7230	0.1623	0.062*
C11	0.3739	0.0002 0.7898 (2)	0.1025	0.002
C12	0.4075(3)	0.7696(2)	0.2511(5) 0.2542(3)	0.0511(0)
U12	0.3482	0.8400 (3)	0.2342 (3)	0.0714 (8)
H12R	0.3482	0.8091	0.1932	0.107*
	0.3501	0.0980	0.5558	0.107*
C13	0.2040	0.7003	0.2170 0.3200 (3)	0.107 0.0732(8)
H13A	0.5910 (5)	0.9034 (3)	0.5239 (5)	0.0752 (8)
H13B	0.5994	0.8732	0.2013	0.110*
H13C	0.5822	0.0732	0.3317	0.110*
C14	0.3622 0.4513(2)	0.7713 0.7208 (2)	0.3848(2)	0.110
H144	0.4652	0.7883	0.3848 (2)	0.0450 (5)
H14R	0.3604	0.6681	0.3623	0.055*
C15	0.5004	0.6611(2)	0.5025	0.033 0.0434(5)
C16	0.6505(2)	0.0011(2) 0.7919(2)	0.5039(2) 0.6149(3)	0.0434(3)
H16A	0.6322	0.8562	0.5812	0.0052 (7)
H16B	0.7596	0.8230	0.6508	0.095*
H16C	0.6218	0.7794	0.6831	0.095*
C17	0.0218 0.7159(2)	0.5667 (2)	0.5215(2)	0.093
C18	0.7159(2) 0.8061(3)	0.5007(2) 0.5949(3)	0.5215(2) 0.6445(2)	0.0425(5)
H18	0.8115	0.6730	0.7120	0.0504 (0)
C19	0.8854(3)	0.5134(3)	0.6686 (3)	0.003 0.0635(7)
H19	0.9418	0.5351	0.7516	0.0055 (7)
C20	0.8819(2)	0.3976 (3)	0.5691 (2)	0.070
C21	0.3017(2) 0.7941(2)	0.3570(3)	0.3091(2) 0.4486(2)	0.0300(0) 0.0459(5)
H21	0.7917	0.2854	0 3822	0.055*
C22	0.7917 0.7074 (2)	0.2034 0.4443 (2)	0.3322 0.4242(2)	0.033 0.0425(5)
C22	0.7074(2) 0.9685(3)	0.4443(2) 0.2051(4)	0.4242(2) 0.5051(3)	0.0423(3)
H23A	1 0308	0.1625	0 5422	0.120*
H23R	0.9951	0.2259	0.4315	0.120
H23C	0.8812	0.1465	0.4754	0.120
11230	0.0012	0.1705	F <i>U</i> F F	0.120

supporting information

Atomic displacement parameters	(\AA^2)	
--------------------------------	-----------	--

	U^{11}	U ²²	U^{33}	U^{12}	U ¹³	U ²³
Cu	0.04730 (18)	0.04062 (18)	0.03637 (16)	0.01857 (13)	0.00166 (12)	0.01100 (12)
01	0.0582 (11)	0.0691 (13)	0.0700 (12)	0.0033 (10)	-0.0159 (10)	0.0074 (10)
O2	0.0550 (9)	0.0437 (9)	0.0456 (9)	0.0209 (8)	-0.0136 (7)	0.0063 (7)
O3	0.0669 (11)	0.0539 (10)	0.0417 (8)	0.0319 (9)	-0.0107 (8)	0.0014 (7)
O4	0.0647 (12)	0.0861 (14)	0.0622 (11)	0.0343 (11)	-0.0056 (9)	0.0297 (11)
O1w	0.0964 (18)	0.0788 (16)	0.153 (2)	0.0434 (14)	-0.0017 (17)	0.0207 (17)
N1	0.0504 (10)	0.0491 (11)	0.0414 (9)	0.0236 (9)	0.0130 (8)	0.0198 (8)
N2	0.0443 (10)	0.0368 (9)	0.0434 (9)	0.0130 (8)	0.0108 (8)	0.0154 (8)
C1	0.0449 (12)	0.0550 (13)	0.0294 (9)	0.0224 (10)	0.0044 (9)	0.0110 (9)
C2	0.0471 (12)	0.0536 (14)	0.0371 (11)	0.0195 (11)	0.0007 (9)	0.0099 (10)
C3	0.0486 (13)	0.0643 (16)	0.0437 (12)	0.0144 (12)	0.0010 (10)	0.0087 (12)
C4	0.0521 (15)	0.087 (2)	0.0535 (15)	0.0173 (15)	-0.0137 (12)	0.0185 (15)
C5	0.0559 (15)	0.0807 (19)	0.0504 (14)	0.0302 (14)	-0.0010 (12)	0.0283 (14)
C6	0.0480 (12)	0.0607 (15)	0.0348 (10)	0.0256 (11)	0.0063 (9)	0.0178 (10)
C7	0.0662 (18)	0.0586 (17)	0.086 (2)	0.0091 (15)	-0.0071 (16)	0.0059 (16)
C8	0.0545 (13)	0.0627 (15)	0.0400 (11)	0.0308 (12)	0.0133 (10)	0.0251 (11)
C9	0.0762 (19)	0.079 (2)	0.0666 (17)	0.0324 (16)	0.0040 (14)	0.0419 (16)
C10	0.0565 (14)	0.0581 (15)	0.0553 (14)	0.0217 (12)	0.0194 (11)	0.0313 (12)
C11	0.0610 (14)	0.0421 (12)	0.0596 (14)	0.0211 (11)	0.0165 (12)	0.0242 (11)
C12	0.087 (2)	0.0629 (17)	0.0770 (19)	0.0444 (16)	0.0179 (16)	0.0274 (15)
C13	0.084 (2)	0.0560 (16)	0.081 (2)	0.0073 (15)	0.0165 (17)	0.0320 (15)
C14	0.0522 (13)	0.0409 (12)	0.0482 (12)	0.0187 (10)	0.0169 (10)	0.0136 (10)
C15	0.0487 (12)	0.0373 (11)	0.0406 (11)	0.0041 (10)	0.0098 (10)	0.0113 (9)
C16	0.086 (2)	0.0412 (13)	0.0514 (14)	0.0139 (13)	0.0024 (13)	0.0066 (11)
C17	0.0414 (11)	0.0394 (11)	0.0411 (11)	0.0037 (9)	0.0021 (9)	0.0136 (9)
C18	0.0568 (14)	0.0482 (14)	0.0470 (13)	0.0036 (12)	-0.0092 (11)	0.0069 (11)
C19	0.0554 (15)	0.0667 (17)	0.0531 (14)	0.0070 (13)	-0.0161 (12)	0.0173 (13)
C20	0.0406 (12)	0.0599 (15)	0.0524 (13)	0.0119 (11)	0.0003 (10)	0.0252 (12)
C21	0.0434 (12)	0.0536 (14)	0.0422 (11)	0.0174 (10)	0.0060 (9)	0.0169 (10)
C22	0.0400 (11)	0.0478 (12)	0.0378 (11)	0.0098 (10)	0.0018 (9)	0.0157 (9)
C23	0.082 (2)	0.099 (2)	0.077 (2)	0.056 (2)	0.0146 (17)	0.0381 (19)

Geometric parameters (Å, °)

Cu—O2	1.8825 (16)	С9—Н9С	0.9600	
Cu—O3	1.8776 (15)	C10—C11	1.538 (3)	
Cu—N1	1.9597 (17)	C10—H10A	0.9700	
Cu—N2	1.9524 (18)	C10—H10B	0.9700	
O1—C3	1.358 (3)	C11—C13	1.528 (4)	
O1—C7	1.428 (3)	C11—C14	1.535 (3)	
O2—C1	1.316 (3)	C11—C12	1.538 (3)	
O3—C22	1.312 (3)	C12—H12A	0.9600	
O4—C20	1.361 (3)	C12—H12B	0.9600	
O4—C23	1.412 (4)	C12—H12C	0.9600	
O1w—H1w	0.8400	C13—H13A	0.9600	

supporting information

O1w—H2w	0.8400	C13—H13B	0.9600
N1—C8	1.296 (3)	C13—H13C	0.9600
N1—C10	1.469 (3)	C14—H14A	0.9700
N2—C15	1.310 (3)	C14—H14B	0.9700
N2—C14	1.466 (3)	C15—C17	1.458 (3)
C1—C2	1.400 (3)	C15—C16	1.512 (3)
C1—C6	1.421 (3)	C16—H16A	0.9600
C2—C3	1 374 (3)	C16—H16B	0 9600
C2—H2	0.9300	C_{16} -H16C	0.9600
$C_2 C_4$	1.390(4)	C_{17} C_{22}	1,412 (3)
C_{3}	1.390(4)	$C_{17} = C_{22}$	1.412(3)
C4 = C3	1.555 (4)	C17 - C18	1.414(3) 1.250(4)
	0.9300		1.339 (4)
05-06	1.420 (3)	C18—H18	0.9300
С5—Н5	0.9300	C19—C20	1.387 (4)
C6—C8	1.459 (4)	С19—Н19	0.9300
С7—Н7А	0.9600	C20—C21	1.373 (3)
С7—Н7В	0.9600	C21—C22	1.411 (3)
С7—Н7С	0.9600	C21—H21	0.9300
C8—C9	1.511 (3)	C23—H23A	0.9600
С9—Н9А	0.9600	С23—Н23В	0.9600
С9—Н9В	0.9600	С23—Н23С	0.9600
O3—Cu—O2	87.70 (7)	C13—C11—C10	107.4 (2)
03-Cu-N2	93 30 (7)	C14-C11-C10	110 41 (18)
Ω^2 — Ω^2 — Ω^2 — Ω^2	161.99 (8)	C_{13} C_{11} C_{12}	110.3(2)
$O_3 = C_1 = N_1$	156.09 (8)	C_{14} C_{11} C_{12}	106.3(2)
$O_2 C_1 N_1$	01 13 (7)	C_{10} C_{11} C_{12}	100.3(2)
$N_2 = C_1 = N_1$	91.13(7)	$C_{11} = C_{12} = U_{12}$	100.5
$C_2 = C_1 = C_7$	95.08(0)	C_{11} C_{12} U_{12} U_{12}	109.5
$C_{3} = 0_{1} = 0_{1}$	117.2(2) 126.52(14)	$\begin{array}{c} 11 - 12 - 112B \\ 112A - 12 - 112B \\ 112A - 12 - 112B \\ 112B - 12 - 12 - 112B \\ 112B - 12 - 12 - 12 - 12 \\ 112B - 12 - 12 - 12 - 12 \\ 112B - 12 - 12 - 12 \\ 112B - 12 - 12 - 12 \\ 112B - 12 \\ $	109.5
	120.33(14)	H12A - C12 - H12B	109.5
C22—O3—Cu	128.03 (15)	CII—CI2—HI2C	109.5
C20—O4—C23	118.3 (2)	H12A—C12—H12C	109.5
H1w—O1w—H2w	107.4	H12B—C12—H12C	109.5
C8—N1—C10	123.47 (19)	C11—C13—H13A	109.5
C8—N1—Cu	128.32 (17)	C11—C13—H13B	109.5
C10—N1—Cu	108.06 (14)	H13A—C13—H13B	109.5
C15—N2—C14	121.92 (19)	C11—C13—H13C	109.5
C15—N2—Cu	127.82 (15)	H13A—C13—H13C	109.5
C14—N2—Cu	109.93 (14)	H13B—C13—H13C	109.5
O2—C1—C2	116.13 (19)	N2-C14-C11	114.24 (18)
O2—C1—C6	124.1 (2)	N2—C14—H14A	108.7
C2—C1—C6	119.7 (2)	C11—C14—H14A	108.7
C3—C2—C1	121.7 (2)	N2—C14—H14B	108.7
С3—С2—Н2	119.1	C11—C14—H14B	108.7
C1—C2—H2	119.1	H14A—C14—H14B	107.6
01 - C3 - C2	124.5 (2)	N2-C15-C17	121.6 (2)
01 - C3 - C4	1161(2)	N_{2} C15 C17	1209(2)
C_{2} C_{3} C_{4}	110.1(2) 110.4(3)	C_{17} C_{15} C_{16}	120.9(2) 117.5(2)
02 UJ UT	117.T(J)	017 - 013 - 010	11/10 (4)

C5—C4—C3	119.7 (2)	C15—C16—H16A	109.5
C5—C4—H4	120.1	C15—C16—H16B	109.5
C3—C4—H4	120.1	H16A—C16—H16B	109.5
C4—C5—C6	123.6 (2)	C15—C16—H16C	109.5
С4—С5—Н5	118.2	H16A—C16—H16C	109.5
С6—С5—Н5	118.2	H16B—C16—H16C	109.5
C5—C6—C1	115.8 (2)	C22—C17—C18	116.3 (2)
C5—C6—C8	120.7 (2)	C22-C17-C15	124.43 (19)
C1—C6—C8	123.2 (2)	C18—C17—C15	119.3 (2)
01—C7—H7A	109 5	$C_{19} - C_{18} - C_{17}$	1231(2)
01 - C7 - H7B	109.5	C19-C18-H18	118 5
H7A - C7 - H7B	109.5	C17 - C18 - H18	118.5
01 C7 H7C	109.5	C_{18} C_{19} C_{20}	110.0(2)
	109.5	$C_{18} = C_{19} = C_{20}$	119.9 (2)
	109.5	$C_{10} = C_{10} = 1119$	120.1
H/B - C/ - H/C	109.5	C20-C19-H19	120.1
$NI = C\delta = C\delta$	121.1(2)	04 - 020 - 021	124.7 (2)
NI	122.0 (2)	04-020-019	115.5 (2)
C6—C8—C9	116.9 (2)	C21—C20—C19	119.7 (2)
С8—С9—Н9А	109.4	C20—C21—C22	120.9 (2)
С8—С9—Н9В	109.4	C20—C21—H21	119.6
Н9А—С9—Н9В	109.5	C22—C21—H21	119.6
С8—С9—Н9С	109.6	O3—C22—C21	115.4 (2)
Н9А—С9—Н9С	109.5	O3—C22—C17	124.6 (2)
Н9В—С9—Н9С	109.5	C21—C22—C17	119.95 (19)
N1-C10-C11	113.23 (19)	O4—C23—H23A	109.5
N1-C10-H10A	108.9	O4—C23—H23B	109.5
C11—C10—H10A	108.9	H23A—C23—H23B	109.5
N1-C10-H10B	108.9	O4—C23—H23C	109.5
C11—C10—H10B	108.9	H23A—C23—H23C	109.5
H10A—C10—H10B	107.7	H23B—C23—H23C	109.5
C13—C11—C14	111.8 (2)		
O3—Cu—O2—C1	178.8 (2)	C5—C6—C8—N1	174.0 (2)
N2-Cu-O2-C1	85.3 (3)	C1—C6—C8—N1	-13.1(3)
N1-Cu-O2-C1	-251(2)	$C_{5}-C_{6}-C_{8}-C_{9}$	-71(3)
$0^{2}-C^{1}-0^{3}-C^{2}$	-1588(2)	C1 - C6 - C8 - C9	165.8(2)
$N_{2} = C_{11} = O_{3} = C_{22}$	3 2 (2)	C8 - N1 - C10 - C11	105.0(2) 108.3(3)
N1 Cu O3 C22	5.2(2)	$C_{\rm H}$ N1 $C_{\rm H}$ $C_{\rm H}$	-76.0(2)
$O_3 C_1 N_1 C_8$	113.0(2) 104.7(3)	N1 C10 C11 C13	1581(2)
$O_2 C_1 N_1 C_8$	104.7(3) 178(2)	N1 = C10 = C11 = C13	150.1(2)
$V_2 = C_1 = N_1 = C_8$	1/.0(2)	NI = C10 = C11 = C12	30.0(3)
$N_2 - C_1 - N_1 - C_8$	-145.2(2)	NI = CI0 = CI1 = CI2	-81.4(2)
03 - Cu - NI - CI0	-70.8(2)	C13 - N2 - C14 - C11	113.8 (2)
U_2 — C_1 — U_1 — C_10	-15/.6/(15)	Cu - N2 - C14 - C11	-72.3 (2)
N2—Cu—N1—C10	39.26 (15)	C13—C11—C14—N2	-75.8 (3)
O3—Cu—N2—C15	-2.6 (2)	C10—C11—C14—N2	43.7 (3)
O2—Cu—N2—C15	90.1 (3)	C12—C11—C14—N2	163.8 (2)
N1—Cu—N2—C15	-160.20 (19)	C14—N2—C15—C17	172.1 (2)
O3—Cu—N2—C14	-176.04 (14)	Cu—N2—C15—C17	-0.6 (3)

$O2 C_{\rm H} N2 C14$	-924(2)	C14 N2 C15 C16	-76(2)
$V_2 - C_4 - N_2 - C_{14}$	-03.4(2)	C14 $N2$ $C15$ $C10$	-7.0(3)
N1— Cu — $N2$ — $C14$	26.38 (15)	Cu—N2—C15—C16	179.70 (18)
Cu—O2—C1—C2	-163.66 (16)	N2-C15-C17-C22	4.5 (4)
Cu—O2—C1—C6	18.1 (3)	C16—C15—C17—C22	-175.7 (2)
O2—C1—C2—C3	-178.5 (2)	N2-C15-C17-C18	-173.7 (2)
C6—C1—C2—C3	-0.2 (3)	C16—C15—C17—C18	6.0 (3)
C7—O1—C3—C2	-0.8 (4)	C22-C17-C18-C19	2.6 (4)
C7—O1—C3—C4	179.8 (3)	C15—C17—C18—C19	-179.0 (2)
C1-C2-C3-O1	-180.0 (2)	C17—C18—C19—C20	1.4 (4)
C1—C2—C3—C4	-0.6 (4)	C23—O4—C20—C21	2.8 (4)
O1—C3—C4—C5	-179.7 (3)	C23—O4—C20—C19	-179.3 (3)
C2—C3—C4—C5	0.9 (4)	C18—C19—C20—O4	179.2 (2)
C3—C4—C5—C6	-0.4 (5)	C18—C19—C20—C21	-2.9 (4)
C4—C5—C6—C1	-0.3 (4)	O4—C20—C21—C22	178.0 (2)
C4—C5—C6—C8	173.1 (3)	C19—C20—C21—C22	0.3 (4)
O2—C1—C6—C5	178.8 (2)	Cu—O3—C22—C21	178.78 (16)
C2-C1-C6-C5	0.7 (3)	Cu—O3—C22—C17	-0.6 (4)
O2—C1—C6—C8	5.6 (3)	C20—C21—C22—O3	-175.6 (2)
C2-C1-C6-C8	-172.6 (2)	C20—C21—C22—C17	3.9 (4)
C10—N1—C8—C6	172.0 (2)	C18—C17—C22—O3	174.3 (2)
Cu—N1—C8—C6	-2.9 (3)	C15—C17—C22—O3	-4.0 (4)
C10—N1—C8—C9	-6.9 (4)	C18—C17—C22—C21	-5.1 (3)
Cu—N1—C8—C9	178.26 (18)	C15—C17—C22—C21	176.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1 <i>w</i> —H1 <i>w</i> ····O2	0.84	2.12	2.832 (3)	142
O1 <i>w</i> —H2 <i>w</i> ···O3	0.84	2.32	3.035 (3)	143
C7—H7c···O1 w^i	0.96	2.55	3.476 (5)	163
C16—H16c····O2 ⁱⁱ	0.96	2.52	3.409 (3)	153
C14—H14b···· $Cg1^{ii}$	0.97	2.62	3.426 (2)	141

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1.