

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(2*R*,3*S*,6*S*)-3-Acetyloxy-6-(1-phenyl-1*H*-1,2,3-triazol-4-yl)-3,6-dihydro-2*H*-pyran-2-yl]methyl acetate

Julio Zukerman-Schpector,^a* Hélio A. Stefani,^b Nathalia C. S. Silva,^b Seik Weng Ng^{c,d} and Edward R. T. Tiekink^c

^aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: julio@power.ufscar.br

Received 11 September 2011; accepted 13 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.033; *wR* factor = 0.084; data-to-parameter ratio = 14.2.

In the title compound, $C_{18}H_{19}N_3O_5$, the 3,6-dihydro-2*H*-pyran ring adopts a half-chair, distorted towards a half-boat, conformation with $Q_T = 0.5276(14)$ Å. The benzene ring is twisted out of the place of the triazole ring [dihedral angle = 23.54 (8)°]. In the crystal, supramolecular layers in the *ac* plane are formed through $C-H\cdots O$ and $C-H\cdots \pi$ (triazole) interactions. These stack along the *b* axis being connected by $C-H\cdots N$ contacts.

Related literature

For background to the chemical attributes of *C*-glycosides, see: Ritchie *et al.* (2002); Hanessian & Lou (2000); Hultin (2005); Zou (2005). For chiral properties of *C*-glycosides, see: Nakata (2005); Nicolaou *et al.* (2008); Somsak (2001). For additional conformation analysis, see: Cremer & Pople (1975).

V = 857.73 (2) Å³

Cu Ka radiation

 $0.20 \times 0.10 \times 0.05 \; \rm mm$

5784 measured reflections

3369 independent reflections 3304 reflections with $I > 2\sigma(I)$

 $\mu = 0.86 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.019$

Z = 2

Experimental

Crystal data

 $C_{18}H_{19}N_3O_5$ $M_r = 357.36$ Monoclinic, $P2_1$ a = 4.79932 (7) Å b = 16.6308 (2) Å c = 10.76331 (14) Å $\beta = 93.225$ (1)°

Data collection

Agilent SuperNova Dual Cu at zero diffractometer with an Atlas detector

Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\min} = 0.848, T_{\max} = 0.959$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.084$ S = 1.043369 reflections 237 parameters 1 restraint H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.14 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.19 \text{ e } \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1591 Friedel pairs Flack parameter: -0.09 (15)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C7−H7···O4 ⁱ	0.95	2.29	3.2207 (19)	167
$C9 - H9 \cdots Cg1^{ii}$	1.00	2.68	3.5362 (16)	144
C16-H16a···N3 ⁱⁱⁱ	0.98	2.62	3.463 (2)	145
C16−H16b···O2 ⁱⁱ	0.98	2.59	3.570 (2)	177
C18−H18a···O1 ^{iv}	0.98	2.54	3.516 (2)	174
$C18-H18c\cdots O4^{v}$	0.98	2.45	3.400 (2)	164

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + 1$; (ii) x - 1, y, z; (iii) x, y, z + 1; (iv) $-x, y + \frac{1}{2}, -z + 1$; (v) x + 1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publicIF (Westrip, 2010).

We thank FAPESP (07/59404-2 to HAS), CNPq (300613/2007 to HAS, and 306532/2009-3 to JZ-S) and CAPES (808/2009 to JZ-S) for financial support. We also thank the University of Malaya for support of the crystallographic facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5093).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. ChemAxon (2009). *MarvinSketch*. URL: www.chemaxon.com. Cremer, D. & Pople, J. A. (1975). *J. Am. Chem. Soc.* **97**, 1354–1358. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Flack, H. D. (1983). Acta Cryst. A39, 876–881.

- Hanessian, S. & Lou, B. (2000). Chem. Rev. 100, 4443-4463.
- Hultin, P. G. (2005). *Curr. Top. Med. Chem.* **5**, 1299–1331. Nakata, T. (2005). *Chem. Rev.* **105**, 4314–4347.
- Nicolaou, K. C., Frederick, M. O. & Aversa, R. J. (2008). Angew. Chem. Int. Ed. 47, 7182–7225.

Ritchie, G. E., Moffatt, B. E., Sim, R. B., Morgan, B. P., Dwek, R. A. & Rudd, P. M. (2002). Chem. Rev. 102, 305-320. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Somsak, L. (2001). Chem. Rev. 101, 81-135. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925. Zou, W. (2005). Curr. Top. Med. Chem. 5, 1363-1391.

supporting information

Acta Cryst. (2011). E67, o2757–o2758 [https://doi.org/10.1107/S1600536811037305]

[(2*R*,3*S*,6*S*)-3-Acetyloxy-6-(1-phenyl-1*H*-1,2,3-triazol-4-yl)-3,6-dihydro-2*H*-pyran-2-yl]methyl acetate

Julio Zukerman-Schpector, Hélio A. Stefani, Nathalia C. S. Silva, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The chemistry and biological activity of *C*-glycosides has experienced increased attention due to their structural similarity to carbohydrates but also due to their resistance to metabolic processes. Such attributes may lead to improved biological profiles as compared to their *O*-analogues (Ritchie *et al.* 2002; Hanessian & Lou, 2000; Hultin, 2005; Zou, 2005). In addition, *C*-glycosides have also been found embedded in the structure of several bioactive natural products (Nakata, 2005; Nicolaou *et al.* 2008), and served as chiral building blocks for the stereoselective synthesis of optically active compounds (Somsak, 2001).

The title compound, (I), Fig. 1, was prepared in connection with on-going research into the synthesis of *C*-glycosides. The absolute structure was confirmed experimentally and shows the chirality at the C9, C12 and C13 atoms to be *S*, *S*, and *R*, respectively. The dihedral angle between the phenyl and the triazole ring is 23.54 (8) °. The 3,6-dihydro-2*H*-pyran ring has a distorted half-chair conformation with the O1 atom lying 0.6127 (16) Å above the plane defined by the C9–C13 atoms (r.m.s. deviation = 0.1231 Å). The ring puckering parameters are: $q_2 = 0.4198$ (15) Å, $q_3 = 0.3195$ (15) Å, QT = 0.5276 (14) Å and $\varphi_2 = 321.1$ (2) ° (Cremer & Pople, 1975).

In the crystal packing, the molecules are linked through C–H···O, C–H···N and C–H··· π interactions, Table 1. The short C—H···O contact, involving the trizaole-C—H and the carbonyl-O4 atoms, leads to chains along the *b* axis. These are linked along the *a* direction into a 2-D array *via* C—H··· π interactions that occur between the methine-C—H and the ring centroid of the trizole ring. Fig. 2. The zigzag layers are stabilized by a number of weaker C–H···O interactions (Table 1) and stack along the *b* axis with the most significant interaction between them being of the type C—H···N, Fig. 3.

S2. Experimental

The reaction was carried out in a two neck 25 ml flask under a nitrogen atmosphere. To copper iodide (96 mg, 0.5 mmol) was added a solution of ((2R, 3S, 6S)-3-acetoxy-6-((trimethylsilyl)ethynyl)- 3,6-dihydro-2H-pyran-2-yl)methyl acetate (155 mg, 0.5 mmol) in 2 ml of THF, a solution of phenyl azide (71.4 mg, 0.6 mmol) in 3.5 ml of THF, and finally, drop wise, tetra-*n*-butyl ammonium fluoride (TBAF) (0.6 ml, 0.6 mmol) was added. The mixture was sonicated in an ultrasound bath for 90 minutes. The reaction mixture was then quenched with 20 ml of ammonium chloride and extracted with 3 *x* 15 ml of ethyl acetate. The organic phase was washed with 3 *x* 15 ml of water, dried with MgSO₄ and then the solvent evaporated in a rota-vapor. The product was purified through a chromatographic column using ethyl acetate in hexane at 293 K; *M*.pt: 379–382 K. ¹H-NMR (CDCl₃, p.p.m., 300 MHz): δ 7.99 (s, 1H); 7.74 (d, 2H, J = 7.8 Hz); 7.51 (m, 3H), 6.29 (m, 1H); 6.01 (d, 1H, J = 10.3 Hz); 5.61 (s, 1H); 5.35 (dd, 1H, J = 2.0 Hz, J = 7.8 Hz); 4.26 (d, 1H, J = 5.6

Hz); d, 1H, J = 2.9 Hz); 4.00 (ddd, 1H, J = 3.0 Hz, J = 5.6 Hz, J = 8.3 Hz); 2.08 (s, 6H); ¹³C (CDCl₃, 75 MHz) δ (p.p.m.) 170.81; 170.38; 146.97; 137.05; 129.88; 129,58; 129,01; 125,96; 120,66; 120,39; 69,78; 67.67; 65.02; 63.08; 21.08; 20.87. HRMS calcd for C₁₈H₁₉N₃O₅ 357.1325. Found: 357.1328.

S3. Refinement

The H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(methyl-C)$.

Figure 1

The molecular structure of compound (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Figure 2

A view in projection down the *c* axis showing the supramolecular array sustained by relatively strong C—H···O contacts (orange dashed lines) formed along the *b* direction and C—H··· π contacts (purple dashed lines) formed along the *a* direction.

Figure 3

A view in projection down the *a* axis highlighting the stacking of zigzag layers along the *b* direction. The C—H···O, C— H··· π and C—H···N interactions are shown as orange, purple and blue dashed lines, respectively.

[(2R,3S,6S)-3-Acetyloxy-6-(1-phenyl-1H-1,2,3- triazol-4-yl)-3,6-dihydro-2H-pyran-2-yl]methyl acetate

Crystal data	
$C_{18}H_{19}N_3O_5$	F(000) = 376
$M_r = 357.36$	$D_{\rm x} = 1.384 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1$	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: P 2yb	Cell parameters from 4088 reflections
a = 4.79932 (7) Å	$\theta = 2.7-74.0^{\circ}$
b = 16.6308 (2) Å	$\mu = 0.86 \text{ mm}^{-1}$
c = 10.76331 (14) Å	T = 100 K
$\beta = 93.225 \ (1)^{\circ}$	Prism, colourless
V = 857.73 (2) Å ³	$0.20 \times 0.10 \times 0.05 \text{ mm}$
Z = 2	

Data collection

Agilent SuperNova Dual Cu at zero	5784 measured reflections
Dediction second fine forms seeled to be	3304 reflections with $L > 2$ (D)
Radiation source: fine-focus sealed tube	3304 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 74.2^{\circ}, \theta_{\rm min} = 4.1^{\circ}$
ω scans	$h = -5 \rightarrow 5$
Absorption correction: multi-scan	$k = -20 \rightarrow 20$
(CrvsAlis PRO; Agilent, 2010)	$l = -13 \rightarrow 8$
$T_{\min} = 0.848, \ T_{\max} = 0.959$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_0^2) + (0.0525P)^2 + 0.1259P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3369 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
237 parameters	$\Delta ho_{ m max} = 0.14 \ m e \ m \AA^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1591 Friedel
airect methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.09 (15)
map	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.1199 (2)	0.49978 (6)	0.39298 (9)	0.0183 (2)	
O2	0.1131 (3)	0.41952 (8)	0.69075 (13)	0.0374 (3)	
03	0.0424 (2)	0.54932 (7)	0.63709 (10)	0.0230 (2)	
O4	0.0156 (3)	0.75452 (8)	0.58495 (11)	0.0298 (3)	
05	0.1489 (2)	0.70479 (7)	0.40355 (11)	0.0226 (2)	
N1	0.2553 (3)	0.37406 (8)	0.10112 (11)	0.0163 (2)	
N2	0.2724 (3)	0.44506 (8)	0.03950 (12)	0.0205 (3)	
N3	0.1016 (3)	0.49499 (8)	0.09098 (12)	0.0202 (3)	
C1	0.4329 (3)	0.30870 (9)	0.07023 (15)	0.0174 (3)	
C2	0.5395 (4)	0.30667 (10)	-0.04686 (15)	0.0231 (3)	
H2	0.4855	0.3461	-0.1074	0.028*	
C3	0.7260 (4)	0.24640 (11)	-0.07433 (16)	0.0274 (3)	
H3	0.8035	0.2451	-0.1536	0.033*	
C4	0.7999 (4)	0.18788 (10)	0.01356 (17)	0.0265 (3)	

H4	0.9275	0.1466	-0.0056	0.032*	
C5	0.6871 (4)	0.18983 (10)	0.12911 (17)	0.0278 (4)	
Н5	0.7362	0.1494	0.1888	0.033*	
C6	0.5023 (3)	0.25052 (10)	0.15854 (15)	0.0232 (3)	
Н6	0.4251	0.2520	0.2379	0.028*	
C7	0.0740 (3)	0.37932 (9)	0.19199 (13)	0.0177 (3)	
H7	0.0251	0.3385	0.2485	0.021*	
C8	-0.0244 (3)	0.45681 (9)	0.18467 (13)	0.0160 (3)	
С9	-0.2265 (3)	0.49831 (9)	0.26498 (13)	0.0176 (3)	
Н9	-0.4020	0.4658	0.2614	0.021*	
C10	-0.3016 (3)	0.58149 (9)	0.21885 (15)	0.0192 (3)	
H10	-0.4012	0.5874	0.1406	0.023*	
C11	-0.2323 (3)	0.64660 (9)	0.28465 (14)	0.0200 (3)	
H11	-0.2926	0.6977	0.2543	0.024*	
C12	-0.0613 (3)	0.64194 (9)	0.40561 (14)	0.0193 (3)	
H12	-0.1821	0.6498	0.4774	0.023*	
C13	0.0863 (3)	0.56087 (9)	0.41504 (14)	0.0181 (3)	
H13	0.2238	0.5577	0.3488	0.022*	
C14	0.2357 (3)	0.54349 (10)	0.53946 (14)	0.0225 (3)	
H14A	0.3170	0.4888	0.5388	0.027*	
H14B	0.3896	0.5825	0.5550	0.027*	
C15	-0.0055 (3)	0.48239 (10)	0.70412 (15)	0.0247 (3)	
C16	-0.2217 (4)	0.49774 (14)	0.79520 (16)	0.0342 (4)	
H16A	-0.1650	0.4725	0.8749	0.051*	
H16B	-0.4003	0.4750	0.7636	0.051*	
H16C	-0.2422	0.5558	0.8070	0.051*	
C17	0.1610 (3)	0.75859 (9)	0.49755 (14)	0.0201 (3)	
C18	0.3763 (4)	0.82174 (10)	0.47939 (18)	0.0270 (4)	
H18A	0.3102	0.8734	0.5100	0.041*	
H18B	0.4096	0.8263	0.3907	0.041*	
H18C	0.5505	0.8069	0.5256	0.041*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0217 (5)	0.0174 (5)	0.0160 (5)	-0.0037 (4)	0.0037 (4)	-0.0012 (4)
O2	0.0421 (8)	0.0277 (7)	0.0423 (8)	-0.0015 (6)	0.0020 (6)	0.0073 (6)
O3	0.0284 (6)	0.0250 (6)	0.0162 (5)	-0.0015 (5)	0.0055 (4)	-0.0001 (4)
O4	0.0357 (7)	0.0314 (7)	0.0232 (6)	-0.0047(5)	0.0090 (5)	-0.0096 (5)
O5	0.0253 (6)	0.0199 (5)	0.0236 (6)	-0.0061 (4)	0.0104 (5)	-0.0069 (4)
N1	0.0186 (6)	0.0138 (6)	0.0165 (6)	-0.0001 (5)	0.0014 (5)	0.0012 (5)
N2	0.0269 (7)	0.0157 (6)	0.0193 (6)	0.0015 (5)	0.0053 (5)	0.0025 (5)
N3	0.0234 (6)	0.0184 (6)	0.0194 (6)	0.0005 (5)	0.0055 (5)	0.0002 (5)
C1	0.0170 (7)	0.0150 (6)	0.0203 (7)	-0.0005 (6)	0.0013 (5)	-0.0042 (6)
C2	0.0259 (8)	0.0236 (7)	0.0201 (8)	0.0013 (6)	0.0037 (6)	-0.0024 (6)
C3	0.0283 (8)	0.0291 (9)	0.0253 (8)	0.0004 (7)	0.0064 (6)	-0.0080(7)
C4	0.0239 (8)	0.0201 (8)	0.0355 (9)	0.0033 (6)	0.0016 (7)	-0.0088 (7)
C5	0.0312 (9)	0.0201 (8)	0.0319 (9)	0.0042 (7)	-0.0014 (7)	0.0011 (7)

supporting information

C6	0.0266 (8)	0.0203 (7)	0.0228 (7)	0.0027 (7)	0.0027 (6)	0.0007 (6)
C7	0.0182 (7)	0.0176 (7)	0.0174 (7)	-0.0019 (6)	0.0029 (5)	0.0005 (6)
C8	0.0162 (7)	0.0162 (7)	0.0156 (7)	-0.0027 (5)	0.0010 (5)	-0.0019 (5)
C9	0.0172 (7)	0.0180 (7)	0.0177 (7)	-0.0022 (6)	0.0025 (5)	-0.0017 (6)
C10	0.0161 (7)	0.0209 (8)	0.0210 (7)	0.0008 (5)	0.0033 (5)	0.0009 (6)
C11	0.0189 (7)	0.0186 (7)	0.0233 (8)	0.0015 (6)	0.0074 (6)	0.0012 (6)
C12	0.0195 (7)	0.0173 (7)	0.0219 (8)	-0.0037 (6)	0.0078 (6)	-0.0030 (6)
C13	0.0180 (7)	0.0190 (7)	0.0178 (7)	-0.0037 (6)	0.0057 (5)	-0.0021 (5)
C14	0.0210 (7)	0.0280 (8)	0.0188 (7)	-0.0011 (6)	0.0045 (6)	-0.0012 (6)
C15	0.0238 (8)	0.0304 (9)	0.0195 (7)	-0.0080 (7)	-0.0032 (6)	0.0028 (6)
C16	0.0289 (9)	0.0513 (12)	0.0226 (8)	-0.0084 (9)	0.0036 (7)	0.0073 (8)
C17	0.0205 (7)	0.0174 (7)	0.0221 (7)	0.0028 (6)	-0.0005 (6)	-0.0031 (6)
C18	0.0266 (8)	0.0196 (8)	0.0349 (9)	-0.0029 (6)	0.0016 (7)	-0.0030 (6)

Geometric parameters (Å, °)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—C13	1.4289 (17)	C7—C8	1.373 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—С9	1.4425 (17)	С7—Н7	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—C15	1.203 (2)	C8—C9	1.503 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C15	1.353 (2)	C9—C10	1.507 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C14	1.4435 (18)	С9—Н9	1.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—C17	1.204 (2)	C10-C11	1.326 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C17	1.3494 (19)	C10—H10	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C12	1.4537 (18)	C11—C12	1.501 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C7	1.3482 (19)	C11—H11	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—N2	1.3591 (18)	C12—C13	1.524 (2)
N2-N31.3113 (19)C13-C141.511 (2)N3-C81.3617 (19)C13-H131.0000C1-C61.384 (2)C14-H14A0.9900C1-C21.387 (2)C14-H14B0.9900C2-C31.387 (2)C15-C161.489 (2)C2-H20.9500C16-H16A0.9800C3-C41.389 (3)C16-H16B0.9800C3-H30.9500C16-H16C0.9800C4-C51.384 (3)C17-C181.494 (2)C4-H40.9500C18-H18A0.9800C5-C61.392 (2)C18-H18B0.9800C5-H50.9500C18-H18C0.9800C6-H60.9500C10-C11-C12121.97 (14)C15-O3-C14117.93 (13)C10-C11-C12121.97 (14)C17-O5-C12117.77 (12)C10-C11-H11119.0C7-N1-N2110.90 (12)C12-C11-H11119.0C7-N1-N2110.90 (12)C12-C11-H11119.0C7-N1-C1129.40 (13)O5-C12-C13108.46 (12)N3-N2-N1106.72 (12)C11-C12-C13109.44 (12)	N1—C1	1.4320 (19)	C12—H12	1.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—N3	1.3113 (19)	C13—C14	1.511 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C8	1.3617 (19)	C13—H13	1.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6	1.384 (2)	C14—H14A	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.387 (2)	C14—H14B	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3	1.387 (2)	C15—C16	1.489 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—Н2	0.9500	C16—H16A	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.389 (3)	C16—H16B	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3	0.9500	C16—H16C	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.384 (3)	C17—C18	1.494 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4	0.9500	C18—H18A	0.9800
C5—H5 0.9500 C18—H18C 0.9800 C6—H6 0.9500 C18—H18C 0.9800 C13—O1—C9 112.08 (11) C9—C10—H10 119.1 C15—O3—C14 117.93 (13) C10—C11—C12 121.97 (14) C17—O5—C12 117.77 (12) C10—C11—H11 119.0 C7—N1—N2 110.90 (12) C12—C11—H11 119.0 C7—N1—C1 129.40 (13) O5—C12—C11 107.19 (12) N2—N1—C1 119.55 (12) O5—C12—C13 108.46 (12) N3—N2—N1 106.72 (12) C11—C12—C13 109.44 (12)	С5—С6	1.392 (2)	C18—H18B	0.9800
C6—H6 0.9500 C13—O1—C9 112.08 (11) C9—C10—H10 119.1 C15—O3—C14 117.93 (13) C10—C11—C12 121.97 (14) C17—O5—C12 117.77 (12) C10—C11—H11 119.0 C7—N1—N2 110.90 (12) C12—C11—H11 119.0 C7—N1—C1 129.40 (13) O5—C12—C11 107.19 (12) N2—N1—C1 119.55 (12) O5—C12—C13 108.46 (12) N3—N2—N1 106.72 (12) C11—C12—C13 109.44 (12)	С5—Н5	0.9500	C18—H18C	0.9800
C13-O1-C9 112.08 (11) C9-C10-H10 119.1 C15-O3-C14 117.93 (13) C10-C11-C12 121.97 (14) C17-O5-C12 117.77 (12) C10-C11-H11 119.0 C7-N1-N2 110.90 (12) C12-C11-H11 119.0 C7-N1-C1 129.40 (13) O5-C12-C11 107.19 (12) N2-N1-C1 119.55 (12) O5-C12-C13 108.46 (12) N3-N2-N1 106.72 (12) C11-C12-C13 109.44 (12)	С6—Н6	0.9500		
C13-O1-C9112.08 (11)C9-C10-H10119.1C15-O3-C14117.93 (13)C10-C11-C12121.97 (14)C17-O5-C12117.77 (12)C10-C11-H11119.0C7-N1-N2110.90 (12)C12-C11-H11119.0C7-N1-C1129.40 (13)O5-C12-C11107.19 (12)N2-N1-C1119.55 (12)O5-C12-C13108.46 (12)N3-N2-N1106.72 (12)C11-C12-C13109.44 (12)				
C15-O3-C14117.93 (13)C10-C11-C12121.97 (14)C17-O5-C12117.77 (12)C10-C11-H11119.0C7-N1-N2110.90 (12)C12-C11-H11119.0C7-N1-C1129.40 (13)O5-C12-C11107.19 (12)N2-N1-C1119.55 (12)O5-C12-C13108.46 (12)N3-N2-N1106.72 (12)C11-C12-C13109.44 (12)	С13—О1—С9	112.08 (11)	C9—C10—H10	119.1
C17—O5—C12117.77 (12)C10—C11—H11119.0C7—N1—N2110.90 (12)C12—C11—H11119.0C7—N1—C1129.40 (13)O5—C12—C11107.19 (12)N2—N1—C1119.55 (12)O5—C12—C13108.46 (12)N3—N2—N1106.72 (12)C11—C12—C13109.44 (12)	C15—O3—C14	117.93 (13)	C10-C11-C12	121.97 (14)
C7N1N2110.90 (12)C12C11H11119.0C7N1C1129.40 (13)O5C12C11107.19 (12)N2N1C1119.55 (12)O5C12C13108.46 (12)N3N2N1106.72 (12)C11C12C13109.44 (12)	C17—O5—C12	117.77 (12)	C10-C11-H11	119.0
C7N1C1129.40 (13)O5C12C11107.19 (12)N2N1C1119.55 (12)O5C12C13108.46 (12)N3N2N1106.72 (12)C11C12C13109.44 (12)	C7—N1—N2	110.90 (12)	C12—C11—H11	119.0
N2N1C1119.55 (12)O5C12C13108.46 (12)N3N2N1106.72 (12)C11C12C13109.44 (12)	C7—N1—C1	129.40 (13)	O5—C12—C11	107.19 (12)
N3—N2—N1 106.72 (12) C11—C12—C13 109.44 (12)	N2—N1—C1	119.55 (12)	O5-C12-C13	108.46 (12)
	N3—N2—N1	106.72 (12)	C11—C12—C13	109.44 (12)

N2 N3 C8	100 38 (13)	O5 C12 H12	110.6
	109.36(13) 121.36(14)	C11_C12_H12	110.6
$C_{0} - C_{1} - C_{2}$	121.50(14) 110.64(14)	$C_{11} = C_{12} = H_{12}$	110.6
C_{2} C_{1} N1	119.04(14)	C13 - C12 - 1112	107.51(12)
$C_2 = C_1 = N_1$	110.30(14) 110.12(15)	01 - 013 - 012	107.51(12) 107.62(12)
C_{3}	119.15 (15)	01 - 013 - 012	107.03(12)
$C_3 = C_2 = H_2$	120.4	C14 - C13 - C12	113.09 (13)
C1 = C2 = C1	120.4	OI = C13 = H13	108.8
$C_2 = C_3 = C_4$	120.28 (15)	C12 C13—H13	108.8
C2—C3—H3	119.9	C12—C13—H13	108.8
С4—С3—Н3	119.9	03	109.89 (12)
C5—C4—C3	119.84 (15)	O3—C14—H14A	109.7
C5—C4—H4	120.1	C13—C14—H14A	109.7
C3—C4—H4	120.1	O3—C14—H14B	109.7
C4—C5—C6	120.51 (16)	C13—C14—H14B	109.7
C4—C5—H5	119.7	H14A—C14—H14B	108.2
С6—С5—Н5	119.7	O2—C15—O3	123.73 (16)
C1—C6—C5	118.85 (15)	O2—C15—C16	125.44 (17)
С1—С6—Н6	120.6	O3—C15—C16	110.83 (16)
С5—С6—Н6	120.6	C15—C16—H16A	109.5
N1—C7—C8	104.66 (13)	C15—C16—H16B	109.5
N1—C7—H7	127.7	H16A—C16—H16B	109.5
С8—С7—Н7	127.7	C15—C16—H16C	109.5
N3—C8—C7	108.34 (13)	H16A—C16—H16C	109.5
N3—C8—C9	122.66 (13)	H16B—C16—H16C	109.5
C7—C8—C9	128.96 (14)	O4—C17—O5	123.09 (14)
01	110.58 (12)	O4—C17—C18	125.26 (14)
Q1—C9—C10	111.38 (12)	O5-C17-C18	111.64 (14)
C8-C9-C10	112.47 (12)	C17—C18—H18A	109.5
01—C9—H9	107.4	C17—C18—H18B	109.5
C8-C9-H9	107.4	H18A - C18 - H18B	109.5
C10-C9-H9	107.4	C17— $C18$ — $H18C$	109.5
C_{11} C_{10} C_{9}	107.4 121 71 (14)	$H_{18A} = C_{18} = H_{18C}$	109.5
$C_{11} = C_{10} = C_{3}$	121.71 (14)	H18R C18 H18C	109.5
011-010-1110	117.1	1118 D —C18—1118C	109.5
C7 N1 N2 N3	-0.21(17)	C7 $C8$ $C9$ $O1$	60.2(2)
$C_1 = N_1 = N_2 = N_3$	-176 10 (13)	$N_{}^{3} = C_{}^{3} = C_{$	70(2)
$N_1 = N_2 = N_3$	-0.02(16)	$C_{7} = C_{8} = C_{9} = C_{10}$	(2)
N1 - N2 - N3 - C6	0.02(10)	$C_{}C_{0}C_{0}C_{10}C_{11}$	1/4.01(14)
C = NI = CI = C0	-21.1(2)	01 - 09 - 010 - 011	9.9 (2)
$N_2 - N_1 - C_1 - C_0$	134.08(13)		-114.87(10)
C = N = C = C	161.09 (15)		3.5 (2)
$N_2 - N_1 - C_1 - C_2$	-23.8(2)	C17 - 05 - C12 - C11	124.32 (14)
C6-C1-C2-C3	-2.0(2)	C17—O5—C12—C13	-117.60 (14)
NI-CI-C2-C3	175.82 (14)	C10—C11—C12—O5	135.30 (15)
C1—C2—C3—C4	1.4 (2)	C10—C11—C12—C13	17.9 (2)
C2—C3—C4—C5	-0.1(3)	C9—O1—C13—C14	-165.40 (12)
C3—C4—C5—C6	-0.7 (3)	C9—O1—C13—C12	70.07 (14)
C2-C1-C6-C5	1.2 (2)	O5—C12—C13—O1	-169.07 (11)
N1—C1—C6—C5	-176.58 (15)	C11—C12—C13—O1	-52.44 (15)

supporting information

C4—C5—C6—C1	0.2 (3)	O5-C12-C13-C14	71.10 (15)
N2—N1—C7—C8	0.34 (16)	C11—C12—C13—C14	-172.27 (13)
C1—N1—C7—C8	175.81 (14)	C15—O3—C14—C13	117.54 (15)
N2—N3—C8—C7	0.23 (17)	O1—C13—C14—O3	-63.44 (16)
N2—N3—C8—C9	178.14 (13)	C12—C13—C14—O3	56.45 (17)
N1-C7-C8-N3	-0.34 (16)	C14—O3—C15—O2	3.6 (2)
N1—C7—C8—C9	-178.08 (14)	C14—O3—C15—C16	-176.58 (13)
C13—O1—C9—C8	78.46 (14)	C12—O5—C17—O4	3.6 (2)
C13—O1—C9—C10	-47.37 (15)	C12—O5—C17—C18	-177.05 (14)
N3—C8—C9—O1	-117.28 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C7—H7…O4 ⁱ	0.95	2.29	3.2207 (19)	167
C9—H9…Cg1 ⁱⁱ	1.00	2.68	3.5362 (16)	144
C16—H16a····N3 ⁱⁱⁱ	0.98	2.62	3.463 (2)	145
C16—H16b…O2 ⁱⁱ	0.98	2.59	3.570 (2)	177
C18—H18a····O1 ^{iv}	0.98	2.54	3.516 (2)	174
C18—H18c…O4 ^v	0.98	2.45	3.400 (2)	164

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*, *y*, *z*+1; (iv) -*x*, *y*+1/2, -*z*+1; (v) *x*+1, *y*, *z*.