organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(6-Phenyl-7*H*-1,2,4-triazolo[3,4-*b*]-[1,3,4]thiadiazin-3-yl)-1,3-benzothiazole

Hatem A. Abdel-Aziz,^a‡ Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: Edward.Tiekink@gmail.com

Received 7 September 2011; accepted 7 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.083; data-to-parameter ratio = 13.4.

In the title compound, $C_{17}H_{11}N_5S_2$, the dihedral angles formed between the triazole ring and the benzene ring and the 1,3benzothiazole ring system are 8.67 (8) and 13.90 (9)°, respectively. The conformation of the triazolo-thiadiazin-3-yl fused ring system is a twisted half-chair. Overall, the molecule adopts a flattened shape. Supramolecular helical chains along the *a* axis sustained by $C-H\cdots N$ interactions are found in the crystal structure. These are linked *via* $C-H\cdots \pi$ contacts as well as $\pi-\pi$ [centroid–centroid distance = 3.5911 (12) Å] interactions between the triazole and thiazole rings.

Related literature

For background to the synthesis and biological activity of benzothiazoles and [1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazines, see: Abdel-Aziz *et al.* (2007, 2010); Dawood *et al.* (2005).

Experimental

Crystal data C₁₇H₁₁N₅S₂

 $M_r = 349.43$

Orthorhombic, $P2_12_12$ a = 12.1437 (3) Å b = 21.2950 (5) Å c = 5.7946 (1) Å V = 1498.48 (6) Å³

Data collection

Agilent SuperNova Dual
diffractometer with Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
$T_{\min} = 0.715, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.083$	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
S = 1.06	Absolute structure: Flack (1983),
2902 reflections	1150 Friedel pairs
217 parameters	Flack parameter: -0.006 (16)
H-atom parameters constrained	•

Z = 4

Cu $K\alpha$ radiation

 $0.25 \times 0.25 \times 0.05 \text{ mm}$

5754 measured reflections 2902 independent reflections

2751 reflections with $I > 2\sigma(I)$

 $\mu = 3.29 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.029$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C12-C17 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10a\cdots N3^{i}$ $C3-H3\cdots Cg1^{ii}$	0.99 0.95	2.45 2.65	3.333 (3) 3.377 (2)	148 134
	1 1			

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 3$; (ii) -x + 1, -y + 1, z - 1.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank King Saud University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5092).

References

- Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.
- Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573–1582.
- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). *Heteroat. Chem*, **16**,
- 621–627. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Sheldrick, G. M. (2008). Acta Cryst. A**59**, 810–881.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

[‡] Additional correspondence author: hatem_741@yahoo.com.

supporting information

Acta Cryst. (2011). E67, o2610 [https://doi.org/10.1107/S1600536811036452] 2-(6-Phenyl-7*H*-1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazin-3-yl)-1,3-benzothiazole Hatem A. Abdel-Aziz, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The title compound, (I), was investigated in relation to the established biological activities exhibited by benzothiazoles and [1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazines (Abdel-Aziz *et al.* 2007; Abdel-Aziz *et al.* 2010; Dawood *et al.* 2005).

In (I), Fig. 1, the 1,3-benzothiazole ring is planar with r.m.s. deviations of 0.034 Å. By contrast, the triazolo-thiadiazin-3-yl fused ring system has a twisted half-chair form owing to the presence of the methylene-C10 group with the C10 atom lying 0.702 (3) Å out of the least-squares plane defined by the S2,N4,N5,C9,C11 atoms (r.m.s. deviation = 0.109 Å). The 1,3-benzothiazole ring forms dihedral angles of 13.90 (9) and 8.67 (8) °, respectively, with the triazole and benzene rings so that the entire molecule has a flattened shape.

In the crystal packing, C—H…N interactions, Table 1, lead to the formation of supramolecular chains along the *a* axis with an helical topology, Fig. 2. These assemble into zigzag layers in the *ac* plane with connections between them of the type C—H… π involving a methylene-H and the benzene ring, and π … π . The shortest interaction of the latter type of 3.5911 (12) Å occurs between the S1,N1,C1,C6,C7 and N2–N4,C8,C9 five-membered rings, Fig. 3.

S2. Experimental

The title compound was prepared according to the reported method (Abdel-Aziz *et al.*, 2007). Colourless crystals were obtained from an EtOH/DMF (v/v = 2/1) solution by slow evaporation at room temperature.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, U_{iso} (H) 1.2 U_{eq} (C)] and were included in the refinement in the riding model approximation.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Supramolecular chains in (I) mediated by C—H…N interactions (blue dashed lines).

Figure 3

A view in projection down the *a* axis of the unit-cell contents of (I). The C—H···N, C—H··· π and π ··· π interactions are shown as blue, purple and orange dashed lines, respectively.

2-(6-Phenyl-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-1,3- benzothiazole

Crystal data	
$C_{17}H_{11}N_5S_2$	F(000) = 720
$M_r = 349.43$	$D_{\rm x} = 1.549 { m Mg} { m m}^{-3}$
Orthorhombic, $P2_12_12$	Cu K α radiation, $\lambda = 1.5418$ Å
Hall symbol: P 2 2ab	Cell parameters from 3513 reflections
a = 12.1437 (3) Å	$\theta = 3.6-74.3^{\circ}$
b = 21.2950(5) Å	$\mu = 3.29 \text{ mm}^{-1}$
c = 5.7946(1) Å	T = 100 K
V = 1498.48 (6) Å ³	Plate, light-brown
Z = 4	$0.25 \times 0.25 \times 0.05 \text{ mm}$

Data collection

Agilent SuperNova Dual	$T_{\min} = 0.715, \ T_{\max} = 1.000$
diffractometer with Atlas detector	5754 measured reflections
Radiation source: SuperNova (Cu) X-ray	2902 independent reflections
Source	2751 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.029$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 74.5^\circ, \theta_{\rm min} = 4.2^\circ$
ωscan	$h = -15 \rightarrow 13$
Absorption correction: multi-scan	$k = -13 \rightarrow 26$
(CrysAlis PRO; Agilent, 2010)	$l = -6 \rightarrow 6$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0507P)^2 + 0.021P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
2902 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
217 parameters	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.30 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1150 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.006 (16)
man	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
S1	0.41692 (4)	0.42415 (2)	0.72377 (10)	0.01863 (14)	
S2	0.51497 (4)	0.25815 (2)	1.48903 (10)	0.01803 (13)	
N1	0.21298 (15)	0.38633 (8)	0.7555 (3)	0.0165 (4)	
N2	0.24914 (15)	0.31575 (9)	1.1796 (3)	0.0170 (4)	
N3	0.30068 (16)	0.28150 (8)	1.3539 (3)	0.0177 (4)	
N4	0.42913 (15)	0.32303 (8)	1.1339 (3)	0.0142 (4)	
N5	0.52940 (15)	0.34569 (8)	1.0531 (3)	0.0155 (4)	
C1	0.32276 (18)	0.45294 (9)	0.5251 (4)	0.0173 (4)	
C2	0.34046 (19)	0.49351 (11)	0.3396 (4)	0.0214 (5)	
H2	0.4105	0.5121	0.3138	0.026*	
C3	0.25298 (18)	0.50565 (10)	0.1955 (4)	0.0204 (5)	
Н3	0.2635	0.5325	0.0664	0.024*	
C4	0.14936 (18)	0.47958 (9)	0.2342 (4)	0.0202 (5)	
H4	0.0908	0.4887	0.1309	0.024*	

C5	0.13077 (18)	0.44076 (10)	0.4203(4)	0.0191 (5)
Н5	0.0597	0.4237	0.4478	0.023*
C6	0.21838 (18)	0.42704 (9)	0.5676 (4)	0.0149 (4)
C7	0.30956 (18)	0.38046 (9)	0.8490 (4)	0.0139 (4)
C8	0.32714 (17)	0.34057 (9)	1.0515 (4)	0.0149 (4)
C9	0.40792 (19)	0.28660 (9)	1.3227 (4)	0.0153 (4)
C10	0.61131 (16)	0.25386 (9)	1.2505 (4)	0.0175 (4)
H10A	0.6859	0.2451	1.3118	0.021*
H10B	0.5904	0.2184	1.1489	0.021*
C11	0.61482 (18)	0.31330 (9)	1.1098 (4)	0.0143 (4)
C12	0.72157 (16)	0.33574 (8)	1.0201 (4)	0.0140 (4)
C13	0.72667 (19)	0.36733 (9)	0.8082 (4)	0.0171 (4)
H13	0.6617	0.3728	0.7193	0.021*
C14	0.82592 (18)	0.39051 (9)	0.7279 (4)	0.0180 (4)
H14	0.8288	0.4122	0.5846	0.022*
C15	0.92123 (19)	0.38220 (10)	0.8562 (4)	0.0186 (4)
H15	0.9891	0.3985	0.8010	0.022*
C16	0.91816 (19)	0.35013 (10)	1.0651 (4)	0.0184 (4)
H16	0.9838	0.3443	1.1518	0.022*
C17	0.81865 (18)	0.32671 (9)	1.1466 (4)	0.0159 (4)
H17	0.8164	0.3045	1.2886	0.019*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0133 (2)	0.0176 (2)	0.0250 (3)	-0.00121 (19)	-0.0008(2)	0.0079 (2)
S2	0.0186 (3)	0.0185 (3)	0.0170 (3)	0.00037 (19)	-0.0012 (2)	0.00396 (19)
N1	0.0172 (9)	0.0139 (8)	0.0184 (9)	-0.0010 (7)	-0.0006 (8)	0.0007 (8)
N2	0.0168 (9)	0.0155 (8)	0.0186 (9)	-0.0002 (7)	0.0009 (8)	0.0010 (7)
N3	0.0185 (9)	0.0171 (9)	0.0175 (10)	-0.0008 (7)	0.0015 (7)	0.0035 (7)
N4	0.0129 (9)	0.0131 (8)	0.0167 (9)	-0.0003 (7)	-0.0003 (7)	0.0014 (7)
N5	0.0134 (9)	0.0136 (8)	0.0195 (10)	-0.0017 (7)	0.0019 (7)	0.0015 (7)
C1	0.0158 (10)	0.0138 (9)	0.0224 (11)	0.0024 (8)	0.0009 (9)	0.0014 (9)
C2	0.0168 (11)	0.0181 (10)	0.0295 (13)	-0.0004 (9)	0.0018 (10)	0.0066 (9)
C3	0.0231 (12)	0.0158 (10)	0.0223 (11)	0.0039 (9)	0.0017 (10)	0.0065 (9)
C4	0.0201 (11)	0.0195 (10)	0.0211 (12)	0.0042 (8)	-0.0038 (10)	0.0012 (9)
C5	0.0139 (11)	0.0198 (10)	0.0237 (12)	0.0009 (8)	-0.0021 (9)	0.0014 (9)
C6	0.0173 (11)	0.0118 (8)	0.0157 (10)	0.0011 (8)	0.0013 (8)	-0.0008 (8)
C7	0.0137 (9)	0.0105 (9)	0.0175 (11)	-0.0002 (8)	0.0008 (8)	-0.0011 (8)
C8	0.0127 (10)	0.0138 (9)	0.0183 (11)	0.0017 (8)	-0.0010 (8)	-0.0012 (8)
С9	0.0176 (10)	0.0121 (9)	0.0161 (10)	0.0003 (8)	0.0001 (8)	0.0004 (7)
C10	0.0139 (9)	0.0134 (9)	0.0252 (11)	0.0001 (8)	-0.0016 (9)	0.0024 (9)
C11	0.0145 (10)	0.0122 (9)	0.0161 (10)	-0.0022 (8)	-0.0012 (8)	-0.0024 (8)
C12	0.0143 (10)	0.0093 (8)	0.0184 (10)	-0.0001 (7)	-0.0001 (8)	-0.0015 (8)
C13	0.0199 (11)	0.0124 (9)	0.0191 (11)	-0.0002 (8)	-0.0015 (9)	0.0005 (8)
C14	0.0218 (11)	0.0159 (9)	0.0161 (11)	0.0000 (8)	0.0033 (9)	0.0007 (9)
C15	0.0160 (10)	0.0180 (10)	0.0219 (11)	-0.0031 (9)	0.0039 (9)	-0.0027 (9)
C16	0.0161 (10)	0.0169 (9)	0.0221 (12)	0.0003 (8)	-0.0015 (9)	-0.0010 (8)

supporting information

C17	0.0175 (11)	0.0123 (9)	0.0177 (11)	0.0013 (8)	-0.0017 (9)	-0.0002 (8)
Geome	tric parameters (A	Å, °)				
S1—C	1	1.734	(2)	C4—H4		0.9500
S1—C	7	1.758	(2)	C5—C6		1.395 (3)
S2—C	9	1.728	(2)	С5—Н5		0.9500
S2—C	10	1.813	(2)	С7—С8		1.464 (3)
N1—C	7	1.298	(3)	C10-C11		1.507 (3)
N1—C	6	1.393	(3)	C10—H10A		0.9900
N2—C	8	1.314	(3)	C10—H10B		0.9900
N2—N	3	1.394	(3)	C11—C12		1.476 (3)
N3—C	9	1.319	(3)	C12—C13		1.402 (3)
N4—C	9	1.366	(3)	C12—C17		1.401 (3)
N4—C	8	1.379	(3)	C13—C14		1.383 (3)
N4—N	5	1.391	(2)	C13—H13		0.9500
N5—C	11	1.288	(3)	C14—C15		1.387 (3)
C1—C	2	1.396	(3)	C14—H14		0.9500
C1—C	6	1.404	(3)	C15—C16		1.391 (3)
С2—С	3	1.376	(3)	C15—H15		0.9500
С2—Н	2	0.950	0	C16—C17		1.390 (3)
С3—С	4	1.394	(3)	C16—H16		0.9500
С3—Н	3	0.950	0	C17—H17		0.9500
C4—C	5	1.377	(3)			
C1—S	1—C7	88.40	(10)	N4—C8—C7		124.43 (19)
C9—S2	2—C10	94.47	(10)	N3—C9—N4		110.04 (19)
C7—N	1—С6	110.0	9 (18)	N3—C9—S2		129.60 (17)
C8—N	2—N3	107.2	1 (18)	N4—C9—S2		120.26 (17)
C9—N	3—N2	107.5	1 (17)	C11—C10—S2		112.86 (14)
C9—N	4—C8	105.1	7 (18)	C11—C10—H10A		109.0
C9—N	4—N5	129.1	8 (19)	S2-C10-H10A		109.0
C8—N	4—N5	125.1	7 (17)	C11-C10-H10B		109.0
C11—1	N5—N4	115.6	9 (17)	S2-C10-H10B		109.0
С2—С	1—C6	121.1	(2)	H10A—C10—H10H	3	107.8
С2—С	1—S1	128.9	3 (17)	N5-C11-C12		116.37 (18)
С6—С	1—S1	109.8	7 (16)	N5-C11-C10		124.40 (19)
С3—С	2—C1	117.7	(2)	C12-C11-C10		119.17 (18)
С3—С	2—Н2	121.1		C13—C12—C17		119.1 (2)
C1—C	2—Н2	121.1		C13—C12—C11		120.2 (2)
С2—С	3—С4	121.6	(2)	C17—C12—C11		120.7 (2)
С2—С	3—Н3	119.2		C14—C13—C12		120.3 (2)
C4—C	3—Н3	119.2		C14—C13—H13		119.8
С5—С	4—C3	120.9	(2)	С12—С13—Н13		119.8
С5—С	4—H4	119.6	. /	C13—C14—C15		120.1 (2)
С3—С	4—H4	119.6		C13—C14—H14		120.0
C4—C	5—C6	118.7	(2)	C15—C14—H14		120.0
C4—C	5—H5	120.7	. /	C14—C15—C16		120.5 (2)

supporting information

С6—С5—Н5	120.7	C14—C15—H15	119.8
C5—C6—N1	124.9 (2)	C16—C15—H15	119.8
C5—C6—C1	119.93 (19)	C17—C16—C15	119.7 (2)
N1—C6—C1	115.08 (19)	C17—C16—H16	120.2
N1—C7—C8	121.47 (19)	C15—C16—H16	120.2
N1—C7—S1	116.54 (16)	C16—C17—C12	120.3 (2)
C8—C7—S1	121.97 (16)	C16—C17—H17	119.8
N2—C8—N4	110.06 (18)	С12—С17—Н17	119.8
N2—C8—C7	125.50 (19)		
C8—N2—N3—C9	-0.5 (2)	S1—C7—C8—N2	166.92 (17)
C9—N4—N5—C11	25.6 (3)	N1	167.6 (2)
C8—N4—N5—C11	-163.6 (2)	S1—C7—C8—N4	-13.8 (3)
C7—S1—C1—C2	-177.9 (2)	N2—N3—C9—N4	0.0 (2)
C7—S1—C1—C6	-0.48 (16)	N2—N3—C9—S2	176.46 (16)
C6—C1—C2—C3	-2.0 (3)	C8—N4—C9—N3	0.5 (2)
S1—C1—C2—C3	175.07 (18)	N5—N4—C9—N3	172.72 (19)
C1—C2—C3—C4	1.2 (4)	C8—N4—C9—S2	-176.35 (15)
C2—C3—C4—C5	0.4 (4)	N5—N4—C9—S2	-4.1 (3)
C3—C4—C5—C6	-1.2 (3)	C10—S2—C9—N3	153.5 (2)
C4—C5—C6—N1	-176.8 (2)	C10—S2—C9—N4	-30.35 (18)
C4—C5—C6—C1	0.3 (3)	C9—S2—C10—C11	48.76 (17)
C7—N1—C6—C5	176.0 (2)	N4—N5—C11—C12	178.39 (18)
C7—N1—C6—C1	-1.3 (3)	N4—N5—C11—C10	1.0 (3)
C2—C1—C6—C5	1.3 (3)	S2-C10-C11-N5	-41.2 (3)
S1—C1—C6—C5	-176.30 (16)	S2-C10-C11-C12	141.45 (17)
C2-C1-C6-N1	178.7 (2)	N5-C11-C12-C13	-30.4 (3)
\$1-C1-C6-N1	1.1 (2)	C10-C11-C12-C13	147.11 (19)
C6—N1—C7—C8	179.56 (17)	N5-C11-C12-C17	148.6 (2)
C6—N1—C7—S1	0.9 (2)	C10-C11-C12-C17	-33.9 (3)
C1—S1—C7—N1	-0.26 (18)	C17—C12—C13—C14	-1.5 (3)
C1—S1—C7—C8	-178.90 (18)	C11—C12—C13—C14	177.53 (19)
N3—N2—C8—N4	0.9 (2)	C12-C13-C14-C15	0.5 (3)
N3—N2—C8—C7	-179.81 (18)	C13—C14—C15—C16	0.6 (3)
C9—N4—C8—N2	-0.8(2)	C14—C15—C16—C17	-0.5 (3)
N5—N4—C8—N2	-173.48 (19)	C15—C16—C17—C12	-0.5 (3)
C9—N4—C8—C7	179.81 (18)	C13—C12—C17—C16	1.5 (3)
N5—N4—C8—C7	7.2 (3)	C11—C12—C17—C16	-177.49 (19)
N1—C7—C8—N2	-11.7 (3)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10a····N3 ⁱ	0.99	2.45	3.333 (3)	148
C3—H3···· <i>Cg</i> 1 ⁱⁱ	0.95	2.65	3.377 (2)	134

Symmetry codes: (i) *x*+1/2, -*y*+1/2, -*z*+3; (ii) -*x*+1, -*y*+1, *z*-1.