Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Phenyl-3-(trimethylsilyl)propan-1aminium chloride

Yousef M. Hijji,^a Ray J. Butcher,^b* Jerry P. Jasinski,^c Zachary White^b and Robert C. Rosenberg^b

^aChemistry Department, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: rbutcher99@yahoo.com

Received 26 August 2011; accepted 30 August 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.010 Å; R factor = 0.076; wR factor = 0.276; data-to-parameter ratio = 21.1.

The title compound, C₁₂H₂₂NSi⁺·Cl⁻, contains two formula units in the asymmetric unit and is a hydrochloride salt in which the amine N atom is protonated and the NH_3^+ group forms hydrogen bonds with the Cl⁻ anion, forming a ribbon in the *c*-axis direction.

Related literature

For silicon-substituted β -phenylethyl amine and its biological activity, see: Frankel et al. (1968). For applications of β phenylethyl amine in alkaloid synthesis via the Pictet-Spengler reaction, see: Lorenz et al. (2010). For uses and applications of 3-amino-propylsilanes in nano technology and selfassembled monolayers, see: Li et al. (2009) and in reverse ionic liquids in oil extraction, see: Blasucci et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).

 $V = 3006.01 (14) \text{ Å}^3$

 $0.47 \times 0.10 \times 0.06 \; \rm mm$

11195 measured reflections 5882 independent reflections 3078 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Cu Ka radiation $\mu = 2.79 \text{ mm}^{-1}$

Z = 8

T = 295 K

 $R_{\rm int} = 0.049$

279 parameters

 $\Delta \rho_{\rm max} = 0.72 \text{ e} \text{ Å}^{-1}$ $\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Experimental

Crystal data

$C_{12}H_{22}NSi^+ \cdot Cl^-$	
$M_r = 243.85$	
Monoclinic, $P2_1/c$	
a = 12.3716 (4) Å	
b = 32.6920 (8) Å	
c = 7.44256 (18) Å	
$\beta = 93.006 \ (2)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur Ruby
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min} = 0.370, \ T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.076$ $wR(F^2) = 0.276$ S = 1.145882 reflections

Table 1

Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.89	2.23	3.114 (5)	173
0.89	2.25	3.136 (4)	172
0.89	2.36	3.168 (5)	152
0.89	2.30	3.166 (4)	163
0.89	2.28	3.165 (4)	171
0.89	2.35	3.222 (5)	165
	<i>D</i> -H 0.89 0.89 0.89 0.89 0.89 0.89 0.89	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.89 & 2.23 \\ 0.89 & 2.25 \\ 0.89 & 2.36 \\ 0.89 & 2.30 \\ 0.89 & 2.28 \\ 0.89 & 2.28 \\ 0.89 & 2.35 \\ \end{array}$	$\begin{array}{c ccccc} D-H & H\cdots A & D\cdots A \\ \hline 0.89 & 2.23 & 3.114 (5) \\ 0.89 & 2.25 & 3.136 (4) \\ 0.89 & 2.36 & 3.168 (5) \\ 0.89 & 2.30 & 3.166 (4) \\ 0.89 & 2.28 & 3.165 (4) \\ 0.89 & 2.35 & 3.222 (5) \\ \hline \end{array}$

Symmetry codes: (i) x, y, z + 1; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer. YMH acknowledges partial support from NSF-Rise award # HRD 0627276.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5087).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Blasucci, V., Hart, R., Mestre, V. L., Hahne, D. J., Burlager, M., Huttenhower, H., Thio, B. J. R., Pollet, P., Liotta, C. L. & Eckert, C. A. (2010). Fuel, 89, 1315-1319.
- Frankel, M., Broze, M., Gertner, D., Rotman, A., Shenhar, A. & Zilkha, A. (1968). J. Med. Chem. 11, 857-860.

Li, J.-R., Lusker, K. L., Yu, J.-J. & Garno, J. C. (2009). ACS Nano, 3, 2023-2035. Lorenz, M., Linn, M. L. V. & Cook, J. M. (2010). Curr. Org. Synth. 7, 189-223. Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2553 [https://doi.org/10.1107/S1600536811035410] 2-Phenyl-3-(trimethylsilyl)propan-1-aminium chloride

Yousef M. Hijji, Ray J. Butcher, Jerry P. Jasinski, Zachary White and Robert C. Rosenberg

S1. Comment

The title compound is a substituted α -phenyethylaminium chloride. Phenylethyl amines are substrates for dopamine- β -hydroxylase and are of biological importance. Silicon substituted phenylethyl amines have been investigated for biological activity and use as insecticide and applications in pharmaceuticals (Frankel *et al.* 1968). Viewing these compounds as substituted 3-silylpropylamine where they have application in monolayer construction and nanotechnology (Li *et al.* 2009) and use in oil recovery *via* reverse ionic liquids (Blasucci *et al.*, 2010). Phenylethyl amines are important building blocks in isoquinoline alkaloid synthesis *via* Pictet–Spengler (Lorenz *et al.* 2010).

In view of the importance of these compounds the structure of 2-phenyl-3-(trimethylsilyl)-propan-l-aminium chloride, $C_{12}H_{22}CINSi$ is reported. The title compound contains two formula units in the asymmetric unit and is a hydrochloride salt where the amine N is protonated and the NH_3^+ group forms hydrogen bonds with the Cl⁻ anion. These hydrogen bonds form a ribbon in the c direction. The metrical parameters for the salt are in the normal range (Allen, 2002).

S2. Experimental

To 5.20 g (44.4 mmol) benzylnitrile in 40 ml of dry THF under nitrogen atmosphere, cooled in an ice bath was added 28.0 ml of n-Bu Li (1.6 M) (44.8 mmol) dropwise. After the addition was complete the solution turned to a creamy slurry. The mixture was stirred for 10 minutes then the ice bath was removed and 5.54 g of chloromethyltrimethyl silane (6.3 ml) was added dropwise. After the addition was complete the mixture was stirred for 2 h at room temperature. The reaction was worked up by water addition and extraction with ether twice (25 ml). The organic layers were combined and washed with saturated NaCl solution, dried (MgSO4). The solvent was removed to give 3-trimethylsilyl-2-phenyl-propionitrile, as yellowish liquid 7.5 g (78%). 2.0 g of 3-trimethylsilyl-2-phenyl-propionitrile were dissolved in 5 ml of dry THF and heated to 343 K in a distillation set up. 3.0 ml of BH₃.DMS (10 M) was added dropwise over a period of 10 minutes. Dimethylsulfide (DMS) distilled off the reaction mixture and was collected in the receiver. The mixture was heated for 15 minutes then cooled to room temperature. A reflux condenser was connected to the reaction flask and 10 ml of 6 M HCl was added carefully and slowly. After the addition was complete and no more gas evolved the mixture was heated for 30 minutes at reflux. The reaction mixture was cooled to room temperature, transferred to a beaker. KOH pellets were added slowly to the solution to neutralize the acid. The mixture was extracted with 2x25 ml of ether. The organic layers were combined and 5 ml of concentrated HCl was added. The aqueous layer was allowed to evaporate to give white solid. The solid was washed with ether and filtered to give 0.98 g (41%) of the title compound. A sample was dissolved in water and allowed to evaporate slowly to give clear crystals of the title compound used for x-ray crystallography.

¹H NMR (DMSO-d₆, 400 MHz): δ (p.p.m.) = 7.85 (br, 3H), 7.31 (m, 5H), 2.94 (m,3*H*), 1.00 (dd,1*H*, J= 14.5, 3.5 Hz), 0.92 (dd, 1 H, J = 14.5, 11 Hz), -0.28 (s, 9H). ¹³C NMR (DMSO-d₆,, 100 MHz): δ (p.p.m.) 142.24, 128.65, 127.91, 127.16, 46.89, 39.78, 21.01, -1.21. Exact Mass = 207.084401 (*M*⁺ - HCl) Mass Spec (EI) direct probe *M*/*z*: 208 (M—Cl), 192 (*M*+ –NH₂Cl), 177 (M—CH₂NH₃Cl), 147, 121, 104, 91, 73 (base).

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 to 0.97 Å and N—H distances of 0.89 Å and $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figure 1

Diagram of $C_{12}H_{22}CINSi$, showing the contents of the asymmetric unit. Hydrogen bonds are shown by dashed lines (30% atomic displacement parameters).

Figure 2

The molecular packing for $C_{12}H_{22}CINSi$, viewed down the *a* axis showing the hydogen bonded ribbons in the c direction. Hydrogen bonds are shown by dashed lines. 2-Phenyl-3-(trimethylsilyl)propan-1-aminium chloride

Crystal data

C₁₂H₂₂NSi⁺·Cl⁻ $M_r = 243.85$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.3716 (4) Å b = 32.6920 (8) Å c = 7.44256 (18) Å $\beta = 93.006$ (2)° V = 3006.01 (14) Å³ Z = 8

Data collection

Oxford Diffraction Xcalibur Ruby Gemini	11195 measured reflections
diffractometer	5882 independent reflections
Radiation source: Enhance (Cu) X-ray Source	3078 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.049$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\rm max} = 76.0^{\circ}, \ \theta_{\rm min} = 4.5^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan	$k = -40 \rightarrow 38$
(CrysAlis PRO; Oxford Diffraction, 2009)	$l = -9 \rightarrow 8$
$T_{\min} = 0.370, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Secondary atom site location:
Least-squares matrix: full	map

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.076$	Hydrogen site location: inferred from
$wR(F^2) = 0.276$	neighbouring sites
S = 1.14	H-atom parameters constrained
5882 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1129P)^2 + 1.1585P]$
279 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.72$ e Å ⁻³
direct methods	$\Delta ho_{\min} = -0.49 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1056

 $\theta = 4.5 - 75.7^{\circ}$ $\mu = 2.79 \text{ mm}^{-1}$

Needle, colorless

 $0.47 \times 0.10 \times 0.06 \text{ mm}$

T = 295 K

 $D_{\rm x} = 1.078 {\rm Mg} {\rm m}^{-3}$

Cu Ka radiation, $\lambda = 1.54184$ Å

Cell parameters from 3131 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.51262 (14)	0.70004 (5)	0.46785 (17)	0.0747 (4)	
C12	0.24050 (12)	0.70213 (4)	-0.04653 (17)	0.0658 (4)	
Si1A	0.87067 (14)	0.68876 (5)	0.88371 (19)	0.0642 (4)	
N1A	0.4863 (4)	0.70536 (13)	0.8840 (5)	0.0643 (11)	

supporting information

H1AA	0.4150	0.7050	0.8943	0.096*
H1AB	0.5008	0.7041	0.7682	0.096*
H1AC	0.5135	0.7284	0.9314	0.096*
C1A	0.6903 (5)	0.62195 (16)	1.0207 (6)	0.0592 (13)
C2A	0.7098 (6)	0.58664 (18)	0.9246 (8)	0.0757 (17)
H2AA	0.6982	0.5864	0.8001	0.091*
C3A	0.7464 (7)	0.5518 (2)	1.0127 (10)	0.099 (2)
H3AA	0.7578	0.5282	0.9467	0.118*
C4A	0.7661 (7)	0.5512 (2)	1.1946 (10)	0.103 (2)
H4AA	0.7931	0.5278	1.2518	0.123*
C5A	0.7459 (6)	0.5855 (2)	1.2916 (8)	0.089(2)
H5AA	0.7583	0.5853	1.4159	0.107*
C6A	0.7070 (5)	0.62050 (18)	1.2066 (7)	0.0709 (15)
H6AA	0.6918	0.6434	1.2749	0.085*
C7A	0.5364 (5)	0.66953 (18)	0.9814 (7)	0.0670(15)
H7AA	0.4916	0.6456	0.9576	0.080*
H7AB	0.5381	0.6748	1.1098	0.080*
C8A	0.6509 (4)	0.66056 (15)	0.9266 (6)	0.0553 (12)
H8AA	0.6463	0.6547	0.7972	0.066*
C9A	0.7297 (4)	0.69618 (16)	0.9563 (7)	0.0582 (12)
H9AA	0.7338	0.7027	1.0837	0.070*
H9AB	0.6992	0.7198	0.8934	0.070*
C10A	0.9367 (6)	0.73979 (18)	0.8718 (7)	0.0756 (16)
H10A	0.9543	0.7496	0.9914	0.113*
H10B	0.8882	0.7587	0.8103	0.113*
H10C	1.0017	0.7374	0.8076	0.113*
C11A	0.8624 (6)	0.6646 (2)	0.6552 (9)	0.092 (2)
H11A	0.8152	0.6805	0.5760	0.138*
H11B	0.8346	0.6373	0.6638	0.138*
H11C	0.9333	0.6637	0.6087	0.138*
C12A	0.9525 (6)	0.6562 (2)	1.0466 (9)	0.093 (2)
H12A	0.9467	0.6667	1.1662	0.140*
H12B	1.0270	0.6566	1.0162	0.140*
H12C	0.9259	0.6286	1.0409	0.140*
Si1B	0.36327 (18)	0.56463 (5)	0.3612 (3)	0.0814 (5)
N1B	0.2550 (4)	0.70271 (12)	0.3793 (6)	0.0649 (12)
H1BA	0.2379	0.7281	0.4103	0.097*
H1BB	0.2464	0.7000	0.2604	0.097*
H1BC	0.3236	0.6976	0.4142	0.097*
C1B	0.1599 (6)	0.60320 (17)	0.5886 (8)	0.0731 (16)
C2B	0.0698 (7)	0.5861 (2)	0.4979 (11)	0.097 (2)
H2BA	0.0530	0.5928	0.3783	0.116*
C3B	0.0038 (7)	0.5584 (2)	0.5886 (14)	0.113 (3)
H3BA	-0.0559	0.5466	0.5276	0.136*
C4B	0.0263 (9)	0.5491 (3)	0.7602 (14)	0.115 (3)
H4BA	-0.0173	0.5306	0.8181	0.137*
C5B	0.1124 (10)	0.5663 (3)	0.8517 (11)	0.118 (3)
H5BA	0.1265	0.5599	0.9724	0.142*

C6B	0.1802 (7)	0.5935 (2)	0.7679 (9)	0.092 (2)
H6BA	0.2388	0.6052	0.8323	0.110*
C7B	0.1835 (4)	0.67343 (15)	0.4673 (7)	0.0575 (12)
H7BA	0.1168	0.6703	0.3940	0.069*
H7BB	0.1652	0.6843	0.5831	0.069*
C8B	0.2369 (6)	0.63141 (17)	0.4947 (7)	0.0717 (16)
H8BA	0.2988	0.6357	0.5804	0.086*
C9B	0.2827 (6)	0.61330 (18)	0.3298 (8)	0.0767 (17)
H9BA	0.3288	0.6337	0.2778	0.092*
H9BB	0.2232	0.6080	0.2428	0.092*
C10B	0.4703 (9)	0.5713 (3)	0.5428 (13)	0.140 (4)
H10D	0.5253	0.5510	0.5308	0.210*
H10E	0.4392	0.5685	0.6576	0.210*
H10F	0.5017	0.5981	0.5339	0.210*
C11B	0.4268 (8)	0.5546 (2)	0.1443 (11)	0.115 (3)
H11D	0.4694	0.5300	0.1546	0.173*
H11E	0.4725	0.5771	0.1162	0.173*
H11F	0.3714	0.5513	0.0503	0.173*
C12B	0.2769 (8)	0.52048 (19)	0.4136 (12)	0.120 (3)
H12D	0.3190	0.4958	0.4123	0.181*
H12E	0.2177	0.5186	0.3252	0.181*
H12F	0.2491	0.5241	0.5306	0.181*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0932 (11)	0.0737 (9)	0.0567 (7)	0.0071 (8)	-0.0001 (6)	-0.0029 (6)
Cl2	0.0764 (9)	0.0589 (7)	0.0617 (7)	-0.0045 (7)	-0.0010 (6)	0.0030 (5)
Si1A	0.0727 (10)	0.0614 (9)	0.0584 (8)	-0.0013 (8)	0.0027 (7)	-0.0008 (6)
N1A	0.069 (3)	0.068 (3)	0.056 (2)	0.006 (2)	0.000(2)	-0.001(2)
C1A	0.071 (3)	0.058 (3)	0.050(2)	-0.004 (3)	0.003 (2)	0.003 (2)
C2A	0.105 (5)	0.058 (3)	0.065 (3)	-0.002 (3)	0.006 (3)	-0.006 (3)
C3A	0.135 (7)	0.055 (4)	0.107 (5)	0.009 (4)	0.018 (5)	-0.006 (3)
C4A	0.140 (8)	0.072 (4)	0.097 (5)	0.015 (5)	0.008 (5)	0.026 (4)
C5A	0.108 (6)	0.092 (5)	0.067 (3)	0.021 (4)	-0.003 (3)	0.021 (3)
C6A	0.085 (4)	0.067 (3)	0.060 (3)	0.009 (3)	-0.004 (3)	0.002 (3)
C7A	0.078 (4)	0.072 (4)	0.051 (2)	0.009 (3)	0.002 (2)	0.007 (2)
C8A	0.060 (3)	0.060 (3)	0.046 (2)	0.007 (2)	0.001 (2)	-0.002 (2)
C9A	0.057 (3)	0.059 (3)	0.058 (3)	0.002 (2)	-0.004 (2)	0.000 (2)
C10A	0.092 (5)	0.071 (4)	0.064 (3)	-0.010 (3)	0.010 (3)	0.001 (3)
C11A	0.102 (5)	0.092 (5)	0.086 (4)	-0.011 (4)	0.033 (4)	-0.028 (4)
C12A	0.095 (5)	0.077 (4)	0.105 (5)	0.007 (4)	-0.017 (4)	0.018 (4)
Si1B	0.1019 (14)	0.0555 (9)	0.0882 (11)	0.0095 (10)	0.0187 (10)	0.0047 (8)
N1B	0.086 (3)	0.048 (2)	0.060 (2)	0.001 (2)	-0.010 (2)	0.0017 (18)
C1B	0.090 (5)	0.048 (3)	0.082 (4)	0.003 (3)	0.006 (3)	-0.001 (3)
C2B	0.101 (6)	0.081 (5)	0.108 (5)	0.017 (4)	0.003 (4)	0.017 (4)
C3B	0.097 (6)	0.079 (5)	0.162 (8)	0.000 (5)	-0.003 (6)	0.013 (5)
C4B	0.128 (8)	0.080 (5)	0.140 (8)	-0.004(5)	0.043 (6)	0.017 (5)

supporting information

C5B	0.180 (10)	0.089 (6)	0.091 (5)	-0.012 (6)	0.048 (6)	0.005 (4)
C6B	0.128 (6)	0.073 (4)	0.076 (4)	-0.012 (4)	0.018 (4)	-0.002 (3)
C7B	0.061 (3)	0.049 (3)	0.062 (3)	-0.005 (2)	-0.004 (2)	-0.001 (2)
C8B	0.095 (5)	0.053 (3)	0.067 (3)	0.002 (3)	0.006 (3)	0.006 (2)
C9B	0.096 (5)	0.060 (3)	0.074 (3)	0.000 (3)	0.005 (3)	0.005 (3)
C10B	0.148 (9)	0.140 (9)	0.128 (7)	0.027 (7)	-0.026 (7)	-0.006 (6)
C11B	0.154 (8)	0.082 (5)	0.114 (6)	-0.010 (5)	0.039 (6)	-0.005 (4)
C12B	0.172 (9)	0.048 (4)	0.148 (7)	0.012 (5)	0.070 (6)	0.012 (4)

Geometric parameters (Å, °)

SilA—C10A	1 862 (6)	Si1B-C12B	1 850 (8)
	1.868 (6)	SilB_C10B	1.855 (9)
SilA—Cl2A	1.800 (6)	SilB—CliB	1.855 (9)
SilA—CllA	1.870 (0)	SilB—C9B	1.886 (6)
N1A—C7A	1.072 (0)	N1B-C7B	1.000(0) 1 479(7)
	0.8000	NIB HIBA	0.8000
NIA HIAB	0.8900	NIB HIBB	0.8900
NIA HIAC	0.8900	NID-HIDC	0.8900
	0.8900	C1D C6D	1 281 (0)
CIA - CZA	1.300(7)		1.361(9)
CIA - COA	1.589 (7)	CIB-C2B	1.591 (10)
CIA = CSA	1.512(7)	CIB-C8B	1.522 (8)
C2A—C3A	1.380 (9)		1.414 (11)
C2A—H2AA	0.9300	C2B—H2BA	0.9300
C3A—C4A	1.363 (10)	C3B—C4B	1.328 (12)
СЗА—НЗАА	0.9300	C3B—H3BA	0.9300
C4A—C5A	1.364 (10)	C4B—C5B	1.357 (13)
С4А—Н4АА	0.9300	C4B—H4BA	0.9300
C5A—C6A	1.381 (8)	C5B—C6B	1.393 (11)
С5А—Н5АА	0.9300	C5B—H5BA	0.9300
С6А—Н6АА	0.9300	C6B—H6BA	0.9300
C7A—C8A	1.523 (8)	C7B—C8B	1.534 (7)
С7А—Н7АА	0.9700	C7B—H7BA	0.9700
С7А—Н7АВ	0.9700	C7B—H7BB	0.9700
C8A—C9A	1.527 (7)	C8B—C9B	1.500 (8)
C8A—H8AA	0.9800	C8B—H8BA	0.9800
С9А—Н9АА	0.9700	С9В—Н9ВА	0.9700
С9А—Н9АВ	0.9700	C9B—H9BB	0.9700
C10A—H10A	0.9600	C10B—H10D	0.9600
C10A—H10B	0.9600	C10B—H10E	0.9600
C10A—H10C	0.9600	C10B—H10F	0.9600
C11A—H11A	0.9600	C11B—H11D	0.9600
С11А—Н11В	0.9600	C11B—H11E	0.9600
C11A—H11C	0.9600	C11B—H11F	0.9600
C12A—H12A	0.9600	C12B—H12D	0.9600
C12A—H12B	0.9600	C12B—H12E	0.9600
C12A—H12C	0.9600	C12B—H12F	0.9600
01211 11120	0.9000	0.20	0.9000

C10A—Si1A—C9A	108.4 (3)	C12B—Si1B—C10B	109.7 (5)
C10A—Si1A—C12A	108.5 (3)	C12B—Si1B—C11B	108.7 (4)
C9A—Si1A—C12A	111.6 (3)	C10B—Si1B—C11B	109.6 (5)
C10A—Si1A—C11A	109.7 (3)	C12B—Si1B—C9B	112.1 (4)
C9A—Si1A—C11A	108.1 (3)	C10B—Si1B—C9B	110.1 (4)
C12A—Si1A—C11A	110.5 (4)	C11B—Si1B—C9B	106.7(3)
C7A - N1A - H1AA	109.5	C7B—N1B—H1BA	109.5
C7A - N1A - H1AB	109.5	C7B—N1B—H1BB	109.5
H1AA—N1A—H1AB	109.5	HIBA—NIB—HIBB	109.5
C7A = N1A = H1AC	109.5	C7B-NIB-HIBC	109.5
$H_{1A} = N_{1A} = H_{1A}C$	109.5	HIBA_NIB_HIBC	109.5
H1AB = N1A = H1AC	109.5	HIBR NIB HIBC	109.5
C_{2A} C_{1A} C_{6A}	107.5 117.7(5)	C6B C1B C2B	109.5 118.5(7)
$C_{2A} = C_{1A} = C_{0A}$	117.7(3) 121.1(4)	C6B C1B C8B	110.5(7)
$C_{2A} = C_{1A} = C_{0A}$	121.1(4) 121.2(5)	C_{0} C_{1} C_{0} C_{0	119.7 (0)
C_{A} C_{A} C_{A} C_{A} C_{A}	121.2(3) 120.2(6)	$C_{2}B$ $C_{1}B$ $C_{2}B$ $C_{3}B$	121.0(0)
$C_{A} = C_{A} = C_{A}$	120.3 (0)	C1D = C2D = U2DA	119.0 (8)
C_{A} C_{A} H_{A} H_{A}	119.8	CIB—C2B—H2BA	120.2
CIA - C2A - H2AA	119.8	C_{3B} C_{2B} H_{2BA}	120.2
C4A - C3A - C2A	121.3 (6)	C4B - C3B - C2B	120.6 (9)
С4А—СЗА—НЗАА	119.3	С4В—С3В—Н3ВА	119.7
С2А—С3А—НЗАА	119.3	С2В—С3В—НЗВА	119.7
C3A—C4A—C5A	119.1 (7)	C3B—C4B—C5B	120.4 (9)
СЗА—С4А—Н4АА	120.4	C3B—C4B—H4BA	119.8
С5А—С4А—Н4АА	120.4	C5B—C4B—H4BA	119.8
C4A—C5A—C6A	120.5 (6)	C4B—C5B—C6B	121.1 (8)
С4А—С5А—Н5АА	119.8	C4B—C5B—H5BA	119.5
С6А—С5А—Н5АА	119.8	C6B—C5B—H5BA	119.5
C5A—C6A—C1A	121.0 (6)	C1B—C6B—C5B	119.7 (8)
С5А—С6А—Н6АА	119.5	C1B—C6B—H6BA	120.1
С1А—С6А—Н6АА	119.5	C5B—C6B—H6BA	120.1
N1A—C7A—C8A	112.8 (4)	N1B—C7B—C8B	112.0 (5)
N1A—C7A—H7AA	109.0	N1B—C7B—H7BA	109.2
С8А—С7А—Н7АА	109.0	C8B—C7B—H7BA	109.2
N1A—C7A—H7AB	109.0	N1B—C7B—H7BB	109.2
C8A—C7A—H7AB	109.0	C8B—C7B—H7BB	109.2
Н7АА—С7А—Н7АВ	107.8	H7BA—C7B—H7BB	107.9
C1A—C8A—C7A	108.5 (4)	C9B—C8B—C1B	114.1 (5)
C1A—C8A—C9A	112.4 (4)	C9B—C8B—C7B	115.0 (5)
C7A—C8A—C9A	114.2 (4)	C1B—C8B—C7B	109.1 (5)
C1A—C8A—H8AA	107.1	C9B—C8B—H8BA	105.9
C7A - C8A - H8AA	107.1	C1B—C8B—H8BA	105.9
C9A - C8A - H8AA	107.1	C7B— $C8B$ — $H8BA$	105.9
C8A - C9A - SilA	117 2 (4)	C8B - C9B - Si1B	116.8 (4)
	108.0	$C8B$ $C9B$ $H0B \Delta$	108 1
	108.0	SilB_COB_HOBA	108.1
	108.0	C8B_C0B_H0BB	108.1
	108.0		100.1
$\frac{11}{10}$	107.0		100.1
пула—суа—пуав	107.2	пуда—Суд—ПубБ	107.3

$\begin{array}{llllllllllllllllllllllllllllllllllll$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	109.5
H10A-C10A-H10C109.5H10D-C10B-H10FH10B-C10A-H10C109.5H10E-C10B-H10FSi1A-C11A-H11A109.5Si1B-C11B-H11DSi1A-C11A-H11B109.5Si1B-C11B-H11EH11A-C11A-H11C109.5H11D-C11B-H11FH11A-C11A-H11C109.5H11D-C11B-H11FH11A-C11A-H11C109.5Si1B-C12B-H12DSi1A-C12A-H12A109.5Si1B-C12B-H12EH1A-C12A-H12B109.5Si1B-C12B-H12EH12A-C12A-H12B109.5Si1B-C12B-H12ESi1A-C12A-H12C109.5Si1B-C12B-H12FH12A-C12A-H12C109.5Si1B-C12B-H12FH12A-C12A-H12C109.5H12D-C12B-H12FH12B-C12A-H12C109.5H12D-C12B-H12FH12B-C12A-H12C109.5H12D-C12B-H12FH12B-C12A-H12C109.5H12D-C12B-H12FH12B-C12A-H12C109.5H12D-C12B-H12FH12B-C1A-C2A-C3A-1.1 (10)C6B-C1B-C2B-C3BC6A-C1A-C2A-C3A-1.2 (12)C1B-C2B-C3B-C4BC2A-C3A-C4A-C5A2.2 (14)C2B-C3B-C4BC2A-C3A-C4A-C5A2.5 (10)C3B-C4B-C5BC3A-C4A-C5A-C6A-0.7 (13)C3B-C4B-C5BC4A-C5A-C6A-C1A-1.6 (12)C2B-C1B-C6B-C5BC2A-C1A-C6A-C5A2.5 (10)C8B-C1B-C6B-C5BC2A-C1A-C6A-C5A-178.2 (6)C4B-C5B-C6B-C1BC4A-C5A-C6A-C7A153.5 (6)C6B-C1B-C8B-C7BC6A-C1A-C8A-C7A-65.8 (7)C2B-C1B-C8B-C7BC6A-C1A-C8A-C7A-65.8 (7)C2B-C1B-C8B-C7BC6A-C1A-C8A-C9A-119.2 (6)C6	109.5
H10B—C10A—H10C109.5H10E—C10B—H10FSi1A—C11A—H11A109.5Si1B—C11B—H11ESi1A—C11A—H11B109.5Si1B—C11B—H11EH11A—C11A—H11B109.5H11D—C11B—H11ESi1A—C11A—H11C109.5Si1B—C11B—H11FH11A—C11A—H11C109.5H11D—C11B—H11FH11B—C11A—H11C109.5H11D—C11B—H11FSi1A—C12A—H12A109.5Si1B—C12B—H12FSi1A—C12A—H12A109.5Si1B—C12B—H12EH12A—C12A—H12B109.5Si1B—C12B—H12EH12A—C12A—H12C109.5Si1B—C12B—H12FH12A—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12D—C12B—H12FH2B—C12A—H12C109.5H12D—C12B—H12FH2B—C12A—H12C109.5H12D—C12B—H12FH2B—C12A—H12C109.5H12D—C12B—H12FH2B—C12A—H12C109.5H12D—C12B—H12FH2B—C12A—H12C109.5H12D—C12B—H12FH2B—C12A—H12C109.5H12D—C12B—H12FC6A—C1A—C2A—C3A-1.1 (10)C6B—C1B—C2B—C3BC8A—C1A—C4A—C5A2.2 (14)C2B—C3B—C4BC2A—C3A—C4A—C5A2.2 (14)C2B—C3B—C4BC2A—C1A—C6A—C5A2.5 (10)C8B—C1B—C6B—C5BC3A—C4A—C5A—C6A-0.7 (13)C3B—C4B—C5BC3A—C1A—C6A—C5A2.5 (10)C8B—C1B—C6B—C5BC3A—C1A—C6A—C5A-1.6 (12)C2B—C1B—C6B—C5BC3A—C1A—C6A—C5A-1.6 (12)C2B—C1B—C6B—C5BC3A—C1A—C6A—C5A-1.6 (12)C2B—C1B—C6B—C5B	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	109.5
H11A—C11A—H11B109.5H11D—C11B—H11ESi1A—C11A—H11C109.5Si1B—C11B—H11FH11A—C11A—H11C109.5H11D—C11B—H11FH11B—C11A—H11C109.5H11E—C11B—H11FSi1A—C12A—H12A109.5Si1B—C12B—H12DSi1A—C12A—H12B109.5Si1B—C12B—H12EH12A—C12A—H12C109.5H12D—C12B—H12FH12A—C12A—H12C109.5H12D—C12B—H12FH12A—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12E—C12B—H12FH2B—C12A—H12C109.5H12E—C12B—H12FH2B—C12A—H12C109.5H12E—C12B—H12FC6A—C1A—C2A—C3A-1.1 (10)C6B—C1B—C2B—C3BC8A—C1A—C2A—C3A-1.2 (12)C1B—C2B—C3BC1A—C2A—C3A—C4A-1.2 (12)C1B—C2B—C3B—C4BC2A—C3A—C4A—C5A2.2 (14)C2B—C3B—C4BC3A—C4A—C5A—C6A-0.7 (13)C3B—C4B—C5BC4A—C5A—C6A—C1A-1.6 (12)C2B—C1B—C6B—C5BC4A—C5A—C6A—C1A-1.6 (12)C2B—C1B—C6B—C5BC2A—C1A—C6A—C5A2.5 (10)C8B—C1B—C6B—C5BC2A—C1A—C8A—C7A-65.8 (7)C2B—C1B—C8B—C9BC6A—C1A—C8A—C7A-65.8 (7)C2B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A <td>109.5</td>	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	109.5
H11A—C11A—H11C109.5H11D—C11B—H11FH11B—C11A—H11C109.5H11E—C11B—H11FSi1A—C12A—H12A109.5Si1B—C12B—H12DSi1A—C12A—H12B109.5Si1B—C12B—H12EH12A—C12A—H12B109.5H12D—C12B—H12ESi1A—C12A—H12C109.5Si1B—C12B—H12FH12A—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12D—C12B—H12FC6A—C1A—C2A—C3A-1.1 (10)C6B—C1B—C2B—C3BC8A—C1A—C2A—C3A-1.2 (12)C1B—C2B—C3BC1A—C2A—C3A—C4A-1.2 (12)C1B—C2B—C3BC1A—C2A—C3A—C4A-1.2 (12)C1B—C2B—C3B—C4BC2A—C3A—C4A—C5A2.2 (14)C2B—C3B—C4BC3A—C4A—C5A—C6A-0.7 (13)C3B—C4B—C5BC3A—C4A—C5A—C6A-0.7 (13)C3B—C4B—C5BC2A—C1A—C6A—C5A2.5 (10)C8B—C1B—C6B—C5BC2A—C1A—C6A—C5A-178.2 (6)C4B—C5B—C6BC4A—C5A—C7A113.5 (6)C6B—C1B—C8B—C9BC4A—C7A—C8A—C7A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A58.3 (6)N1B—C7B—C8B—C9BN1A—C7A—C8A—C9A58.3 (6)N1B—C7B—C8B—C9BC7A—C8A—C9A—Si1A58.3 (5)C1B—C8B—C9B—Si1BC7A—C8A—C9A—Si1A58.3 (6)N1B—C7B—C8B—C9B—Si1BC7A—C8A—C9A—Si1A-177.4 (3)C7B—C8B—C9B—Si1B	109.5
H11B—C11A—H11C109.5H11E—C11B—H11FSi1A—C12A—H12A109.5Si1B—C12B—H12DSi1A—C12A—H12B109.5Si1B—C12B—H12EH12A—C12A—H12B109.5H12D—C12B—H12ESi1A—C12A—H12C109.5Si1B—C12B—H12FH12A—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12E—C12B—H12FC6A—C1A—C2A—C3A-1.1 (10)C6B—C1B—C2B—C3BC8A—C1A—C2A—C3A-1.2 (12)C1B—C2B—C3B—C4BC2A—C3A—C4A-1.2 (12)C1B—C2B—C3B—C4BC2A—C3A—C4A—C5A2.2 (14)C2B—C3B—C4B—C5BC3A—C4A—C5A—C6A-0.7 (13)C3B—C4B—C5B—C6BC4A—C5A—C6A-0.7 (13)C3B—C4B—C5BC2A—C1A—C6A—C5A2.5 (10)C8B—C1B—C6B—C5BC2A—C1A—C6A—C5A2.5 (10)C8B—C1B—C6B—C5BC2A—C1A—C6A—C5A-178.2 (6)C4B—C5B—C6B—C1BC2A—C1A—C8A—C7A-16.5.8 (7)C2B—C1B—C8B—C9BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C9BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C1B—C8B—C9BN1A—C7A—C8A—C9A58.3 (6)N1B—C7B—C8B—C9BN1A—C7A—C8A—C9A58.3 (6)N1B—C7B—C8B—C9BC1A—C8A—C9A—Si1A-177.4 (3)C7B—C8B—C9B—Si1BC7A—C8A—C9A—Si1A-177.4 (3)C7B—C8B—C9B—Si1B	109.5
Si1AC12AH12A109.5Si1BC12BH12DSi1AC12AH12B109.5Si1BC12BH12EH12AC12AH12B109.5H12DC12BH12ESi1AC12AH12C109.5Si1BC12BH12FH12AC12AH12C109.5H12DC12BH12FH12BC12AH12C109.5H12DC12BH12FC6AC1AC2AC3A-1.1 (10)C6BC1BC2BC3BC8AC1AC2AC3A179.6 (6)C8BC1BC2BC3BC1AC2AC3AC4A-1.2 (12)C1BC2BC3BC4BC2AC3AC4AC5A2.2 (14)C2BC3BC4BC2AC3AC4AC5A2.2 (14)C2BC3BC4BC2AC5AC6AC1A-1.6 (12)C2BC1BC5BC6BC4AC5AC6AC1A-1.6 (12)C2BC1BC6BC5BC2AC1AC6AC5A2.5 (10)C8BC1BC6BC5BC2AC1AC6AC5A-1.78.2 (6)C4BC5BC6BC1BC2AC1AC8AC7A113.5 (6)C6BC1BC8BC9BC6AC1AC8AC7A-119.2 (6)C6BC1BC8BC7BC6AC1AC8AC9A61.6 (7)C2BC1BC8BC7BC6AC1AC8AC9A58.3 (6)N1BC7BC8BC7BN1AC7AC8AC9A58.3 (6)N1BC7BC8BC9BS1AC7AS1A-175.4 (4)N1BC7BC8BC1BCAC7AS1A-175.4 (4)N1BC7BC8BC1BCAC7AS1A-175.4 (4)N1BC7BC8BC1BCAC7AS1A-175.4 (4)N1BC7BC8BC1BS1AC7AS1A-177.4 (3)C7BC8BC9BSi1BC7AC8AC9ASi1A-177.4 (3)C7BC8BC9BSi1B <td>109.5</td>	109.5
Si1A—C12A—H12B109.5Si1B—C12B—H12EH12A—C12A—H12B109.5H12D—C12B—H12ESi1A—C12A—H12C109.5Si1B—C12B—H12FH12A—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12E—C12B—H12FC6A—C1A—C2A—C3A-1.1 (10)C6B—C1B—C2B—C3BC8A—C1A—C2A—C3A-1.2 (12)C1B—C2B—C3BC1A—C2A—C3A—C4A-1.2 (12)C1B—C2B—C3B—C4BC2A—C3A—C4A—C5A2.2 (14)C2B—C3B—C4BC2A—C3A—C4A—C5A2.2 (14)C2B—C3B—C4B—C5BC3A—C4A—C5A—C6A-0.7 (13)C3B—C4B—C5B—C6BC4A—C5A—C6A—C1A-1.6 (12)C2B—C1B—C6B—C5BC2A—C1A—C6A—C5A2.5 (10)C8B—C1B—C6B—C5BC2A—C1A—C6A—C5A-178.2 (6)C4B—C5B—C6B—C1BC2A—C1A—C6A—C5A-178.2 (6)C6B—C1B—C8B—C9BC6A—C1A—C8A—C7A113.5 (6)C6B—C1B—C8B—C9BC6A—C1A—C8A—C7A-119.2 (6)C6B—C1B—C8B—C9BC2A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC6A—C1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC1A—C8A—C9A-119.2 (6)C6B—C1B—C8B—C7BC1A—C8A—C9A-119.2 (6)C1B—C8B—C9BC1A—C8A—C9A-119.2 (6)C1B—C8B—C9BC1A—C8A—C9A-119.2 (6)C1B—C8B—C9BC1A—C8A—C9A-119.2 (6)C1B—C8B—C9BC1A—C8A—C9A-119.2 (6)C1B—C8B—C9BC1A—C8A—C9A-119.2 (6)C1B—C8B—C9BC1A—C8A—C9A-119.2 (6)C1B—C8B—C9BC1A—C8A—C9A	109.5
H12AC12AH12B109.5H12DC12BH12ESi1AC12AH12C109.5Si1BC12BH12FH12AC12AH12C109.5H12DC12BH12FH12BC12AH12C109.5H12EC12BH12FC6AC1AC2AC3A-1.1 (10)C6BC1BC2BC3BC8AC1AC2AC3A179.6 (6)C8BC1BC2BC3BC1AC2AC3AC4A-1.2 (12)C1BC2BC3BC4BC2AC3AC4AC5A2.2 (14)C2BC3BC4BC5BC3AC4AC5AC6A-0.7 (13)C3BC4BC5BC6BC4AC5AC6AC1A-1.6 (12)C2BC1BC6BC5BC2AC1AC6AC5A2.5 (10)C8BC1BC6BC5BC2AC1AC6AC5A-178.2 (6)C4BC5BC6BC1BC2AC1AC8AC7A113.5 (6)C6BC1BC8BC9BC6AC1AC8AC7A-119.2 (6)C6BC1BC8BC9BC6AC1AC8AC9A-119.2 (6)C6BC1BC8BC7BC6AC1AC8AC9A61.6 (7)C2BC1BC8BC7BN1AC7AC8AC1A-175.4 (4)N1BC7BC8BC7BN1AC7AC8AC9A58.3 (6)N1BC7BC8BC9BC1AC8AC9ASi1A58.3 (5)C1BC8BC9BSi1BC7AC8AC9ASi1A58.3 (6)N1BC7BC8BC9BSi1BC7AC8AC9ASi1A-177.4 (3)C7BC8BC9BSi1B	109.5
Si1A—C12A—H12C109.5Si1B—C12B—H12FH12A—C12A—H12C109.5H12D—C12B—H12FH12B—C12A—H12C109.5H12E—C12B—H12FC6A—C1A—C2A—C3A -1.1 (10)C6B—C1B—C2B—C3BC8A—C1A—C2A—C3A179.6 (6)C8B—C1B—C2B—C3BC1A—C2A—C3A—C4A -1.2 (12)C1B—C2B—C3B—C4BC2A—C3A—C4A—C5A2.2 (14)C2B—C3B—C4B—C5BC3A—C4A—C5A—C6A -0.7 (13)C3B—C4B—C5B—C6BC4A—C5A—C6A—C1A -1.6 (12)C2B—C1B—C6B—C5BC2A—C1A—C6A—C5A2.5 (10)C8B—C1B—C6B—C5BC2A—C1A—C6A—C5A -178.2 (6)C4B—C5B—C6BC4A—C1A—C6A—C5A -178.2 (6)C4B—C5B—C6BC4A—C1A—C6A—C7A113.5 (6)C6B—C1B—C8B—C9BC6A—C1A—C8A—C7A -119.2 (6)C6B—C1B—C8B—C9BC6A—C1A—C8A—C9A -119.2 (6)C6B—C1B—C8B—C7BN1A—C7A—C8A—C9A 61.6 (7)C2B—C1B—C8B—C7BN1A—C7A—C8A—C9A 58.3 (6)N1B—C7B—C8B—C9BC1A—C8A—C9A—S11A 58.3 (5)C1B—C8B—C9B—S11BC7A—C8A—C9A—S11A -177.4 (3)C7B—C8B—C9B—S11B	109.5
H12AC12AH12C109.5H12DC12BH12FH12BC12AH12C109.5H12EC12BH12FC6AC1AC2AC3A-1.1 (10)C6BC1BC2BC3BC8AC1AC2AC3A179.6 (6)C8BC1BC2BC3BC1AC2AC3AC4A-1.2 (12)C1BC2BC3BC4BC2AC3AC4AC5A2.2 (14)C2BC3BC4BC3AC4AC5AC6A-0.7 (13)C3BC4BC5BC6BC4AC5AC6AC1A-1.6 (12)C2BC1BC6BC5BC2AC1AC6AC5A2.5 (10)C8BC1BC6BC5BC2AC1AC6AC5A-178.2 (6)C4BC5BC6BC1BC2AC1AC8AC7A113.5 (6)C6BC1BC8BC9BC6AC1AC8AC7A-119.2 (6)C6BC1BC8BC7BC6AC1AC8AC9A-119.2 (6)C6BC1BC8BC7BC6AC1AC8AC9A61.6 (7)C2BC1BC8BC7BN1AC7AC8AC9A58.3 (6)N1BC7BC8BC9BN1AC7AC8AC9A58.3 (6)N1BC7BC8BC1BC1AC8AC9AS11A58.3 (5)C1BC8BC9BS11BC1AC8AC9AS11A-177.4 (3)C7BC8BC9BS11B	109.5
H12B-C12A-H12C109.5H12E-C12B-H12FC6A-C1A-C2A-C3A $-1.1 (10)$ C6B-C1B-C2B-C3BC8A-C1A-C2A-C3A179.6 (6)C8B-C1B-C2B-C3BC1A-C2A-C3A-C4A $-1.2 (12)$ C1B-C2B-C3B-C4BC2A-C3A-C4A-C5A2.2 (14)C2B-C3B-C4B-C5BC3A-C4A-C5A-C6A $-0.7 (13)$ C3B-C4B-C5B-C6BC4A-C5A-C6A-C1A $-1.6 (12)$ C2B-C1B-C6B-C5BC2A-C1A-C6A-C5A2.5 (10)C8B-C1B-C6B-C5BC2A-C1A-C6A-C5A2.5 (10)C8B-C1B-C6B-C5BC2A-C1A-C6A-C5A2.5 (10)C8B-C1B-C6B-C5BC2A-C1A-C6A-C5A $-178.2 (6)$ C4B-C5B-C6B-C1BC2A-C1A-C8A-C7A113.5 (6)C6B-C1B-C8B-C9BC6A-C1A-C8A-C7A $-65.8 (7)$ C2B-C1B-C8B-C9BC2A-C1A-C8A-C9A $-119.2 (6)$ C6B-C1B-C8B-C7BC6A-C1A-C8A-C9A $-119.2 (6)$ C6B-C1B-C8B-C7BC6A-C1A-C8A-C9A $58.3 (6)$ N1B-C7B-C8B-C9BN1A-C7A-C8A-C9A $58.3 (6)$ N1B-C7B-C8B-C9BC1A-C8A-C9A-S11A $58.3 (4)$ C12B-S1BC7A-C8A-C9A-S1A $-177.4 (3)$ C7B-C8B-C9B-S1B	109.5
C6A-C1A-C2A-C3A $-1.1 (10)$ $C6B-C1B-C2B-C3B$ $C8A-C1A-C2A-C3A$ $179.6 (6)$ $C8B-C1B-C2B-C3B$ $C1A-C2A-C3A-C4A$ $-1.2 (12)$ $C1B-C2B-C3B-C4B$ $C2A-C3A-C4A-C5A$ $2.2 (14)$ $C2B-C3B-C4B-C5B$ $C3A-C4A-C5A-C6A$ $-0.7 (13)$ $C3B-C4B-C5B-C6B$ $C4A-C5A-C6A-C1A$ $-1.6 (12)$ $C2B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $2.5 (10)$ $C8B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $2.5 (10)$ $C8B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $2.5 (10)$ $C8B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $-178.2 (6)$ $C4B-C5B-C6B-C1B$ $C2A-C1A-C8A-C7A$ $113.5 (6)$ $C6B-C1B-C8B-C9B$ $C2A-C1A-C8A-C7A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C4A-C7A-C8A-C9A$ $61.6 (7)$ $C2B-C1B-C8B-C7B$ $N1A-C7A-C8A-C9A$ $58.3 (6)$ $N1B-C7B-C8B-C9B$ $N1A-C7A-C8A-C9A$ $58.3 (5)$ $C1B-C8B-C9B-S11B$ $C1A-C8A-C9A-S11A$ $-177.4 (3)$ $C7B-C8B-C9B-S11B$ $C1A-C8A-C9A-S11A$ $-177.4 (3)$ $C7B-C8B-C9B-S11B$	109.5
C6A-C1A-C2A-C3A -1.1 (10) $C6B-C1B-C2B-C3B$ $C8A-C1A-C2A-C3A$ 179.6 (6) $C8B-C1B-C2B-C3B$ $C1A-C2A-C3A-C4A$ -1.2 (12) $C1B-C2B-C3B-C4B$ $C2A-C3A-C4A-C5A$ 2.2 (14) $C2B-C3B-C4B-C5B$ $C3A-C4A-C5A-C6A$ -0.7 (13) $C3B-C4B-C5B-C6B$ $C4A-C5A-C6A-C1A$ -1.6 (12) $C2B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ 2.5 (10) $C8B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ 2.5 (10) $C8B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ -178.2 (6) $C4B-C5B-C6B-C1B$ $C2A-C1A-C8A-C7A$ 113.5 (6) $C6B-C1B-C8B-C9B$ $C2A-C1A-C8A-C7A$ -119.2 (6) $C6B-C1B-C8B-C7B$ $C2A-C1A-C8A-C9A$ -119.2 (6) $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ -175.4 (4) $N1B-C7B-C8B-C7B$ $N1A-C7A-C8A-C9A$ 58.3 (6) $N1B-C7B-C8B-C1B$ $C1A-C8A-C9A-S11A$ 58.3 (5) $C1B-C8B-C9B-S11B$ $C1A-C8A-C9A-S11A$ -177.4 (3) $C7B-C8B-C9B-S11B$ $C1A-C8A-C9A-S11A$ -177.4 (3) $C12B-S11B-C9B-S11B$	
C8A - C1A - C2A - C3A $179.6 (6)$ $C8B - C1B - C2B - C3B$ $C1A - C2A - C3A - C4A$ $-1.2 (12)$ $C1B - C2B - C3B - C4B$ $C2A - C3A - C4A - C5A$ $2.2 (14)$ $C2B - C3B - C4B - C5B$ $C3A - C4A - C5A - C6A$ $-0.7 (13)$ $C3B - C4B - C5B - C6B$ $C4A - C5A - C6A - C1A$ $-1.6 (12)$ $C2B - C1B - C6B - C5B$ $C2A - C1A - C6A - C5A$ $2.5 (10)$ $C8B - C1B - C6B - C5B$ $C2A - C1A - C6A - C5A$ $2.5 (10)$ $C8B - C1B - C6B - C5B$ $C2A - C1A - C6A - C5A$ $-178.2 (6)$ $C4B - C5B - C6B - C1B$ $C2A - C1A - C6A - C5A$ $-178.2 (6)$ $C4B - C5B - C6B - C1B$ $C2A - C1A - C8A - C7A$ $113.5 (6)$ $C6B - C1B - C8B - C9B$ $C6A - C1A - C8A - C7A$ $-119.2 (6)$ $C6B - C1B - C8B - C7B$ $C6A - C1A - C8A - C9A$ $61.6 (7)$ $C2B - C1B - C8B - C7B$ $N1A - C7A - C8A - C9A$ $58.3 (6)$ $N1B - C7B - C8B - C9B$ $N1A - C7A - C8A - C9A$ $58.3 (5)$ $C1B - C8B - C9B - S11B$ $C7A - C8A - C9A - S11A$ $58.3 (4)$ $C12B - S11P - C9P - C3P$	-2.1 (11)
C1A-C2A-C3A-C4A $-1.2 (12)$ $C1B-C2B-C3B-C4B$ $C2A-C3A-C4A-C5A$ $2.2 (14)$ $C2B-C3B-C4B-C5B$ $C3A-C4A-C5A-C6A$ $-0.7 (13)$ $C3B-C4B-C5B-C6B$ $C4A-C5A-C6A-C1A$ $-1.6 (12)$ $C2B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $2.5 (10)$ $C8B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $2.5 (10)$ $C4B-C5B-C6B-C1B$ $C2A-C1A-C6A-C5A$ $-178.2 (6)$ $C4B-C5B-C6B-C1B$ $C2A-C1A-C8A-C7A$ $113.5 (6)$ $C6B-C1B-C8B-C9B$ $C2A-C1A-C8A-C7A$ $-16.8 (7)$ $C2B-C1B-C8B-C9B$ $C2A-C1A-C8A-C9A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $61.6 (7)$ $C2B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $61.6 (7)$ $C2B-C1B-C8B-C9B$ $C1A-C8A-C9A$ $58.3 (6)$ $N1B-C7B-C8B-C9B$ $N1A-C7A-C8A-C9A$ $58.3 (6)$ $N1B-C7B-C8B-C1B$ $C1A-C8A-C9A-S11A$ $58.3 (5)$ $C1B-C8B-C9B-S11B$ $C1A-C8A-C9A-S11A$ $-177.4 (3)$ $C7B-C8B-C9B-S11B$	176.7 (7)
C2A-C3A-C4A-C5A $2.2 (14)$ $C2B-C3B-C4B-C5B$ $C3A-C4A-C5A-C6A$ $-0.7 (13)$ $C3B-C4B-C5B-C6B$ $C4A-C5A-C6A-C1A$ $-1.6 (12)$ $C2B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $2.5 (10)$ $C8B-C1B-C6B-C5B$ $C8A-C1A-C6A-C5A$ $2.5 (10)$ $C4B-C5B-C6B-C1B$ $C2A-C1A-C6A-C5A$ $-178.2 (6)$ $C4B-C5B-C6B-C1B$ $C2A-C1A-C8A-C7A$ $113.5 (6)$ $C6B-C1B-C8B-C9B$ $C6A-C1A-C8A-C7A$ $-65.8 (7)$ $C2B-C1B-C8B-C9B$ $C2A-C1A-C8A-C9A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $61.6 (7)$ $C2B-C1B-C8B-C7B$ $N1A-C7A-C8A-C1A$ $-175.4 (4)$ $N1B-C7B-C8B-C9B$ $N1A-C7A-C8A-C9A$ $58.3 (6)$ $N1B-C7B-C8B-C1B$ $C1A-C8A-C9A-S11A$ $58.3 (5)$ $C1B-C8B-C9B-S11B$ $C7A-C8A-C9A-S11A$ $-177.4 (3)$ $C7B-C8B-C9B-S11B$ $C10A-S11A-C9A-C8A$ $C9A-C8A-C9B-S11B$ $C12B-S11P-C9B-S11B$	1.0 (13)
C3A-C4A-C5A-C6A $-0.7 (13)$ $C3B-C4B-C5B-C6B$ $C4A-C5A-C6A-C1A$ $-1.6 (12)$ $C2B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $2.5 (10)$ $C8B-C1B-C6B-C5B$ $C8A-C1A-C6A-C5A$ $-178.2 (6)$ $C4B-C5B-C6B-C1B$ $C2A-C1A-C8A-C7A$ $113.5 (6)$ $C6B-C1B-C8B-C9B$ $C6A-C1A-C8A-C7A$ $-65.8 (7)$ $C2B-C1B-C8B-C9B$ $C6A-C1A-C8A-C9A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $61.6 (7)$ $C2B-C1B-C8B-C7B$ $N1A-C7A-C8A-C1A$ $-175.4 (4)$ $N1B-C7B-C8B-C9B$ $N1A-C7A-C8A-C9A$ $58.3 (6)$ $N1B-C7B-C8B-C1B$ $C1A-C8A-C9A-S11A$ $58.3 (5)$ $C1B-C8B-C9B-S11B$ $C7A-C8A-C9A-S11A$ $-177.4 (3)$ $C7B-C8B-C9B-S11B$ $C10A-S11A-C9A-C8A$ $C8A-163 8 (4)$ $C12B-S11P-C9P-C8P-C8P$	0.6 (15)
C4A-C5A-C6A-C1A $-1.6 (12)$ $C2B-C1B-C6B-C5B$ $C2A-C1A-C6A-C5A$ $2.5 (10)$ $C8B-C1B-C6B-C5B$ $C8A-C1A-C6A-C5A$ $-178.2 (6)$ $C4B-C5B-C6B-C1B$ $C2A-C1A-C8A-C7A$ $113.5 (6)$ $C6B-C1B-C8B-C9B$ $C6A-C1A-C8A-C7A$ $113.5 (6)$ $C6B-C1B-C8B-C9B$ $C6A-C1A-C8A-C7A$ $-65.8 (7)$ $C2B-C1B-C8B-C9B$ $C6A-C1A-C8A-C9A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $61.6 (7)$ $C2B-C1B-C8B-C7B$ $N1A-C7A-C8A-C1A$ $-175.4 (4)$ $N1B-C7B-C8B-C9B$ $N1A-C7A-C8A-C9A$ $58.3 (6)$ $N1B-C7B-C8B-C1B$ $C1A-C8A-C9A-S11A$ $58.3 (5)$ $C1B-C8B-C9B-S11B$ $C7A-C8A-C9A-S11A$ $-177.4 (3)$ $C7B-C8B-C9B-S11B$ $C10A-S11A-C9A-C8A$ $C8A-163 8 (4)$ $C12B-S11P-C9P-C8P$	-1.1 (15)
C2A-C1A-C6A-C5A $2.5 (10)$ $C8B-C1B-C6B-C5B$ $C8A-C1A-C6A-C5A$ $-178.2 (6)$ $C4B-C5B-C6B-C1B$ $C2A-C1A-C8A-C7A$ $113.5 (6)$ $C6B-C1B-C8B-C9B$ $C6A-C1A-C8A-C7A$ $-65.8 (7)$ $C2B-C1B-C8B-C9B$ $C2A-C1A-C8A-C9A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $-119.2 (6)$ $C6B-C1B-C8B-C7B$ $C6A-C1A-C8A-C9A$ $61.6 (7)$ $C2B-C1B-C8B-C7B$ $N1A-C7A-C8A-C1A$ $-175.4 (4)$ $N1B-C7B-C8B-C9B$ $N1A-C7A-C8A-C9A$ $58.3 (6)$ $N1B-C7B-C8B-C1B$ $C1A-C8A-C9A-S11A$ $58.3 (5)$ $C1B-C8B-C9B-S11B$ $C7A-C8A-C9A-S11A$ $-177.4 (3)$ $C7B-C8B-C9B-S11B$ $C10A-S11A-C9A-C8A$ $C9A-C8A$ $163.8 (4)$ $C12B-S11P-C9P-C8P$	1.7 (11)
C8A—C1A—C6A—C5A -178.2 (6) C4B—C5B—C6B—C1B C2A—C1A—C8A—C7A 113.5 (6) C6B—C1B—C8B—C9B C6A—C1A—C8A—C7A -65.8 (7) C2B—C1B—C8B—C9B C2A—C1A—C8A—C9A -119.2 (6) C6B—C1B—C8B—C7B C6A—C1A—C8A—C9A -119.2 (6) C6B—C1B—C8B—C7B C6A—C1A—C8A—C9A 61.6 (7) C2B—C1B—C8B—C7B N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C9B N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C1B C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B C7A—C8A—C9A—Si1A -177.4 (3) C7B—C8B—C9B—Si1B C10A—Si1A C8A 163.8 (4) C12B—Si1P—C9B—Si1B	-177.2 (7)
C2A—C1A—C8A—C7A 113.5 (6) C6B—C1B—C8B—C9B C6A—C1A—C8A—C7A -65.8 (7) C2B—C1B—C8B—C9B C2A—C1A—C8A—C9A -119.2 (6) C6B—C1B—C8B—C7B C6A—C1A—C8A—C9A -119.2 (6) C6B—C1B—C8B—C7B C6A—C1A—C8A—C9A 61.6 (7) C2B—C1B—C8B—C7B N1A—C7A—C8A—C9A 61.6 (7) C2B—C1B—C8B—C9B N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C9B C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B C7A—C8A—C9A—Si1A -177.4 (3) C7B—C8B—C9B—Si1B C10A—Si1A C8A 163.8 (4) C12B—Si1P—C9P—C8P	-0.1 (13)
C6A—C1A—C8A—C7A -65.8 (7) C2B—C1B—C8B—C9B C2A—C1A—C8A—C9A -119.2 (6) C6B—C1B—C8B—C7B C6A—C1A—C8A—C9A 61.6 (7) C2B—C1B—C8B—C7B N1A—C7A—C8A—C1A -175.4 (4) N1B—C7B—C8B—C9B N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C1B C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B C7A—C8A—C9A—Si1A -177.4 (3) C7B—C8B—C9B—Si1B C1AA—Si1A C8A 163.8 (4) C12B—Si1P—C9P—C8P	123.7 (7)
C2A—C1A—C8A—C9A -119.2 (6) C6B—C1B—C8B—C7B C6A—C1A—C8A—C9A 61.6 (7) C2B—C1B—C8B—C7B N1A—C7A—C8A—C1A -175.4 (4) N1B—C7B—C8B—C9B N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C1B C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B C7A—C8A—C9A—Si1A -177.4 (3) C7B—C8B—C9B—Si1B C10A—Si1A C8A 163.8 (4) C12B—Si1P—C9P—C8P	-55.1 (9)
C6A—C1A—C8A—C9A 61.6 (7) C2B—C1B—C8B—C7B N1A—C7A—C8A—C1A -175.4 (4) N1B—C7B—C8B—C9B N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C1B C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B C7A—C8A—C9A—Si1A -177.4 (3) C7B—C8B—C9B—Si1B C10A—Si1A C8A 163.8 (4) C12B—Si1P—C9P—C8P	-106.0 (7)
N1A—C7A—C8A—C1A -175.4 (4) N1B—C7B—C8B—C9B N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C1B C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B C7A—C8A—C9A—Si1A -177.4 (3) C7B—C8B—C9B—Si1B C10A—Si1A C8A 163.8 (4) C12B—Si1P—C9P—C8P	75.2 (7)
N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C1B C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B C7A—C8A—C9A—Si1A -177.4 (3) C7B—C8B—C9B—Si1B C10A—Si1A C8A 163.8 (4) C12B—Si1P—C9P—C8P	-51.3 (7)
C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B C7A—C8A—C9A—Si1A -177.4 (3) C7B—C8B—C9B—Si1B C10A—Si1A C8A 163.8 (4) C12B—Si1B	179.0 (4)
C7A - C8A - C9A - Si1A - 177.4 (3) C7B - C8B - C9B - Si1B $C10A - Si1A - C9A - C8A - 163.8 (4) C12B - Si1B - C9B - C8B$	-59.5 (7)
C10A Si1A $C0A$ $C2A$ 163.8 (4) $C12B$ Si1B $C0B$ $C2B$	173.2 (4)
$C_{10A} = S_{11A} = C_{2A} = C_{0A} = C_{10} =$	70.1 (6)
C12A—Si1A—C9A—C8A –76.8 (4) C10B—Si1B—C9B—C8B	-52.3 (7)
C11A—Si1A—C9A—C8A 44.9 (5) C11B—Si1B—C9B—C8B	-171.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1A—H1AA····Cl2 ⁱ	0.89	2.23	3.114 (5)	173
N1A—H1AB…Cl1	0.89	2.25	3.136 (4)	172
N1A—H1AC···Cl1 ⁱⁱ	0.89	2.36	3.168 (5)	152
N1B—H1BA····Cl2 ⁱⁱ	0.89	2.30	3.166 (4)	163

			supportin	supporting information		
N1 <i>B</i> —H1 <i>BB</i> ····Cl2	0.89	2.28	3.165 (4)	171		
N1 <i>B</i> —H1 <i>BC</i> ···Cl1	0.89	2.35	3.222 (5)	165		

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*, –*y*+3/2, *z*+1/2.