organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2-p-Tolylbenzo[g]quinolin-3-yl)ethanol

Nan Wu,^a Rongli Zhang,^b Yumei Wang,^a Xin Xu^a and Zhou Xu^b*

^aDepartment of Aviation Oil and Material, Xuzhou Airforce College, Xuzhou Jiangsu 221110. People's Republic of China, and ^bDeparement of Chemistry, Xuzhou Medical College, Xuzhou Jiangsu 221004, People's Republic of China Correspondence e-mail: xuzhou@xzmc.edu.cn

Received 5 August 2011; accepted 21 September 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.127; data-to-parameter ratio = 13.0.

In the title compound, $C_{22}H_{19}NO$, the pyridine ring and the adjacent naphthalene ring system are nearly coplanar, making a dihedral angle of $3.3(1)^\circ$, while the pyridine and benzene rings are perpendicular to each other, with a dihedral angle of 89.9 (1) $^{\circ}$. The crystal packing is stabilized by intermolecular $O-H \cdots N$ hydrogen bonds and $C-H \cdots \pi$ interactions.

Related literature

For the biological activity of quinoline derivatives, see: Faber et al. (1984); Johnson et al. (1989); Nesterova et al. (1995); Yamada et al. (1992).

Experimental

Crystal data	
$C_{22}H_{19}NO$	c = 12.1194 (3) Å
$M_r = 313.38$	$\alpha = 108.125 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 98.115 \ (4)^{\circ}$
a = 7.2044 (4) Å	$\gamma = 99.370 \ (5)^{\circ}$
b = 10.1704 (4) Å	V = 815.08 (6) Å ³

Z = 2Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker APEXII area-detector diffractometer 10164 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ H atoms treated by a mixture of $wR(F^2) = 0.127$ independent and constrained S = 1.03refinement $\Delta \rho_{\text{max}} = 0.17 \text{ e} \text{ Å}^{-3}$ 2879 reflections $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ 222 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N1,C1-C5 pyridine ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots N1^{i} \\ C21 - H21 A \cdots Cg^{ii} \end{array}$	0.93 (3)	1.98 (3)	2.9110 (18)	174 (2)
	0.93	2.97	3.7358 (19)	140

T = 296 K

 $R_{\rm int} = 0.020$

 $0.49 \times 0.21 \times 0.07 \text{ mm}$

2879 independent reflections

2232 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to the Special Presidential Foundation of Xuzhou Medical College (2010KJZ15) for financial support. We thank Su Hong of Zhejiang Normal University for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5076).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Faber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocycl. Chem. 21, 1177-1178.
- Johnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32 1942-1949
- Nesterova, I., Alekseeva, L. M., Andreeva, L. M., Andreeva, N. I., Golovira, S. M. & Granic, V. G. (1995). Khim. Farm. Zh. 29, 31-34.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211-1213.

supporting information

Acta Cryst. (2011). E67, o2770 [https://doi.org/10.1107/S1600536811038736]

2-(2-p-Tolylbenzo[g]quinolin-3-yl)ethanol

Nan Wu, Rongli Zhang, Yumei Wang, Xin Xu and Zhou Xu

S1. Comment

Quinoline derivatives possess varies of biological properties, such as psychotropic activity (Nesterova, *et al.*, 1995), antiallergic (Yamada *et al.*, 1992) and anti-inflammatory activity (Faber *et al.*, 1984 and Johnson *et al.*, 1989). Therefore, the title compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. Herein, we report the crystal structure of the title compound, (I).

In the crystal structure of (I), there are four aromatic rings and the pyridine ring is the new formed ring. The pyridine ring is a coplanar conformation. The pyridine ring and the adjacent naphthalene ring are nearly coplanar, with a dihedral angle of $3.3 (1)^{\circ}$. While the pyridine ring and the benzene ring are vertical with each other, with a dihedral angle of $89.9 (1)^{\circ}$. The molecules are connected by the O1—H1…N1 intermolecular hydrogen bond and C—H… π interactions (Figure 2). Besides, there is intermolecular π - π interaction between the two neighboring benzene rings (C4C5C6C7C8C13), symmetry code: (1-*X*, 2-Y, -*Z*). The two rings are parallel to each other. The centroid distance, plane-plane distance and displacement distance are 3.642, 3.499 and 1.010 Å, respectively, which strongly indicate the existence of intermolecular π - π interactions.

S2. Experimental

The title compound, (I), was prepared by the reaction of 4-methylbenzaldehyde (0.240 g, 2.0 mmol), naphthalen-2-amine (0.286 g, 2.0 mmol) and I_2 (0.051 g, 0.2 mmol) in THF (10 ml) at reflux for 40 h (yield 86%, mp. 486–487 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a THF solution.

S3. Refinement

The hydrogen atom of hydroxy group, was positioned from a Fourier difference map and was refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Figure 2

The packing diagram of title compound viewed along the *b* axis. Dashed lines indicate hydrogen bonds of type O1— $H1\cdots N1$ and C— $H\cdots \pi$ interactions.

2-(2-p-Tolylbenzo[g]quinolin-3-yl)ethanol

Crystal data

C₂₂H₁₉NO $M_r = 313.38$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.2044 (4) Å b = 10.1704 (4) Å c = 12.1194 (3) Å a = 108.125 (3)° $\beta = 98.115$ (4)° $\gamma = 99.370$ (5)° V = 815.08 (6) Å³

Data collection

Bruker APEXII area-detector	2232 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.020$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Graphite monochromator	$h = -8 \rightarrow 8$
phi and ω scans	$k = -12 \rightarrow 12$
10164 measured reflections	$l = -14 \rightarrow 14$
2879 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.127$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
2879 reflections	and constrained refinement
222 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0628P)^2 + 0.1533P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.17 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 332

 $\theta = 2.9 - 26.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Sheet, yellow

 $0.49 \times 0.21 \times 0.07 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.277 {\rm Mg} {\rm m}^{-3}$

Melting point = 486-487 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3017 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.94638 (19)	0.74485 (14)	0.16847 (12)	0.0671 (4)
N1	0.34813 (18)	0.89390 (13)	0.23730 (12)	0.0473 (3)
C4	0.5880 (2)	1.05942 (15)	0.19621 (13)	0.0428 (4)

C5	0.3959 (2)	0.99592 (15)	0.18921 (13)	0.0442 (4)	
C1	0.4871 (2)	0.84951 (15)	0.29047 (13)	0.0445 (4)	
C3	0.7299 (2)	1.00948 (15)	0.25305 (14)	0.0462 (4)	
H3A	0.8585	1.0487	0.2594	0.055*	
C13	0.6286 (2)	1.16905 (15)	0.14470 (13)	0.0442 (4)	
C6	0.2436 (2)	1.03711 (17)	0.12868 (15)	0.0532 (4)	
H6A	0.1167	0.9958	0.1250	0.064*	
C2	0.6844 (2)	0.90436 (15)	0.29965 (13)	0.0452 (4)	
C8	0.4736 (2)	1.20451 (15)	0.08298 (13)	0.0478 (4)	
C16	0.4202 (2)	0.73826 (16)	0.34132 (14)	0.0454 (4)	
C9	0.5119 (3)	1.30789 (17)	0.03012 (15)	0.0580 (5)	
H9A	0.4103	1.3303	-0.0115	0.070*	
C7	0.2812 (2)	1.13509 (17)	0.07688 (15)	0.0552 (4)	
H7A	0.1795	1.1583	0.0360	0.066*	
C19	0.2814 (2)	0.52892 (18)	0.43403 (17)	0.0545 (4)	
C14	0.8416 (2)	0.84739 (17)	0.35334 (15)	0.0537 (4)	
H14A	0.9579	0.9215	0.3842	0.064*	
H14B	0.8043	0.8229	0.4195	0.064*	
C18	0.3153 (2)	0.49386 (18)	0.32095 (16)	0.0594 (5)	
H18A	0.2917	0.3987	0.2741	0.071*	
C17	0.3831 (3)	0.59584 (17)	0.27504 (15)	0.0561 (4)	
H17A	0.4043	0.5683	0.1980	0.067*	
C12	0.8149 (2)	1.24194 (17)	0.15198 (16)	0.0557 (4)	
H12A	0.9188	1.2210	0.1929	0.067*	
C11	0.8479 (3)	1.34320 (18)	0.10038 (17)	0.0647 (5)	
H11A	0.9730	1.3902	0.1066	0.078*	
C15	0.8844 (2)	0.71879 (18)	0.26679 (17)	0.0583 (5)	
H15A	0.9832	0.6864	0.3079	0.070*	
H15B	0.7695	0.6433	0.2384	0.070*	
C21	0.3886 (3)	0.77368 (18)	0.45560 (16)	0.0628 (5)	
H21A	0.4142	0.8686	0.5032	0.075*	
C22	0.2070 (3)	0.4166 (2)	0.4833 (2)	0.0769 (6)	
H22A	0.2832	0.3461	0.4697	0.115*	
H22B	0.0756	0.3728	0.4446	0.115*	
H22C	0.2147	0.4591	0.5669	0.115*	
C10	0.6947 (3)	1.37576 (18)	0.03868 (16)	0.0641 (5)	
H10A	0.7174	1.4442	0.0032	0.077*	
C20	0.3197 (3)	0.6706 (2)	0.50019 (17)	0.0655 (5)	
H20A	0.2985	0.6978	0.5772	0.079*	
H1	1.074 (4)	0.793 (3)	0.196 (2)	0.111 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0505 (8)	0.0835 (9)	0.0729 (9)	0.0124 (6)	0.0160 (6)	0.0342 (7)
N1	0.0446 (7)	0.0461 (7)	0.0529 (8)	0.0092 (6)	0.0146 (6)	0.0176 (6)
C4	0.0459 (9)	0.0390 (7)	0.0424 (8)	0.0093 (6)	0.0116 (7)	0.0115 (6)
C5	0.0462 (9)	0.0418 (8)	0.0442 (9)	0.0108 (6)	0.0123 (7)	0.0122 (7)

Acta Cryst. (2011). E67, o2770

supporting information

C1	0.0457 (9)	0.0433 (8)	0.0445 (9)	0.0090 (7)	0.0133 (7)	0.0138 (7)
C3	0.0420 (8)	0.0455 (8)	0.0515 (9)	0.0058 (6)	0.0109 (7)	0.0185 (7)
C13	0.0518 (9)	0.0387 (8)	0.0414 (9)	0.0114 (7)	0.0109 (7)	0.0112 (6)
C6	0.0435 (9)	0.0544 (9)	0.0620 (11)	0.0125 (7)	0.0105 (8)	0.0196 (8)
C2	0.0467 (9)	0.0437 (8)	0.0458 (9)	0.0087 (7)	0.0107 (7)	0.0161 (7)
C8	0.0593 (10)	0.0411 (8)	0.0414 (9)	0.0149 (7)	0.0098 (7)	0.0101 (7)
C16	0.0404 (8)	0.0477 (8)	0.0503 (9)	0.0072 (6)	0.0123 (7)	0.0199 (7)
C9	0.0745 (12)	0.0502 (9)	0.0514 (10)	0.0205 (9)	0.0074 (9)	0.0196 (8)
C7	0.0532 (10)	0.0549 (9)	0.0581 (10)	0.0199 (8)	0.0059 (8)	0.0184 (8)
C19	0.0383 (8)	0.0633 (10)	0.0714 (12)	0.0083 (7)	0.0124 (8)	0.0373 (9)
C14	0.0480 (9)	0.0580 (10)	0.0600 (11)	0.0053 (7)	0.0062 (8)	0.0322 (8)
C18	0.0601 (11)	0.0470 (9)	0.0667 (12)	0.0011 (8)	0.0105 (9)	0.0200 (8)
C17	0.0647 (11)	0.0514 (9)	0.0492 (10)	0.0049 (8)	0.0133 (8)	0.0162 (8)
C12	0.0542 (10)	0.0522 (9)	0.0649 (11)	0.0081 (7)	0.0108 (8)	0.0283 (8)
C11	0.0668 (12)	0.0573 (10)	0.0725 (12)	0.0023 (9)	0.0126 (10)	0.0322 (9)
C15	0.0444 (9)	0.0620 (10)	0.0790 (12)	0.0120 (8)	0.0151 (9)	0.0373 (9)
C21	0.0784 (12)	0.0499 (9)	0.0585 (11)	0.0069 (8)	0.0286 (9)	0.0136 (8)
C22	0.0576 (11)	0.0869 (14)	0.1071 (17)	0.0101 (10)	0.0221 (11)	0.0628 (13)
C10	0.0861 (14)	0.0502 (9)	0.0610 (11)	0.0119 (9)	0.0129 (10)	0.0284 (9)
C20	0.0731 (12)	0.0716 (12)	0.0567 (11)	0.0087 (9)	0.0272 (9)	0.0264 (9)

Geometric parameters (Å, °)

O1—C15	1.413 (2)	C7—H7A	0.9300
O1—H1	0.93 (3)	C19—C18	1.372 (3)
N1—C1	1.3294 (19)	C19—C20	1.373 (3)
N1—C5	1.3606 (19)	C19—C22	1.505 (2)
C4—C3	1.402 (2)	C14—C15	1.508 (2)
C4—C5	1.407 (2)	C14—H14A	0.9700
C4—C13	1.448 (2)	C14—H14B	0.9700
C5—C6	1.426 (2)	C18—C17	1.377 (2)
C1—C2	1.415 (2)	C18—H18A	0.9300
C1—C16	1.494 (2)	C17—H17A	0.9300
C3—C2	1.372 (2)	C12—C11	1.368 (2)
С3—НЗА	0.9300	C12—H12A	0.9300
C13—C12	1.400 (2)	C11—C10	1.388 (3)
C13—C8	1.414 (2)	C11—H11A	0.9300
C6—C7	1.345 (2)	C15—H15A	0.9700
С6—Н6А	0.9300	C15—H15B	0.9700
C2—C14	1.511 (2)	C21—C20	1.377 (2)
C8—C9	1.402 (2)	C21—H21A	0.9300
C8—C7	1.430 (2)	C22—H22A	0.9600
C16—C17	1.380 (2)	C22—H22B	0.9600
C16—C21	1.380 (2)	C22—H22C	0.9600
C9—C10	1.357 (3)	C10—H10A	0.9300
С9—Н9А	0.9300	C20—H20A	0.9300
C15—O1—H1	105.8 (15)	C15—C14—H14A	108.9

C1—N1—C5	119.18 (13)	C2-C14-H14A	108.9
$C_{3}-C_{4}-C_{5}$	116 48 (14)	C15-C14-H14B	108.9
C_{3} $-C_{4}$ $-C_{13}$	123 98 (14)	C2-C14-H14B	108.9
$C_{5}-C_{4}-C_{13}$	119 54 (14)	H_{14A} $-C_{14}$ H_{14B}	107.7
N1-C5-C4	122.42 (14)	C19 - C18 - C17	121.72 (16)
N1-C5-C6	117.78(14)	C19 - C18 - H18A	119.1
C4-C5-C6	119 79 (14)	C17 - C18 - H18A	119.1
N1-C1-C2	122 65 (14)	C18 - C17 - C16	121.16(16)
N1 - C1 - C16	1122.03(14) 115 17(13)	C18 - C17 - H17A	119.4
C_{2} C_{1} C_{16}	122 17 (14)	C_{16} C_{17} H_{17A}	119.4
$C_2 = C_3 = C_4$	122.17(14) 121.90(14)	C_{11} C_{12} C_{13}	121.65 (17)
$C_2 = C_3 = C_4$	110.1	$C_{11} - C_{12} - H_{12}$	119.2
C_{4} C_{3} H_{3} A	119.1	$C_{12} = C_{12} = H_{12}$	119.2
$C_1^2 = C_1^2 = C_1^2 = C_1^2$	117.0 117.70(14)	$C_{12} = C_{12} = M_{12} = M_{12}$	119.2
$C_{12} = C_{13} = C_{3}$	117.79(14) 123.21(14)	$C_{12} = C_{11} = C_{10}$	120.04 (18)
$C_{12} = C_{13} = C_{4}$	123.31(14) 118.00(14)	C_{12} C_{11} H_{11A}	120.0
C_{3}	110.90(14) 120.72(15)	C10 $C15$ $C14$	120.0 112.27(14)
C_{7}	120.72 (15)	01 - 015 + 115	113.27 (14)
$C_{}C_{0}$	119.0	C_{14} C_{15} H_{15A}	108.9
$C_3 = C_2 = C_1$	117.0 117.22(14)	C14 - C15 - H15R	108.9
$C_{3} = C_{2} = C_{1}$	117.33(14) 120.10(14)	C_{14} C_{15} H_{15} H	108.9
$C_{3} = C_{2} = C_{14}$	120.10(14) 122.52(12)		108.9
$C_1 = C_2 = C_{14}$	122.32(13) 110.27(15)	$\begin{array}{cccc} \text{HISA} & \text{CIS} & \text{HISB} \\ \text{C20} & \text{C21} & \text{C16} \\ \end{array}$	107.7 121.02(16)
$C_{9} = C_{8} = C_{13}$	119.27(13) 121.50(15)	$C_{20} = C_{21} = C_{10}$	121.05 (10)
$C_{9} = C_{8} = C_{7}$	121.30(13)	C_{20} C_{21} H_{21A}	119.5
C13 - C8 - C7	119.23 (14)	C10 - C21 - H21A	119.5
C17 - C16 - C21	117.21(15)	C19—C22—H22A	109.5
CI/-CI6-CI	121.38 (14)	C19—C22—H22B	109.5
C21—C16—C1	121.40 (14)	H22A—C22—H22B	109.5
C10 - C9 - C8	121.18 (16)	C19—C22—H22C	109.5
С10—С9—Н9А	119.4	H22A—C22—H22C	109.5
C8—C9—H9A	119.4	H22B—C22—H22C	109.5
C6—C7—C8	121.74 (15)	C9—C10—C11	120.07 (16)
С6—С7—Н7А	119.1	С9—С10—Н10А	120.0
C8—C7—H7A	119.1	С11—С10—Н10А	120.0
C18—C19—C20	117.08 (15)	C19—C20—C21	121.80 (17)
C18—C19—C22	121.27 (17)	С19—С20—Н20А	119.1
C20—C19—C22	121.65 (17)	C21—C20—H20A	119.1
C15—C14—C2	113.54 (14)		
C1—N1—C5—C4	-1.7 (2)	C2-C1-C16-C17	-90.9 (2)
C1—N1—C5—C6	177.53 (13)	N1-C1-C16-C21	-88.66 (19)
C3—C4—C5—N1	1.6 (2)	C2-C1-C16-C21	90.7 (2)
C13—C4—C5—N1	-179.01 (13)	C13—C8—C9—C10	-1.0 (2)
C3—C4—C5—C6	-177.56 (13)	C7—C8—C9—C10	178.41 (15)
C13—C4—C5—C6	1.8 (2)	C5—C6—C7—C8	-1.8 (3)
C5—N1—C1—C2	0.2 (2)	C9—C8—C7—C6	-179.16 (15)
C5—N1—C1—C16	179.51 (12)	C13—C8—C7—C6	0.2 (2)
C5—C4—C3—C2	-0.1 (2)	C3—C2—C14—C15	-92.86 (18)

C4-C15-C8-C7 2.3 (2) $C10-C21-C20-C19$ 0.7 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.21 \ (14) \\ 176.03 \ (13) \\ -3.3 \ (2) \\ -178.50 \ (14) \\ 0.7 \ (2) \\ -1.3 \ (2) \\ 176.17 \ (14) \\ 1.3 \ (2) \\ -177.99 \ (13) \\ -176.11 \ (14) \\ 4.6 \ (2) \\ 1.2 \ (2) \\ -178.32 \ (13) \\ -178.16 \ (14) \\ 2.3 \ (2) \\ 80.77 \ (18) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.3 \ (3) \\ 179.92 \ (16) \\ 0.1 \ (3) \\ 0.7 \ (3) \\ -177.77 \ (15) \\ -0.7 \ (2) \\ 178.83 \ (15) \\ -0.1 \ (3) \\ 60.50 \ (18) \\ -1.1 \ (3) \\ 177.39 \ (17) \\ 0.1 \ (3) \\ 0.4 \ (3) \\ 0.1 \ (3) \\ 179.70 \ (17) \\ 0.7 \ (3) \end{array}$
--	--	---	--	--

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1,C1–C5 pyridine ring.

D—H···A	D—H	Н…А	D····A	D—H…A
O1—H1…N1 ⁱ	0.93 (3)	1.98 (3)	2.9110 (18)	174 (2)
C21—H21A···Cg ⁱⁱ	0.93	2.97	3.7358 (19)	140

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1.