Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Azido-1-(3,6-dichloro-9H-fluoren-1yl)ethanone

Hoong-Kun Fun,^a* Tze Shyang Chia,^a Reshma Kayarmar,^b Dinesha^c and G. K. Nagaraja^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSequent Scientific Limited, Baikampady, New Mangalore, India, and ^cDepartment of Chemistry, Mangalore University, Karnataka, India Correspondence e-mail: hkfun@usm.my

Received 22 August 2011; accepted 10 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.085; data-to-parameter ratio = 21.1.

In the title compound, $C_{15}H_9Cl_2N_3O$, an intramolecular C-H···O interaction generates an S(7) ring motif. The cyclopenta-1,3-diene ring forms dihedral angles of 1.93 (6) and $2.78~(6)^{\circ}$ with its attached benzene rings. In the crystal, molecules are linked by $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, thereby forming layers lying parallel to the *ac* plane. The crystal also features a π - π interaction with a centroidcentroid distance of 3.5612 (6) Å.

Related literature

For the mutagenic activity of azides, see: Sander & Muehlbour (1977); Nilan et al. (1973); Owais et al. (1983). For the preparation of 1,2,3-triazoles via 1,3-dipolar cycloaddition reactions of azides with substituted acetylene compounds, see: Purvisis et al. (1984); Patei & Smalley (1984). For a related fused-ring structure, see: Molins et al. (2002). For related azide structures, see: Basanagouda et al. (2010); Karthikeyan et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond lengths, see: Allen et al. (1987).

 $\beta = 98.61^{\circ}$

Mo Ka radiation a = 10.7303 (1) Å $\mu = 0.48 \text{ mm}^$ b = 18.7012 (3) Å T = 100 Kc = 6.8952 (1) Å $0.35 \times 0.21 \times 0.14 \text{ mm}$

V = 1368.06 (3) Å³

15671 measured reflections

4003 independent reflections

3599 reflections with $I > 2\sigma(I)$

Z = 4

 $R_{\rm int} = 0.020$

Data collection

Experimental

Crystal data

C15H9Cl2N3O

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.850, \ T_{\max} = 0.936$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	190 parameters
$wR(F^2) = 0.085$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
4003 reflections	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C5−H5A···O1	0.95	2.32	3.0134 (14)	129
$C13 - H13A \cdots N3^{\circ}$ $C15 - H15A \cdots O1^{ii}$	0.99 0.99	2.59 2.53	3.4613 (16) 3.1941 (15)	147 125

Symmetry codes: (i) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Structure Determination of kDa Outer Membrane Proteins from S. typhi by X-ray Protein Crystallography Grant (No. 1001/PSKBP/8630013).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6387).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Basanagouda, M., Nayak, S. K., Guru Row, T. N. & Kulkarni, M. V. (2010). Acta Cryst. E66, o2780.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Karthikeyan, S., Sethusankar, K., Rajeswaran, G. G. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2245-o2246.
- Molins, E., Miravitlles, C., Espinosa, E. & Ballester, M. (2002). J. Org. Chem. **67**, 7175-7178.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

- Nilan, R. A., Sideris, E. G., Kleinhofs, A. & Nilan, R. A. (1973). *Mut. Res.* 17, 142–144.
- Owais, W., Rosichan, J. L., Roland, R. C., Kleinhofs, S. A. & Nilan, R. A. (1983). *Mut. Res.* **118**, 229–239
- Patei, D. I. & Smalley, R. K. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 2587–2590
- Purvisis, P., Smalley, R. K., Saschitsky, H. & Alkhader, M. A. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 249–254
- Sander, C. & Muehlbour, F. J. (1977). Environ. Exp. 17, 43-45
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2656–o2657 [https://doi.org/10.1107/S1600536811036762]

2-Azido-1-(3,6-dichloro-9H-fluoren-1-yl)ethanone

Hoong-Kun Fun, Tze Shyang Chia, Reshma Kayarmar, Dinesha and G. K. Nagaraja

S1. Comment

Azides are considered very important compounds due to both their industrial as well as biological applications. Azide derivatives have been used in rubber vulcanization, polymer cross linking, dyes tire cord adhesives, forming of plastics, pharmaceuticals, pesticides and herbicides. Many azide compounds show mutagenic activities (Sander & Muehlbour, 1977; Nilan *et al.*, 1973; Owais *et al.*, 1983). The chemistry of azides has thus attracted the attention of many chemists, since many of these compounds play an important role in organic chemistry. One of the more useful synthetic applications of azides is the preparation of 1,2,3-triazoles *via* 1,3-dipolar cycloaddition reactions of azides with substituted acetylene compound (Purvisis *et al.*, 1984; Patei & Smalley, 1984). The crystal structures of 4-Azido-methyl-7-methyl-2-oxo-2*H*-chromene-6-sulfonyl azide (Basanagouda *et al.*, 2010) and 2-Azidomethyl-3-methyl-1-phenylsulfonyl-1*H*-indole (Karthikeyan *et al.*, 2011) have been reported. Attributed to the above fact and with a view to obtain new and better biologically active agent, we synthesized the title compound, (I), in 60% yield.

The molecular structure of the title compound is shown in Fig. 1. The cyclopenta-1,3-diene ring (C1/C6/C7/C12/C13) makes dihedral angles of 1.93 (6) and 2.78 (6)° with its terminal benzene rings (C1–C6 & C7–C12) respectively. Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to a related structure (Molins *et al.*, 2002). The molecular structure is stabilized by intramolecular C5–H5A···O1 hydrogen bond (Table 1) which generates an S(7) ring motif (Fig. 1; Bernstein *et al.*, 1995).

In the crystal (Fig. 2), the molecules are connected by C13—H13A···N3 and C15—H15A···O1 hydrogen bonds (Table 1) forming two-dimensional network parallel to *ac* plane. The crystal is further stabilized by π - π interactions with centroid···centroid distance, Cg1···Cg2 = 3.5612 (6) Å (symmetry code: x,1/2 - y,-1/2 + z); Cg1 and Cg2 are the centroids of the C1/C6/C7/C12/C13 and C1–C6 rings respectively.

S2. Experimental

2-Chloro-1-(3,6-dichloro-9*H*-fluoren-1-yl)ethanone (2 g, 0.0064 mole) in 5 ml DMF was cooled to 0-5 °C. Sodium azide (0.4 g, 0.0064 mole) was added lot-wise and stirred for 3 h. The precipated product was filtered off, dried and recrystallized from ethanol (1.2 g, 60%). Yellow blocks of (I) were obtained from acetone by slow evaporation.

S3. Refinement

All H atoms were positioned geometrically [C—H = 0.95 and 0.99 Å] and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown by a dashed line.

Figure 2

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.

Crystal data C₁₅H₉Cl₂N₃O $M_r = 318.15$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.7303 (1) Å b = 18.7012 (3) Å c = 6.8952 (1) Å $\beta = 98.61^{\circ}$ V = 1368.06 (3) Å³ Z = 4

F(000) = 648 $D_x = 1.545 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7886 reflections $\theta = 2.2-30.0^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.35 \times 0.21 \times 0.14 \text{ mm}$ Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{\min} = 0.850, T_{\max} = 0.936$	15671 measured reflections 4003 independent reflections 3599 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 30.1^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -14 \rightarrow 14$ $k = -26 \rightarrow 24$ $l = -9 \rightarrow 9$
Rejinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: Tull	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$WR(F^2) = 0.085$	neighbouring sites
S = 1.03	H-atom parameters constrained
4003 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.561P]$
190 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.86335 (3)	0.015258 (16)	0.78440 (5)	0.02477 (8)	
C12	0.69062 (3)	0.556390 (16)	0.75596 (5)	0.02593 (9)	
01	0.41319 (8)	0.27518 (5)	0.49870 (12)	0.02012 (18)	
N1	0.19994 (10)	0.32713 (6)	0.62768 (18)	0.0257 (2)	
N2	0.18912 (9)	0.26184 (6)	0.63263 (15)	0.0216 (2)	
N3	0.16346 (11)	0.20274 (7)	0.6281 (2)	0.0321 (3)	
C1	0.82735 (10)	0.22727 (6)	0.76076 (15)	0.0156 (2)	
C2	0.88066 (10)	0.15948 (6)	0.78230 (16)	0.0174 (2)	
H2A	0.9693	0.1533	0.8121	0.021*	
C3	0.79995 (11)	0.10118 (6)	0.75884 (16)	0.0176 (2)	
C4	0.66945 (11)	0.10914 (6)	0.71603 (16)	0.0175 (2)	
H4A	0.6166	0.0681	0.7016	0.021*	
C5	0.61693 (10)	0.17715 (6)	0.69457 (16)	0.0159 (2)	
H5A	0.5281	0.1829	0.6654	0.019*	

C6	0.69576 (10)	0.23714 (6)	0.71629 (15)	0.0143 (2)	
C7	0.67029 (10)	0.31487 (6)	0.70872 (15)	0.0143 (2)	
C8	0.55863 (10)	0.35588 (6)	0.67711 (15)	0.0155 (2)	
C9	0.56735 (11)	0.43036 (6)	0.69421 (16)	0.0181 (2)	
H9A	0.4927	0.4584	0.6765	0.022*	
C10	0.68399 (11)	0.46365 (7)	0.73686 (16)	0.0185 (2)	
C11	0.79532 (11)	0.42465 (7)	0.76498 (16)	0.0182 (2)	
H11A	0.8748	0.4478	0.7923	0.022*	
C12	0.78680 (10)	0.35082 (6)	0.75198 (15)	0.0156 (2)	
C13	0.89409 (10)	0.29828 (6)	0.78215 (16)	0.0165 (2)	
H13A	0.9442	0.3035	0.9141	0.020*	
H13B	0.9502	0.3043	0.6817	0.020*	
C14	0.43135 (10)	0.32382 (6)	0.61632 (16)	0.0164 (2)	
C15	0.32381 (11)	0.35493 (7)	0.71116 (18)	0.0207 (2)	
H15A	0.3391	0.3442	0.8533	0.025*	
H15B	0.3236	0.4076	0.6958	0.025*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.02445 (15)	0.01773 (15)	0.03227 (16)	0.00395 (10)	0.00465 (11)	0.00274 (11)
Cl2	0.03214 (17)	0.01536 (15)	0.02921 (16)	-0.00146 (11)	0.00100 (12)	-0.00078 (11)
01	0.0170 (4)	0.0224 (4)	0.0204 (4)	-0.0007 (3)	0.0008 (3)	-0.0015 (3)
N1	0.0152 (5)	0.0260 (6)	0.0360 (6)	0.0035 (4)	0.0041 (4)	0.0048 (5)
N2	0.0107 (4)	0.0299 (6)	0.0239 (5)	0.0001 (4)	0.0015 (3)	0.0012 (4)
N3	0.0203 (5)	0.0298 (7)	0.0446 (7)	-0.0036 (5)	-0.0006(5)	0.0043 (5)
C1	0.0152 (5)	0.0198 (6)	0.0119 (5)	-0.0006 (4)	0.0026 (4)	0.0003 (4)
C2	0.0157 (5)	0.0205 (6)	0.0161 (5)	0.0016 (4)	0.0028 (4)	0.0005 (4)
C3	0.0205 (5)	0.0169 (5)	0.0158 (5)	0.0023 (4)	0.0041 (4)	0.0014 (4)
C4	0.0189 (5)	0.0174 (6)	0.0164 (5)	-0.0016 (4)	0.0035 (4)	0.0001 (4)
C5	0.0148 (5)	0.0185 (5)	0.0145 (5)	-0.0009 (4)	0.0023 (4)	0.0006 (4)
C6	0.0152 (5)	0.0175 (5)	0.0106 (4)	0.0007 (4)	0.0029 (3)	0.0005 (4)
C7	0.0150 (5)	0.0173 (5)	0.0111 (4)	-0.0007 (4)	0.0031 (3)	-0.0001 (4)
C8	0.0155 (5)	0.0187 (5)	0.0125 (4)	0.0003 (4)	0.0026 (3)	0.0001 (4)
C9	0.0202 (5)	0.0187 (6)	0.0154 (5)	0.0017 (4)	0.0027 (4)	0.0006 (4)
C10	0.0244 (6)	0.0150 (5)	0.0159 (5)	-0.0012 (4)	0.0028 (4)	-0.0006 (4)
C11	0.0195 (5)	0.0192 (6)	0.0156 (5)	-0.0030 (4)	0.0019 (4)	-0.0003 (4)
C12	0.0159 (5)	0.0187 (5)	0.0123 (4)	-0.0013 (4)	0.0027 (4)	0.0000 (4)
C13	0.0140 (4)	0.0192 (5)	0.0163 (5)	-0.0010 (4)	0.0021 (4)	-0.0007 (4)
C14	0.0150 (5)	0.0176 (5)	0.0164 (5)	0.0019 (4)	0.0018 (4)	0.0040 (4)
C15	0.0165 (5)	0.0212 (6)	0.0252 (6)	0.0022 (4)	0.0056 (4)	0.0007 (4)

Geometric parameters (Å, °)

Cl1—C3	1.7436 (12)	C6—C7	1.4787 (16)
Cl2—C10	1.7400 (13)	C7—C12	1.4115 (15)
O1—C14	1.2147 (15)	C7—C8	1.4117 (15)
N1—N2	1.2275 (16)	C8—C9	1.3997 (17)

supporting information

		G0 G14	1 1000 (1 5)
NI-C15	1.4627 (16)	C8—C14	1.4930 (15)
N2—N3	1.1382 (17)	C9—C10	1.3895 (16)
C1—C2	1.3896 (16)	С9—Н9А	0.9500
C1—C6	1.4114 (15)	C10—C11	1.3882 (17)
C1—C13	1.5055 (16)	C11—C12	1.3856 (17)
C2—C3	1.3867 (17)	C11—H11A	0.9500
C2—H2A	0.9500	C12—C13	1.5042 (16)
C3—C4	1.3951 (16)	C13—H13A	0.9900
C4—C5	1.3901 (16)	С13—Н13В	0.9900
C4—H4A	0.9500	C14—C15	1.5244 (16)
C5—C6	1.3995 (16)	C15—H15A	0.9900
С5—Н5А	0.9500	C15—H15B	0.9900
N2—N1—C15	115.27 (10)	С10—С9—Н9А	119.7
N3—N2—N1	171.32 (12)	С8—С9—Н9А	119.7
C2—C1—C6	121.67 (11)	C11—C10—C9	121.55 (11)
C_{2} — C_{1} — C_{13}	127.74 (10)	$C_{11} - C_{10} - C_{12}$	119.25 (9)
C6-C1-C13	110.59(10)	C9-C10-C12	119.22 (9)
C_{3} C_{2} C_{1}	117 70 (10)	C_{12} C_{11} C_{10} C_{12}	117.86 (11)
$C_3 - C_2 - H_2 \Delta$	121.2	C12 $C11$ $H11$ A	121.1
$C_1 = C_2 = H_2 \Lambda$	121.2	$C_{12} = C_{11} = H_{11A}$	121.1
$C_1 = C_2 = C_1$	121.2 122.04(11)	C_{11} C_{12} C_{7}	121.1 122.41(10)
$C_2 = C_3 = C_4$	122.04(11) 110.02(0)	$C_{11} = C_{12} = C_{13}$	122.41(10) 126.80(10)
$C_2 = C_3 = C_{11}$	119.03 (9)	C12 - C12	120.89 (10)
	118.93 (9)	C/-C12-C13	110.70 (10)
C5-C4-C3	119.88 (11)	C12—C13—C1	102.69 (9)
C5—C4—H4A	120.1	С12—С13—Н13А	111.2
C3—C4—H4A	120.1	С1—С13—Н13А	111.2
C4—C5—C6	119.55 (10)	C12—C13—H13B	111.2
C4—C5—H5A	120.2	C1—C13—H13B	111.2
С6—С5—Н5А	120.2	H13A—C13—H13B	109.1
C5—C6—C1	119.17 (11)	O1—C14—C8	122.46 (10)
C5—C6—C7	132.74 (10)	O1—C14—C15	121.08 (10)
C1—C6—C7	108.05 (10)	C8—C14—C15	116.46 (10)
С12—С7—С8	118.58 (11)	N1-C15-C14	113.40 (10)
С12—С7—С6	107.91 (9)	N1—C15—H15A	108.9
C8—C7—C6	133.44 (10)	C14—C15—H15A	108.9
C9—C8—C7	118.89 (10)	N1—C15—H15B	108.9
C9—C8—C14	118.04 (10)	C14—C15—H15B	108.9
C7—C8—C14	123.01 (10)	H15A—C15—H15B	107.7
С10—С9—С8	120.69 (11)		
C6—C1—C2—C3	-0.08 (16)	C14—C8—C9—C10	-175.49 (10)
$C_{13} - C_{1} - C_{2} - C_{3}$	178.91 (10)	C8-C9-C10-C11	-0.36(17)
C1 - C2 - C3 - C4	-0.31 (16)	C8-C9-C10-C12	179 77 (8)
C1 - C2 - C3 - C11	179 91 (8)	C9-C10-C11-C12	-0.91(16)
$C_2 = C_3 = C_4 = C_5$	0.37(17)	C_{12} C_{10} C_{11} C_{12}	178 96 (8)
$C_{11} = C_{3} = C_{4} = C_{5}$	-179 85 (8)	C10-C11-C12 C7	0.00(16)
$C_{11} = C_{12} = C_{14} = C_{15}$	-0.02(16)	$C_{10} = C_{11} = C_{12} = C_{12}$	-178.20(10)
$\cup - \cup + - \cup - \cup 0$	0.05 (10)	010 - 011 - 012 - 013	1/0.30(10)

C4—C5—C6—C1	-0.35 (15)	C8—C7—C12—C11	0.19 (16)
C4—C5—C6—C7	-177.92 (10)	C6—C7—C12—C11	-177.22 (10)
C2-C1-C6-C5	0.41 (16)	C8—C7—C12—C13	179.58 (9)
C13—C1—C6—C5	-178.74 (9)	C6—C7—C12—C13	2.18 (12)
C2—C1—C6—C7	178.53 (10)	C11—C12—C13—C1	176.92 (10)
C13—C1—C6—C7	-0.62 (12)	C7—C12—C13—C1	-2.44 (11)
C5—C6—C7—C12	176.80 (11)	C2-C1-C13-C12	-177.27 (10)
C1-C6-C7-C12	-0.96 (11)	C6-C1-C13-C12	1.82 (11)
C5—C6—C7—C8	-0.1 (2)	C9—C8—C14—O1	137.71 (12)
C1—C6—C7—C8	-177.82 (11)	C7—C8—C14—O1	-39.20 (16)
C12—C7—C8—C9	-1.45 (15)	C9—C8—C14—C15	-42.76 (14)
C6—C7—C8—C9	175.15 (11)	C7—C8—C14—C15	140.33 (11)
C12—C7—C8—C14	175.44 (10)	N2—N1—C15—C14	56.63 (15)
C6—C7—C8—C14	-7.96 (18)	O1-C14-C15-N1	-7.46 (16)
C7—C8—C9—C10	1.55 (16)	C8—C14—C15—N1	173.01 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5A…O1	0.95	2.32	3.0134 (14)	129
C13—H13A····N3 ⁱ	0.99	2.59	3.4613 (16)	147
C15—H15A…O1 ⁱⁱ	0.99	2.53	3.1941 (15)	125

Symmetry codes: (i) *x*+1, -*y*+1/2, *z*+1/2; (ii) *x*, -*y*+1/2, *z*+1/2.