

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-4-[(2-Aminoanilino)(phenyl)methylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Rong Lu,^a* Hua Xia,^a Xinggiang Lü^a and Shunsheng Zhao^b

^aCollege of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Xian University of Science and Technology, Xi'an 710054, Shaanxi, People's Republic of China

Correspondence e-mail: lu78441@yahoo.com.cn

Received 17 July 2011; accepted 14 September 2011

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 13.1.

The molecule of the title compound, $C_{23}H_{20}N_4O$, assumes a non-planar conformation in which the pyrazolone ring forms dihedral angles of 10.33 (11), 65.34 (11) and 63.52 (10)° with the three benzene rings. In the crystal, the molecules are linked by intermolecular N-H···N hydrogen bonds, generating chains parallel to the b axis. The secondary amino group is involved in an intramolecular $N-H\cdots O$ hydrogen bond.

Related literature

For the synthesis, properties and applications of the title compound, see: Hennig & Mann (1988); Bao et al. (2005).

Experimental

Crystal data C23H20N4O $M_r = 368.43$

Monoclinic, $P2_1/c$ a = 9.200 (2) Å

organic compounds
Ma Kanadistian
Mo K α radiation

 $\mu = 0.08 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

9447 measured reflections 3369 independent reflections

1983 reflections with $I > 2\sigma(I)$

T = 273 K

 $R_{\rm int} = 0.039$

b = 21.680(5) Å c = 9.608 (2) Å $\beta = 97.840 \ (4)^{\circ}$ V = 1898.4 (7) Å³

Data collection

Z = 4

Bruker SMART 1K CCD area-	
detector diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 2004)	
$T_{\rm min} = 0.857, T_{\rm max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.119$	independent and constrained
S = 0.94	refinement
3369 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
258 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H1C\cdotsO1$ $N4-H4B\cdotsN2^{i}$ $N4-H4A\cdotsN2^{ii}$	0.96 (2)	1.93 (2)	2.733 (2)	139.8 (16)
	0.86	2.34	3.194 (2)	173
	0.86	2.50	3.209 (2)	140

Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y + 1, -z + 2.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

This project was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (program Nos 2010JM2006 and 2011JQ2011) and the Scientific Research Program funded by the Shaanxi Provincial Education Department (program No. 2008 J K440).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2020).

References

- Bao, F., Ma, R., Lv, X. Q., Gui, G. Q. & Wu, Q. (2005). Appl. Organomet. Chem. 20, 32-38.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hennig, L. & Mann, G. (1988). Z. Chem. 28, 364-365.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2701 [https://doi.org/10.1107/S1600536811037470]

(*Z*)-4-[(2-Aminoanilino)(phenyl)methylidene]-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one

Rong Lu, Hua Xia, Xingqiang Lü and Shunsheng Zhao

S1. Comment

The molecules of the title compound (Fig. 1) are linked by N—H…N hydrogen bonds, generating parallel chains as shown in Fig. 2. The aminophenyl rings protrude on both sides of these chains. Adjacent chains are linked by stacking interactions between the protruding rings. The distance between the ring centroids is 3.6953 (14) Å.

S2. Experimental

The title compound was obtained according to the synthetic procedure of Hennig & Mann (1988). o-Phenylenediamine and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one were refluxed for 2 h in a 1:1 ratio in absolute ethanol to give the product. The single crystal suitble for X-ray diffraction was obtained by slow evaporation of the ethanolic solution of the title compound.

S3. Refinement

The H atom bonded to N3 was located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 Å, C—H = 0.95–0.99 Å and with U_{iso} (H) = 1.2 (1.5 for methyl groups) times U_{eq} (C/N).

Figure 2

Packing of (I), showing molecules connected by N—H…N hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

Figure 3

Packing of (I), showing assembly of molecules connected by stacking interaction.

(Z)-4-[(2-Aminoanilino)(phenyl)methylidene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one

Crystal	data
---------	------

 $C_{23}H_{20}N_4O$ $M_r = 368.43$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.200 (2) Åb = 21.680(5) Å c = 9.608 (2) Å $\beta = 97.840 \ (4)^{\circ}$ V = 1898.4 (7) Å³ Z = 4

Data collection

Bruker SMART 1K CCD area-detector	9447 measured
diffractometer	3369 independent
Radiation source: fine-focus sealed tube	1983 reflections
Graphite monochromator	$R_{\rm int} = 0.039$
thin–slice ω scans	$\theta_{\rm max} = 25.1^{\circ}, \theta_{\rm mir}$
Absorption correction: multi-scan	$h = -8 \rightarrow 10$
(SADABS; Sheldrick, 2004)	$k = -25 \rightarrow 25$
$T_{\min} = 0.857, \ T_{\max} = 1.000$	$l = -11 \rightarrow 9$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 0.943369 reflections 258 parameters 0 restraints Primary atom site location: structure-invariant direct methods

F(000) = 776 $D_{\rm x} = 1.289 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 10250 reflections $\theta = 1.9 - 25.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 273 KBlock, orange $0.30 \times 0.20 \times 0.20$ mm

reflections nt reflections with $I > 2\sigma(I)$ $n = 1.9^{\circ}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0677P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v Ζ 0.0474 (4) N1 0.34922 (16) 0.43731 (6) 1.14992 (14) 01 0.24396 (16) 0.0633(4)0.42406 (6) 0.91531 (13) N2 0.40425 (17) 0.48648(7)1.23643 (14) 0.0496(4)N3 0.20658 (17) 0.78768 (14) 0.0507 (5) 0.53669(7) N4 0.30500(17)0.51166(7) 0.53720 (16) 0.0606(5)0.4993 H4A 0.3527 0.6155 0.073* H4B 0.3353 0.5021 0.4592 0.073* C7 0.2924(2)0.45725 (8) 1.01684 (18) 0.0474(5)C8 0.30147 (19) 0.52375 (8) 1.02509 (17) 0.0439(5)C11 0.24301 (19) 0.56189 (8) 0.91417 (18) 0.0447(5)C6 0.3536(2) 0.37681 (8) 1.20613 (19) 0.0484(5)C18 0.1294(2)0.56260 (8) 0.66247 (18) 0.0444(5)C23 0.1803(2)0.0437(5)0.54668 (8) 0.53687 (18) C9 0.3752 (2) 0.53710 (8) 0.0464 (5) 1.16249 (18) C12 0.2170(2)0.62851 (8) 0.93519 (19) 0.0463(5)C19 0.0030(2)0.59683(9)0.6613 (2) 0.0556(5)H19A -0.03020.6068 0.7457 0.067* C22 0.0969(2)0.56593 (8) 0.41134 (19) 0.0521(5)0.063* H22A 0.1273 0.5553 0.3261 C20 -0.0747(2)0.61646 (9) 0.5361(2)0.0589(6) H20A -0.15810.6407 0.5360 0.071* C21 -0.0276(2)0.59984(9)0.4113(2)0.0560(6) H21A -0.08120.6118 0.3265 0.067* C10 0.4277(2)0.59724 (9) 1.2264 (2) 0.0634 (6) H10A 0.4739 0.5905 1.3209 0.095* 0.095* H10B 0.3458 0.6247 1.2271 H10C 0.4971 0.095* 0.6152 1.1722 C5 0.4291(2)0.36538 (10) 1.3386(2) 0.0614 (6) 0.074* H5A 0.4777 0.3973 1.3905 C1 0.2792(3)1.1319 (2) 0.0670(6) 0.32924(9)0.080* H1A 0.2265 0.3365 1.0438 C17 0.2816 (2) 0.67312 (9) 0.8609(2)0.0592 (6) H17A 0.3417 0.7949 0.071* 0.6617 C14 0.0998 (3) 0.70835 (12) 1.0518 (3) 0.0808 (8) 0.097* H14A 0.0365 0.7202 1.1147

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C4	0.4318(3)	0 30662 (12)	1 3930 (2)	0 0780 (7)
H4C	0.4834	0.2991	1.4815	0.094*
C16	0.2562 (3)	0.73473 (10)	0.8853 (3)	0.0779 (8)
H16A	0.3003	0.7646	0.8357	0.094*
C15	0.1671 (3)	0.75248 (12)	0.9814 (3)	0.0877 (9)
H15A	0.1526	0.7941	0.9985	0.105*
C2	0.2838 (3)	0.27058 (10)	1.1899 (3)	0.0884 (8)
H2B	0.2341	0.2385	1.1396	0.106*
C13	0.1247 (2)	0.64666 (10)	1.0308 (2)	0.0636 (6)
H13A	0.0797	0.6171	1.0806	0.076*
C3	0.3600 (3)	0.25895 (11)	1.3197 (3)	0.0867 (8)
H3B	0.3630	0.2194	1.3574	0.104*
H1C	0.220 (2)	0.4928 (10)	0.787 (2)	0.070 (6)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0579 (11)	0.0482 (9)	0.0345 (9)	0.0048 (7)	0.0009 (7)	-0.0006 (7)
01	0.0923 (11)	0.0558 (8)	0.0373 (8)	0.0027 (7)	-0.0070 (7)	-0.0063 (6)
N2	0.0593 (11)	0.0532 (9)	0.0348 (9)	0.0034 (8)	0.0009 (7)	-0.0044 (7)
N3	0.0710 (12)	0.0487 (10)	0.0317 (9)	0.0107 (8)	0.0045 (8)	0.0002 (7)
N4	0.0600 (12)	0.0826 (12)	0.0390 (9)	0.0162 (9)	0.0059 (8)	-0.0078 (8)
C7	0.0540 (13)	0.0530 (11)	0.0349 (11)	0.0074 (9)	0.0053 (9)	-0.0008 (9)
C8	0.0516 (12)	0.0470 (10)	0.0328 (10)	0.0056 (9)	0.0053 (9)	-0.0003 (8)
C11	0.0472 (12)	0.0533 (11)	0.0345 (11)	0.0033 (9)	0.0094 (9)	0.0002 (8)
C6	0.0535 (13)	0.0518 (11)	0.0412 (11)	0.0128 (9)	0.0107 (9)	0.0037 (9)
C18	0.0514 (12)	0.0450 (10)	0.0360 (11)	0.0013 (9)	0.0030 (9)	0.0020 (8)
C23	0.0496 (12)	0.0431 (10)	0.0374 (11)	-0.0043 (9)	0.0026 (9)	-0.0032 (8)
C9	0.0511 (12)	0.0519 (11)	0.0368 (11)	0.0043 (9)	0.0083 (9)	-0.0029 (9)
C12	0.0514 (13)	0.0478 (11)	0.0387 (10)	0.0043 (9)	0.0023 (9)	-0.0017 (8)
C19	0.0593 (14)	0.0597 (12)	0.0488 (13)	0.0046 (11)	0.0108 (10)	-0.0011 (9)
C22	0.0604 (14)	0.0598 (12)	0.0349 (11)	-0.0094 (11)	0.0021 (9)	0.0006 (9)
C20	0.0523 (14)	0.0586 (12)	0.0640 (15)	0.0066 (10)	0.0011 (11)	0.0047 (10)
C21	0.0582 (14)	0.0584 (12)	0.0479 (13)	-0.0035 (11)	-0.0058 (11)	0.0062 (10)
C10	0.0738 (15)	0.0611 (12)	0.0527 (13)	-0.0036 (11)	-0.0010 (11)	-0.0094 (10)
C5	0.0581 (14)	0.0749 (14)	0.0510 (13)	0.0100 (11)	0.0069 (11)	0.0136 (11)
C1	0.0972 (18)	0.0512 (12)	0.0512 (13)	0.0067 (12)	0.0052 (12)	-0.0013 (10)
C17	0.0594 (14)	0.0607 (13)	0.0559 (13)	-0.0024 (11)	0.0023 (11)	0.0036 (10)
C14	0.0823 (19)	0.0806 (17)	0.0775 (18)	0.0269 (14)	0.0038 (14)	-0.0240 (14)
C4	0.0871 (19)	0.0848 (17)	0.0628 (15)	0.0292 (14)	0.0128 (13)	0.0267 (14)
C16	0.0868 (19)	0.0544 (15)	0.0843 (18)	-0.0080 (12)	-0.0180 (15)	0.0113 (12)
C15	0.101 (2)	0.0552 (14)	0.097 (2)	0.0219 (15)	-0.0250 (17)	-0.0167 (15)
C2	0.143 (3)	0.0514 (14)	0.0723 (18)	0.0021 (14)	0.0209 (17)	-0.0010 (12)
C13	0.0708 (16)	0.0670 (13)	0.0543 (13)	0.0116 (11)	0.0137 (12)	-0.0078 (10)
C3	0.128 (2)	0.0603 (15)	0.0780 (18)	0.0322 (15)	0.0379 (17)	0.0195 (14)

Geometric parameters (Å, °)

N1—C7	1.383 (2)	C22—H22A	0.9300
N1—N2	1.4031 (18)	C20—C21	1.377 (3)
N1—C6	1.417 (2)	C20—H20A	0.9300
O1—C7	1.2446 (19)	C21—H21A	0.9300
N2—C9	1.315 (2)	C10—H10A	0.9600
N3—C11	1.333 (2)	C10—H10B	0.9600
N3—C18	1.426 (2)	C10—H10C	0.9600
N3—H1C	0.96 (2)	C5—C4	1.376 (3)
N4—C23	1.376 (2)	С5—Н5А	0.9300
N4—H4A	0.8600	C1—C2	1.387 (3)
N4—H4B	0.8600	C1—H1A	0.9300
C7—C8	1.446 (2)	C17—C16	1.381 (3)
C8—C11	1.397 (2)	C17—H17A	0.9300
C8—C9	1.429 (2)	C14—C15	1.368 (3)
C11—C12	1.482 (2)	C14—C13	1.377 (3)
C6—C1	1.381 (3)	C14—H14A	0.9300
C6—C5	1.387 (3)	C4—C3	1.369 (3)
C18—C19	1.378 (3)	C4—H4C	0.9300
C18—C23	1.396 (2)	C16—C15	1.371 (4)
C23—C22	1.402 (2)	C16—H16A	0.9300
C9—C10	1.493 (3)	C15—H15A	0.9300
C12—C17	1.383 (3)	C2—C3	1.368 (3)
C12—C13	1.390 (3)	C2—H2B	0.9300
C19—C20	1.380 (3)	C13—H13A	0.9300
С19—Н19А	0.9300	С3—Н3В	0.9300
C22—C21	1.361 (3)		
C7—N1—N2	111.75 (13)	C21—C20—H20A	120.3
C7—N1—C6	128.99 (15)	C19—C20—H20A	120.3
N2—N1—C6	119.23 (14)	C22—C21—C20	120.38 (18)
C9—N2—N1	106.48 (13)	C22—C21—H21A	119.8
C11—N3—C18	129.94 (16)	C20—C21—H21A	119.8
C11—N3—H1C	113.5 (11)	C9-C10-H10A	109.5
C18—N3—H1C	115.6 (11)	C9—C10—H10B	109.5
C23—N4—H4A	120.0	H10A—C10—H10B	109.5
C23—N4—H4B	120.0	C9—C10—H10C	109.5
H4A—N4—H4B	120.0	H10A—C10—H10C	109.5
O1—C7—N1	126.42 (16)	H10B-C10-H10C	109.5
O1—C7—C8	129.15 (16)	C4—C5—C6	119.6 (2)
N1—C7—C8	104.43 (14)	C4—C5—H5A	120.2
C11—C8—C9	132.03 (16)	C6—C5—H5A	120.2
C11—C8—C7	122.34 (15)	C6—C1—C2	119.4 (2)
C9—C8—C7	105.62 (14)	C6—C1—H1A	120.3
N3—C11—C8	118.40 (16)	C2—C1—H1A	120.3
N3—C11—C12	119.89 (15)	C16—C17—C12	119.7 (2)
C8—C11—C12	121.68 (15)	C16—C17—H17A	120.2

C1—C6—C5	119.43 (18)	C12—C17—H17A	120.2
C1—C6—N1	120.54 (17)	C15—C14—C13	120.7 (2)
C5—C6—N1	120.00 (17)	C15—C14—H14A	119.6
C19—C18—C23	120.54 (17)	C13—C14—H14A	119.6
C19—C18—N3	122.79 (17)	C3—C4—C5	121.4 (2)
C23—C18—N3	116.40 (16)	C3—C4—H4C	119.3
N4—C23—C18	120.83 (16)	C5—C4—H4C	119.3
N4—C23—C22	121.65 (17)	C15—C16—C17	121.0 (2)
C18—C23—C22	117.49 (18)	C15—C16—H16A	119.5
N2—C9—C8	111.47 (15)	C17—C16—H16A	119.5
N2-C9-C10	118.43 (16)	C14—C15—C16	119.3 (2)
C8—C9—C10	130.00 (17)	C14—C15—H15A	120.3
C17—C12—C13	119.14 (18)	C16—C15—H15A	120.3
C17—C12—C11	121.51 (18)	C3—C2—C1	121.3 (2)
C13—C12—C11	119.35 (18)	C3—C2—H2B	119.4
C18—C19—C20	120.60 (19)	C1—C2—H2B	119.4
C18—C19—H19A	119.7	C14—C13—C12	120.1 (2)
С20—С19—Н19А	119.7	C14—C13—H13A	120.0
C21—C22—C23	121.51 (19)	С12—С13—Н13А	120.0
C21—C22—H22A	119.2	C2—C3—C4	118.8 (2)
C23—C22—H22A	119.2	С2—С3—Н3В	120.6
C21—C20—C19	119.4 (2)	C4—C3—H3B	120.6

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
N3—H1 <i>C</i> …O1	0.96 (2)	1.93 (2)	2.733 (2)	139.8 (16)
N4—H4 <i>B</i> ····N2 ⁱ	0.86	2.34	3.194 (2)	173
N4—H4A···N2 ⁱⁱ	0.86	2.50	3.209 (2)	140

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) -*x*+1, -*y*+1, -*z*+2.