organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(5S,6R)-6-Bromo-6-methyl-5-phenyl-3,4,5,6-tetrahydro-2H-cyclopenta[b]pyran-7-one

Winai leawsuwan^a and Michael Bolte^{b*}

^aInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 9 September 2011; accepted 19 September 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.012 Å; R factor = 0.082; wR factor = 0.217; data-to-parameter ratio = 14.8.

The title compound, C₁₅H₁₅BrO₂, was synthesized by a Brønsted acid-catalysed domino electrocyclization-halogenation reaction. The five-membered ring is essentially planar (r.m.s. deviation 0.006 Å) and forms a dihedral angle of $72.7 (3)^{\circ}$ with the attached phenyl ring. The six-membered heterocycle adopts a half-chair conformation. The crystal packing is stabilized by a $C-H \cdots O$ contact.

Related literature

For background information, see: Rueping & Ieawsuwan (2009); Rueping et al. (2007). For the synthesis of the title compound, see: Rueping & Ieawsuwan (2011). For a comparable compound, see: Liang et al. (2003).

Experimental

Crystal data

C15H15BrO2 $M_r = 307.18$ Orthorhombic, $P2_12_12_1$ a = 9.2217 (11) Åb = 11.5041 (12) Å c = 12.9149 (17) Å

Data collection

STOE IPDS II two-circlediffractometer Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) $T_{\min} = 0.572, T_{\max} = 0.916$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.082$ $wR(F^2) = 0.217$ S = 1.032407 reflections 163 parameters H-atom parameters constrained V = 1370.1 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.99 \text{ mm}^{-1}$ T = 173 K $0.21 \times 0.12 \times 0.03 \text{ mm}$

11129 measured reflections 2407 independent reflections 1849 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.078$

 $\Delta \rho_{\text{max}} = 1.07 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.13 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1009 Friedel pairs Flack parameter: 0.02 (3)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1 \cdots O31^{i}$	1.00	2.47	3.282 (9)	138
Symmetry code: (i) -	$-r + 1$ v $-\frac{1}{2}$ -	7 + 1		

mmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2143).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Liang, G., Gradl, S. N. & Trauner, D. (2003). Org. Lett. 5, 4931-4934.
- Rueping, M. & Ieawsuwan, W. (2009). Adv. Synth. Catal. 351, 78-84.
- Rueping, M. & Ieawsuwan, W. (2011). Chem. Commun., doi: 10.1039/ C1CC15289K.
- Rueping, M., Ieawsuwan, W., Antonchick, A. P. & Nachtsheim, B. J. (2007). Angew. Chem. Int. Ed. 46, 2097-2100.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2011). E67, o2748 [https://doi.org/10.1107/S1600536811038232]

(5*S*,6*R*)-6-Bromo-6-methyl-5-phenyl-3,4,5,6-tetrahydro-2*H*-cyclo-penta[*b*]pyran-7-one

Winai leawsuwan and Michael Bolte

S1. Comment

Trans-4,5-substituted 5-bromocyclopentenone derivatives have been prepared by a organocatalyzed cascade protocol (Rueping & Ieawsuwan, 2009; Rueping *et al.*, 2007). The Brønsted acid catalyzed domino electrocyclization-halogenation reaction provides for the first time, a variety of α -brominated cyclopent-2-enones with a wide substrate scope and with excellent enantioselectivities (Rueping & Ieawsuwan, 2011). Two chiral centers, a tertiary and a quaternary one, can be established during this transformation. The title compound was synthesized for the first time following this reaction and yellow needles suitable for crystal structure determination were obtained.

The five membered ring in the title compound is essentially planar (r.m.s. deviation 0.006 Å) and forms a dihedral angle of 72.7 (3)° with the attached phenyl ring. The six-membered heterocycle adopts a half chair conformation.

A comparable structure, *cis*-6-Methyl-5-phenyl-3,4,5,6-tetrahydro-2*H*-cyclopenta(*b*)pyran-7-one, with an H atom instead of a bromine residue (Liang *et al.*, 2003) has essentially the same conformation (r.m.s. deviation for all C and O atoms 0.183 Å) (Fig. 2).

The crystal packing is stabilized by a C—H…O contact (Table 2).

S2. Experimental

The title compound has been synthesized as described by Rueping & Ieawsuwan (2011).

S3. Refinement

All H atoms could be located by difference Fourier synthesis. They were refined with fixed individual displacement parameters $[U(H) = 1.2 U_{eq}(C) \text{ or } U(H) = 1.5 U_{eq}(C_{methyl})]$ using a riding model with C—H ranging from 0.95Å to 1.00 Å.

Figure 1

Perspective view of the title compound with the atom numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Least-squares fit of the title compound (open bonds) with *cis*-6-Methyl-5-phenyl-3,4,5,6-tetrahydro-2*H*-cyclo-penta(*b*)pyran-7-one (full bonds).

(5S,6R)-6-Bromo-6-methyl-5-phenyl-3,4,5,6-tetrahydro-2H- cyclopenta[b]pyran-7-one

Crystal data $C_{15}H_{15}BrO_2$ F(000) = 624 $M_r = 307.18$ $D_{\rm x} = 1.489 {\rm Mg} {\rm m}^{-3}$ Orthorhombic, $P2_12_12_1$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: P 2ac 2ab Cell parameters from 7315 reflections a = 9.2217 (11) Å $\theta = 3.6 - 25.5^{\circ}$ b = 11.5041 (12) Å $\mu = 2.99 \text{ mm}^{-1}$ *c* = 12.9149 (17) Å T = 173 KV = 1370.1 (3) Å³ Needle, colourless $0.21 \times 0.12 \times 0.03 \text{ mm}$ Z = 4Data collection STOE IPDS II two-circle-Absorption correction: multi-scan diffractometer (MULABS; Spek, 2009; Blessing, 1995) Radiation source: fine-focus sealed tube $T_{\rm min} = 0.572, T_{\rm max} = 0.916$ Graphite monochromator 11129 measured reflections ω scans 2407 independent reflections

1849 reflections with $I > 2\sigma(I)$	$h = -10 \rightarrow 10$
$R_{\rm int} = 0.078$	$k = -13 \rightarrow 13$
$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 3.5^\circ$	$l = -15 \rightarrow 15$

Refinement

<i>Heymenne</i>	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.082$	H-atom parameters constrained
$wR(F^2) = 0.217$	$w = 1/[\sigma^2(F_o^2) + (0.1273P)^2 + 1.2132P]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
2407 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
163 parameters	$\Delta \rho_{\rm max} = 1.07 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.13 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1009 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.02 (3)
map	

Special details

Experimental.;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.4532 (2)	0.30553 (14)	0.06794 (12)	0.1312 (10)
C1	0.6283 (9)	0.3284 (6)	0.2534 (5)	0.0310 (16)
H1	0.5988	0.2457	0.2422	0.037*
C2	0.5646 (11)	0.4039 (7)	0.1618 (5)	0.0404 (19)
C3	0.4546 (10)	0.4875 (6)	0.2110 (6)	0.0343 (17)
C4	0.4544 (9)	0.4612 (5)	0.3206 (5)	0.0278 (15)
C5	0.5450 (10)	0.3752 (6)	0.3462 (5)	0.0307 (17)
C6	0.5505 (10)	0.3268 (6)	0.4533 (5)	0.0369 (18)
H6A	0.6408	0.3521	0.4880	0.044*
H6B	0.5501	0.2408	0.4505	0.044*
C7	0.4190 (11)	0.3697 (7)	0.5144 (6)	0.046 (2)
H7A	0.3318	0.3257	0.4929	0.055*
H7B	0.4348	0.3557	0.5892	0.055*
C8	0.3945 (10)	0.4988 (7)	0.4959 (6)	0.040 (2)
H8A	0.3121	0.5260	0.5386	0.048*
H8B	0.4819	0.5427	0.5170	0.048*
O9	0.3636 (7)	0.5214 (5)	0.3851 (4)	0.0397 (14)
C11	0.7886 (9)	0.3324 (6)	0.2644 (5)	0.0289 (16)
C12	0.8645 (11)	0.4156 (7)	0.3217 (7)	0.040 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supporting information

H12	0.8109	0.4724	0.3589	0.048*
C13	1.0115 (11)	0.4188 (7)	0.3266 (7)	0.045 (2)
H13	1.0581	0.4778	0.3659	0.054*
C14	1.0948 (10)	0.3360 (8)	0.2742 (7)	0.045 (2)
H14	1.1977	0.3366	0.2781	0.054*
C15	1.0224 (12)	0.2534 (7)	0.2169 (7)	0.047 (2)
H15	1.0777	0.1984	0.1788	0.057*
C16	0.8782 (10)	0.2473 (6)	0.2126 (7)	0.0346 (18)
H16	0.8336	0.1860	0.1748	0.042*
C21	0.6732 (16)	0.4727 (19)	0.0990 (12)	0.137 (9)
H21A	0.7434	0.4194	0.0675	0.206*
H21B	0.7241	0.5274	0.1443	0.206*
H21C	0.6225	0.5157	0.0444	0.206*
O31	0.3838 (9)	0.5587 (5)	0.1641 (5)	0.0542 (18)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1929 (19)	0.1099 (10)	0.0906 (10)	0.1023 (12)	-0.1072 (11)	-0.0738 (9)
C1	0.035 (4)	0.035 (4)	0.022 (4)	0.005 (3)	-0.001 (3)	0.001 (3)
C2	0.044 (5)	0.060 (5)	0.018 (3)	0.011 (4)	0.003 (4)	0.004 (3)
C3	0.038 (5)	0.037 (4)	0.028 (4)	-0.006(3)	-0.009 (4)	0.008 (3)
C4	0.026 (4)	0.033 (3)	0.024 (3)	0.002 (3)	-0.003 (3)	-0.003 (3)
C5	0.039 (5)	0.030 (3)	0.023 (3)	-0.007 (3)	0.004 (3)	0.001 (3)
C6	0.050 (5)	0.040 (4)	0.021 (3)	-0.005 (4)	-0.003 (4)	0.007 (3)
C7	0.052 (6)	0.058 (5)	0.028 (4)	-0.006(4)	0.011 (4)	0.009 (3)
C8	0.049 (5)	0.053 (4)	0.019 (4)	0.008 (4)	0.010 (4)	0.002 (3)
O9	0.042 (3)	0.046 (3)	0.031 (3)	0.014 (3)	-0.005 (3)	0.001 (2)
C11	0.031 (4)	0.033 (4)	0.023 (3)	-0.001 (3)	0.006 (3)	0.001 (3)
C12	0.047 (6)	0.031 (4)	0.042 (5)	-0.008(4)	0.009 (4)	-0.010 (4)
C13	0.047 (6)	0.042 (4)	0.046 (5)	-0.019 (4)	-0.001 (4)	-0.005 (4)
C14	0.027 (5)	0.071 (6)	0.038 (4)	-0.003 (4)	0.001 (3)	0.003 (4)
C15	0.051 (7)	0.048 (4)	0.043 (5)	0.004 (4)	0.003 (4)	-0.001 (4)
C16	0.034 (5)	0.034 (4)	0.036 (4)	-0.003 (3)	0.005 (4)	-0.016 (3)
C21	0.077 (10)	0.24 (2)	0.090 (10)	0.074 (12)	0.048 (8)	0.127 (13)
O31	0.088 (5)	0.038 (3)	0.036 (3)	0.023 (3)	-0.015 (3)	0.003 (2)

Geometric parameters (Å, °)

Br1—C2	1.951 (9)	C8—O9	1.481 (9)	_
C1C11	1.486 (11)	C8—H8A	0.9900	
C1—C5	1.522 (10)	C8—H8B	0.9900	
C1—C2	1.582 (10)	C11—C12	1.398 (11)	
С1—Н1	1.0000	C11—C16	1.445 (10)	
C2-C21	1.512 (17)	C12—C13	1.357 (14)	
C2—C3	1.535 (12)	C12—H12	0.9500	
C3—O31	1.211 (10)	C13—C14	1.398 (13)	
C3—C4	1.447 (11)	C13—H13	0.9500	

supporting information

C4—C5	1.337 (11)	C14—C15	1.377 (13)
C4—O9	1.369 (9)	C14—H14	0.9500
C5-C6	1 401 (0)	C15-C16	1 333 (13)
C6 C7	1.491(9) 1.529(12)	C15 H15	0.0500
	1.328 (13)		0.9300
Со—НоА	0.9900	C16—H16	0.9500
С6—Н6В	0.9900	C21—H21A	0.9800
C7—C8	1.521 (12)	C21—H21B	0.9800
C7—H7A	0.9900	C21—H21C	0.9800
С7—Н7В	0.9900		
C11—C1—C5	114.6 (6)	H7A—C7—H7B	108.1
C11—C1—C2	115.1 (7)	O9—C8—C7	110.6(7)
$C_{2} = C_{1} = C_{2}$	102.0 (6)	O9 - C8 - H8A	109.5
C11_C1_H1	102.0 (0)	C7 - C8 - H8A	109.5
	100.5	$C_{1} = C_{2} = H_{0} H_{0}$	109.5
	108.5	09—08—H8B	109.5
C2—C1—HI	108.3		109.5
$C_{21} - C_{2} - C_{3}$	109.4 (9)	H8A—C8—H8B	108.1
C21—C2—C1	116.3 (8)	C4—O9—C8	112.4 (6)
C3—C2—C1	106.2 (6)	C12—C11—C16	115.0 (8)
C21—C2—Br1	108.6 (10)	C12—C11—C1	124.7 (7)
C3—C2—Br1	105.9 (6)	C16—C11—C1	120.2 (7)
C1—C2—Br1	110.0 (5)	C13—C12—C11	122.9 (8)
O31—C3—C4	129.1 (8)	C13—C12—H12	118.5
031 - C3 - C2	124 9 (7)	C11—C12—H12	118 5
C_{4} C_{3} C_{2}	106.0(6)	C12-C13-C14	120.5 (8)
$C_{1}^{-} = C_{2}^{-} = C_{2}^{-}$	100.0(0) 127.3(7)	$C_{12} = C_{13} = C_{14}$	120.5 (8)
$C_{3} - C_{4} - C_{9}$	127.3(7)	C12 - C13 - II13	119.7
$C_3 = C_4 = C_3$	113.3 (6)	C14—C13—H13	119.7
09-04-03	119.4 (6)	C15—C14—C13	117.6 (9)
C4—C5—C6	121.8 (7)	C15—C14—H14	121.2
C4—C5—C1	112.4 (6)	C13—C14—H14	121.2
C6—C5—C1	125.5 (7)	C16—C15—C14	122.9 (9)
C5—C6—C7	109.3 (7)	C16—C15—H15	118.6
С5—С6—Н6А	109.8	C14—C15—H15	118.6
С7—С6—Н6А	109.8	C15—C16—C11	121.0 (8)
С5—С6—Н6В	109.8	C15—C16—H16	119.5
С7—С6—Н6В	109.8	C11—C16—H16	119.5
Н6А—С6—Н6В	108.3	C2—C21—H21A	109.5
$C_8 - C_7 - C_6$	110.6(7)	C_{2} C_{21} H_{21B}	109.5
$C_8 C_7 H_7 \Lambda$	100.5	$H_{21A} = C_{21} = H_{21B}$	109.5
C_{6} C_{7} H_{7A}	100.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_0 = C_1 = H/A$	109.5		109.5
C8—C/—H/B	109.5	H2IA—C2I—H2IC	109.5
С6—С/—Н/В	109.5	H21B—C21—H21C	109.5
	15(12)		<i>(1.6.(10)</i>
C11 - C1 - C2 - C21	-1.5 (13)	011-01-05-06	-61.6 (10)
C5—C1—C2—C21	123.2 (12)	C2—C1—C5—C6	173.4 (7)
C11—C1—C2—C3	-123.5 (7)	C4—C5—C6—C7	12.9 (10)
C5—C1—C2—C3	1.2 (8)	C1—C5—C6—C7	-161.6 (8)
C11-C1-C2-Br1	122.4 (6)	C5—C6—C7—C8	-44.3 (9)

C5-C1-C2-Br1 C21-C2-C3-O31 C1-C2-C3-O31 Br1-C2-C3-O31 C21-C2-C3-C4 C1-C2-C3-C4 Br1-C2-C3-C4 O31-C3-C4-C5 C2-C3-C4-C5 C2-C3-C3-C4-C5 C2-C3-C3-C4-C5 C2-C3-C3-C4-C5 C2-C3-C3-C4-C5 C2-C3-C3-C4-C5 C2-C3-C3-C4-C5 C3-C4-C5-C5 C3-C4-C5-C5 C3-C4-C5-C5 C3-C4-C5-C5 C3-C4-C5-C5 C3-C4-C5-C5-C5 C3-C5-C5-C5-C5-C5-C5-C5-C5-C5-C5-C5-C5-C5-	-112.9 (6) 53.9 (13) -179.9 (8) -63.0 (9) -126.8 (10) -0.6 (9) 116.3 (6) 178.8 (8) -0.4 (9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61.9 (10) 11.8 (11) -170.1 (7) -44.0 (10) -30.5 (10) 87.3 (9) 150.4 (7) -91.8 (8) 1.7 (12)
C2-C3-C4-O9 $O9-C4-C5-C6$ $C3-C4-C5-C6$ $O9-C4-C5-C1$ $C3-C4-C5-C1$ $C11-C1-C5-C4$ $C2-C1-C5-C4$	-178.9 (6) 4.4 (12) -173.9 (7) 179.6 (7) 1.3 (9) 123.5 (7) -1.6 (9)	C11-C12-C13-C14 C12-C13-C14-C15 C13-C14-C15-C16 C14-C15-C16-C11 C12-C11-C16-C15 C1-C11-C16-C15	$\begin{array}{c} -0.9 (14) \\ 1.1 (13) \\ -2.4 (14) \\ 3.4 (14) \\ -2.9 (12) \\ 176.3 (8) \end{array}$

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···O31 ⁱ	1.00	2.47	3.282 (9)	138

Symmetry code: (i) -x+1, y-1/2, -z+1/2.