

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide

Biplab Ganguly,^a Ana Foi,^b Fabio Doctorovich,^b Benu K. Dey^a and Tapashi G. Roy^a*

^aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, and ^bDepartamento de Química Inorgánica, Analítica y Química, Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina

Correspondence e-mail: tapashir@yahoo.com

Received 25 July 2011; accepted 8 September 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.130; data-to-parameter ratio = 14.8.

In the title compound $C_{11}H_{13}N_3OS$, the aromatic ring and the dihydropyrazole ring are oriented orthogonally with respect to each other, making a dihedral angle of 89.92 (9)°. An intramolecular O-H···S hydrogen bond occurs. In the crystal, weak N-H···N and N-H···S hydrogen bonds link the molecules into a columnar stack propagating along the baxis.

Related literature

For the biological activity of sulfur-nitrogen ligand compounds, see: Wilder Smith (1964); Grii & Khare (1976); French & Blang (1966); Davis Parke & Co (1957); Vattum & Rao (1959); Brockaman et al. (1959). For the carcinostatics thiosemicarbazone-containing nitrogen heterocycles, see: Freedlander & French (1958); French & Blang (1965).

Experimental

Crystal data

C ₁₁ H ₁₃ N ₃ OS
$M_r = 235.31$
Monoclinic, $P2_1/c$

a = 11.6955 (6) Å
b = 7.6889 (4) Å
c = 13.7588 (10) Å

$\beta = 111.978 \ (7)^{\circ}$
$V = 1147.35 (12) \text{ Å}^3$
Z = 4
Mo Ka radiation

Data collection

Oxford Diffraction Gemini E CCD	19392 measured reflections
diffractometer	2326 independent reflections
Absorption correction: multi-scan	2161 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.069$
Diffraction, 2009)	
$T_{\min} = 0.541, T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.130$	independent and constrained
S = 1.07	refinement
2326 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
157 parameters	$\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1O \cdots S1$ N3 - H3A \cdots S1 ⁱ N3 - H3B \cdots N1 ⁱⁱ	0.93 (3) 0.89 (2) 0.87 (2)	2.35 (3) 2.81 (2) 2.30 (2)	3.1256 (15) 3.5827 (17) 3.158 (2)	141 (2) 145.9 (19) 168 (2)
	. 1	1	. 1 1	

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The authors acknowledge the UGC, Bangladesh, for the award of a fellowship to BG and thank the TWAS, Trieste, Italy, for awarding a TWAS-UNESCO Associateship to TGR. They are also grateful to ANPCyT for a grant (PME-2006-01113) and to R. Baggio for his helpful suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2131).

References

Brockaman, R. W., Thomas, J. R., Bell, M. J. & Skipper, H. E. (1959). Cancer Res. 16, 167-170.

- Davis, Parke & Co. (1957). Chem. Abstr. 66, 18720g.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Freedlander, B. L. & French, F. A. (1958). Cancer Res. 16, 1286-89.
- French, F. A. & Blang, E. J. (1965). Cancer Res. 25, 1454-58.
- French, F. A. & Blang, E. J. (1966). J. Med. Chem. 9, 585-589.
- Grii, S. & Khare, R. K. (1976). J. Antibact. Antifung. Agents Jpn, 4, 11-15.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vattum, S. & Rao, S. (1959). Proc. Indian Acad. Sci. 40, 56-64.
- Wilder Smith, A. E. (1964). Chem. Abstr. 61, 3118g-?.

 $\mu = 0.26 \text{ mm}^{-1}$

 $0.39 \times 0.41 \times 0.43 \text{ mm}$

reflections with $I > 2\sigma(I)$

. Т – 298 К

supporting information

Acta Cryst. (2011). E67, o2777 [https://doi.org/10.1107/S1600536811036658] 5-Hydroxy-3-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazole-1-carbothioamide Biplab Ganguly, Ana Foi, Fabio Doctorovich, Benu K. Dey and Tapashi G. Roy

S1. Comment

Sulfur-Nitrogen ligand and their metal complexes have been reported as biologically important compounds possessing antiviral (Davis *et al.*, 1957), antibacterial (Vattum & Rao, 1959), antipyretic (Wilder Smith, 1964), fungicidal (Grii & Khare, 1976) and analgesic (Wilder Smith, 1964) activities. It was reported that pyridine-2carboxaldehyde dithiosemicarbazone displays anticancer activity. However, no mechanism of action was proposed (Brockaman *et al.*, 1959). French and co-workers (French & Blang, 1965; Freedlander & French, 1958; French & Blang, 1966) studied the carcinostatics thiosemicarbazones containing nitrogen heterocycles. The present investigation is an attempt to prepare a Schiff base ligand (HL) by the condensation of benzoyl acetone and thiosemicarbazide. During crystallization from ethanol-petroleum ether, the crystals of the title compound appropriate for single crystal X-ray diffraction were obtained.

In the crystal structure, the aromatic ring and the dihydropyrazole ring are oriented orthogonally with respect to each other [angle between these two rings is 89.92 (9) °]. Weak N–H…N (3.158 (2) Å) and N–H…S (3.5827 (17) Å) make the moloecules pack into a columnar stack propagating along *b* axis (see Figure 3).

S2. Experimental

Thiosemicarbazide purchased from the local market was crystallized from ethanol and dried under vacuum desiccator over silica gel (m.p. 441- 443 K) before use. A hot solution of benzoyl acetone (1.62 g, 10 mmol) in absolute ethanol was mixed with the hot solution of thiosemicarbazide (1.22 g, 10 mmol) in the same solvent. The mixture was refluxed for 6 h on a water bath. After reducing the volume, a white product was filtered off. This product was washed with ethanol for several times and dried in a vacuum desiccator over silica gel (m.p. 449–451 K. Yield 1.95 g (82.9%). Anal. Calc. for $C_{11}H_{13}N_3OS: C, 56.15; H, 5.57; N, 17.86; S, 13.62\%$. Found: C, 56.03; H, 5.61; N, 17.82; S, 13.57%. FT—IR (KBr, cm⁻¹) *v*max: 3360 (m, OH), 3260 (s, NH), 1642 (m, C=N), 999 (m, N—N). Then the crystals suitable for the crystallographic study were prepared by slow evaporation from a ethanol-petroleum ether (2:1 v/v) solution of the ligand.

S3. Refinement

Methyl groups were idealized (C—H = 0.96 A °) and allowed to ride. In all cases, H-atom displacement parameters were taken as $U_{iso}(H) = 1.5Ueq(C)$ for methyl groups or 1.2Ueq(C, O, N) otherwise.

ORTEP (50% probablity) diagram of the title compound.

Figure 2

Packing along a, showing the chain-like subunit formed. Intramolecular hydrogen bonds are displayed in green, and intermolecular hydrogen bonds in purple.

Figure 3

Packing along b, showing the columnar arrangement of subunits. Intramolecular hydrogen bonds are displayed in green, and intermolecular hydrogen bonds in purple.

5-Hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide

Crystal data

C₁₁H₁₃N₃OS $M_r = 235.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.6955 (6) Å b = 7.6889 (4) Å c = 13.7588 (10) Å $\beta = 111.978$ (7)° V = 1147.35 (12) Å³ Z = 4

Data collection

Oxford Diffraction Gemini E CCD
diffractometer
Graphite monochromator
ω scans, thick slices
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\min} = 0.541, T_{\max} = 1.000$
19392 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.130$ S = 1.072326 reflections 157 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 496 $D_x = 1.362 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10287 reflections $\theta = 3.5-73.8^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 298 KPrism, white $0.43 \times 0.41 \times 0.39 \text{ mm}$

2326 independent reflections 2161 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{max} = 26.3^\circ, \ \theta_{min} = 1.9^\circ$ $h = -14 \rightarrow 14$ $k = -9 \rightarrow 9$ $l = -17 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0808P)^2 + 0.2816P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.35$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.38340 (12)	0.44242 (18)	0.08551 (10)	0.0382 (3)
01	0.09679 (11)	0.29274 (18)	0.04417 (11)	0.0503 (3)
N3	0.47610 (13)	0.1959 (2)	0.22717 (13)	0.0479 (4)
C11	0.36034 (14)	0.1729 (2)	0.16030 (12)	0.0370 (3)
C10	0.36242 (19)	0.7124 (2)	-0.00962 (16)	0.0541 (5)
H10C	0.4469	0.7273	0.0363	0.081*
H10A	0.3138	0.8058	0.0008	0.081*
H10B	0.3568	0.7128	-0.081	0.081*
N2	0.31423 (12)	0.29247 (17)	0.08476 (10)	0.0392 (3)
H3B	0.504 (2)	0.124 (3)	0.2795 (18)	0.054 (6)*
H3A	0.521 (2)	0.286 (3)	0.2218 (18)	0.060 (6)*
H1O	0.114 (2)	0.194 (4)	0.086 (2)	0.068 (7)*
S1	0.27587 (4)	0.00137 (5)	0.17302 (3)	0.04557 (19)
C6	0.17249 (13)	0.1559 (2)	-0.08034 (12)	0.0379 (3)
C9	0.31586 (15)	0.5446 (2)	0.01356 (12)	0.0396 (4)
C7	0.18692 (14)	0.2977 (2)	0.00036 (13)	0.0399 (4)
C8	0.18774 (17)	0.4804 (2)	-0.04428 (16)	0.0489 (4)
H8A	0.1694	0.4756	-0.1191	0.059*
H8B	0.1278	0.5551	-0.0317	0.059*
C1	0.07051 (15)	0.0470 (2)	-0.11386 (13)	0.0444 (4)
H2	0.0119	0.0557	-0.0835	0.053*
C3	0.1390 (2)	-0.0863 (3)	-0.23965 (14)	0.0559 (5)
H4	0.1277	-0.1666	-0.293	0.067*
C5	0.25740 (16)	0.1420 (2)	-0.12829 (14)	0.0476 (4)
H6	0.3263	0.214	-0.107	0.057*
C2	0.05503 (17)	-0.0744 (3)	-0.19207 (14)	0.0527 (5)
Н3	-0.0128	-0.1484	-0.2125	0.063*
C4	0.2406 (2)	0.0223 (3)	-0.20755 (17)	0.0557 (5)
Н5	0.298	0.0149	-0.2394	0.067*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0370 (7)	0.0349 (7)	0.0363 (7)	-0.0034 (5)	0.0064 (5)	0.0002 (5)
01	0.0396 (6)	0.0545 (8)	0.0526 (7)	0.0057 (5)	0.0122 (5)	-0.0049 (6)
N3	0.0386 (7)	0.0435 (8)	0.0461 (8)	0.0001 (6)	-0.0018 (6)	0.0117 (6)

Acta Cryst. (2011). E67, o2777

supporting information

C11	0.0363 (7)	0.0343 (7)	0.0348 (7)	0.0028 (6)	0.0068 (6)	-0.0003 (6)
C10	0.0601 (11)	0.0424 (9)	0.0524 (10)	-0.0035 (8)	0.0127 (9)	0.0093 (8)
N2	0.0341 (6)	0.0336 (7)	0.0376 (7)	-0.0028 (5)	-0.0007 (5)	0.0029 (5)
S1	0.0429 (3)	0.0374 (3)	0.0500 (3)	-0.00315 (15)	0.0100 (2)	0.00632 (16)
C6	0.0337 (7)	0.0356 (7)	0.0349 (8)	0.0001 (6)	0.0021 (6)	0.0054 (6)
C9	0.0431 (8)	0.0352 (7)	0.0344 (8)	0.0013 (6)	0.0077 (6)	-0.0005 (6)
C7	0.0318 (7)	0.0365 (8)	0.0398 (8)	0.0019 (6)	0.0002 (6)	0.0022 (6)
C8	0.0436 (9)	0.0357 (8)	0.0491 (10)	0.0028 (6)	-0.0036 (8)	0.0045 (7)
C1	0.0366 (8)	0.0482 (9)	0.0399 (9)	-0.0050 (7)	0.0046 (6)	0.0004 (7)
C3	0.0708 (12)	0.0495 (10)	0.0395 (9)	0.0022 (9)	0.0116 (8)	-0.0033 (8)
C5	0.0452 (8)	0.0446 (9)	0.0511 (10)	-0.0049 (7)	0.0161 (7)	0.0040 (8)
C2	0.0511 (9)	0.0516 (10)	0.0428 (9)	-0.0108 (8)	0.0031 (7)	-0.0042 (8)
C4	0.0659 (12)	0.0559 (11)	0.0502 (10)	0.0065 (9)	0.0273 (10)	0.0070 (8)

Geometric parameters (Å, °)

N1—C9	1.279 (2)	C6—C5	1.387 (2)
N1—N2	1.4062 (18)	C6—C7	1.520 (2)
O1—C7	1.397 (2)	C9—C8	1.493 (2)
01—H10	0.93 (3)	C7—C8	1.535 (2)
N3—C11	1.334 (2)	C8—H8A	0.97
N3—H3B	0.87 (2)	C8—H8B	0.97
N3—H3A	0.89 (3)	C1—C2	1.384 (3)
C11—N2	1.340 (2)	C1—H2	0.93
C11—S1	1.6958 (16)	C3—C2	1.373 (3)
С10—С9	1.481 (2)	C3—C4	1.382 (3)
C10—H10C	0.96	С3—Н4	0.93
C10—H10A	0.96	C5—C4	1.384 (3)
C10—H10B	0.96	С5—Н6	0.93
N2—C7	1.5077 (18)	С2—Н3	0.93
C6—C1	1.387 (2)	C4—H5	0.93
CO NI NO	109 12 (12)	N2 C7 C6	110.55 (12)
C_{2} N_{1} N_{2}	108.12(12)	$N_2 - C_7 - C_8$	110.55 (12)
C/=OI=HIO	105.7 (15)	01 - 07 - 08	108.45 (14)
C11 = N3 = H3B	11/.4 (14)	N2 - C7 - C8	100.40 (12)
CII—N3—H3A	121.5 (15)	$C_{0} = C_{0} = C_{0}^{2}$	112.34 (14)
H3B - N3 - H3A	121(2)	C9 = C8 = C7	104.14 (13)
$N_3 = C_{11} = N_2$	116.99 (15)	C9 - C8 - H8A	110.9
N3—CII—SI	120.81 (13)	C/-C8-H8A	110.9
N2—CII—SI	122.18 (11)	C9—C8—H8B	110.9
C9—C10—H10C	109.5	C/—C8—H8B	110.9
C9—C10—H10A	109.5	H8A—C8—H8B	108.9
H10C—C10—H10A	109.5	C2—C1—C6	120.76 (17)
C9—C10—H10B	109.5	C2—C1—H2	119.6
H10C—C10—H10B	109.5	C6—C1—H2	119.6
H10A—C10—H10B	109.5	C2—C3—C4	119.37 (18)
C11—N2—N1	119.56 (12)	C2—C3—H4	120.3
C11—N2—C7	127.61 (13)	C4—C3—H4	120.3

N1—N2—C7	112.54 (12)	C4—C5—C6	120.67 (17)
C1—C6—C5	118.38 (16)	C4—C5—H6	119.7
C1—C6—C7	121.50 (15)	С6—С5—Н6	119.7
C5—C6—C7	119.93 (14)	C3—C2—C1	120.45 (17)
N1-C9-C10	122.10 (15)	С3—С2—Н3	119.8
N1—C9—C8	114.56 (15)	C1—C2—H3	119.8
С10—С9—С8	123.34 (15)	C3—C4—C5	120.35 (19)
01—C7—N2	110.74 (13)	C3—C4—H5	119.8
O1—C7—C6	113.58 (13)	C5—C4—H5	119.8
N3—C11—N2—N1	-6.3 (2)	C5—C6—C7—N2	-53.08 (19)
S1—C11—N2—N1	172.51 (12)	C1C6C7C8	-116.66 (17)
N3-C11-N2-C7	-179.61 (16)	C5-C6-C7-C8	58.17 (19)
S1-C11-N2-C7	-0.8 (2)	N1-C9-C8-C7	-4.7 (2)
C9—N1—N2—C11	-173.10 (14)	C10—C9—C8—C7	175.24 (16)
C9—N1—N2—C7	1.16 (18)	O1—C7—C8—C9	120.77 (15)
N2-N1-C9-C10	-177.61 (15)	N2—C7—C8—C9	4.61 (18)
N2—N1—C9—C8	2.3 (2)	C6—C7—C8—C9	-112.86 (15)
C11—N2—C7—O1	55.5 (2)	C5-C6-C1-C2	1.1 (2)
N1—N2—C7—O1	-118.22 (15)	C7—C6—C1—C2	175.99 (15)
C11—N2—C7—C6	-71.3 (2)	C1C6C4	-0.1 (3)
N1—N2—C7—C6	115.00 (14)	C7—C6—C5—C4	-175.07 (16)
C11—N2—C7—C8	169.90 (16)	C4—C3—C2—C1	1.1 (3)
N1—N2—C7—C8	-3.79 (18)	C6-C1-C2-C3	-1.6 (3)
C1—C6—C7—O1	6.9 (2)	C2—C3—C4—C5	-0.1 (3)
C5—C6—C7—O1	-178.28 (14)	C6—C5—C4—C3	-0.4 (3)
C1-C6-C7-N2	132.09 (15)		
	· /		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	<i>D</i> —H··· <i>A</i>
01—H1 <i>O</i> …S1	0.93 (3)	2.35 (3)	3.1256 (15)	141 (2)
N3—H3A····S1 ⁱ	0.89 (2)	2.81 (2)	3.5827 (17)	145.9 (19)
N3—H3 <i>B</i> ···N1 ⁱⁱ	0.87 (2)	2.30 (2)	3.158 (2)	168 (2)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2.