metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido{2-[(thiophen-2-ylmethyl)iminomethyl]pyridine- $\kappa^2 N, N'$ }palladium(II)

Martin O. Onani* and William M. Motswainyana

University of the Western Cape, Cape Town, Bellville 7535, South Africa Correspondence e-mail: monani@uwc.ac.za

Received 28 August 2011; accepted 13 September 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.042; wR factor = 0.144; data-to-parameter ratio = 17.8.

In the title compound, $[PdCl_2(C_{11}H_{10}N_2S)]$, the Pd^{II} ion is four-coordinated in a distorted square-planar environment by two N atoms of the chelating 2-[(thiophen-2-ylmethyl)iminomethyl]pyridine ligand and two chloride anions. The thiophene ring is rotationally disordered over two orientations in a 1:1 ratio. The crystal packing exhibits weak intermolecular $C-H\cdots Cl$ and $C-H\cdots S$ hydrogen bonds.

Related literature

For the synthesis of iminopyridyl ligands and their transition metal-based complexes, see: Zhang *et al.* (2006); Bianchini *et al.* (2010). For related structures, see: Doherty *et al.* (2002); Ojwach *et al.* (2009); Motswainyana *et al.* (2011). For similar structures with nickel, see: Britovsek *et al.* (2003).

Experimental

Crystal data $[PdCl_2(C_{11}H_{10}N_2S)]$ $M_r = 379.57$ Monoclinic, $P2_1/c$

a = 8.0061 (19) Åb = 17.768 (4) Åc = 8.864 (2) Å $\beta = 98.353 (3)^{\circ}$ $V = 1247.6 (5) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.638, T_{max} = 0.887$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.144$ S = 1.072656 reflections 149 parameters $\mu = 2.06 \text{ mm}^{-1}$ T = 100 K $0.24 \times 0.19 \times 0.06 \text{ mm}$

6411 measured reflections 2656 independent reflections 2238 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$

26 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.96 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.98 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C12-H12···Cl15 ⁱ	0.95	2.70	3.508 (6)	143
$C6B - H6B \cdot \cdot \cdot Cl16^{ii}$	0.95	2.74	3.622 (14)	155
$C7A - H7A \cdots S8A^{iii}$	0.95	2.69	3.468 (12)	139
	1	. 3	. 1 . 1	. 1 1

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support from the Botswanan Government (WMM) and the University of the Western Cape Senate Research and NRF (Thuthuka).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5147).

References

- Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-11.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bianchini, C., Giambastiani, G., Luconi, L. & Meli, A. (2010). Coord. Chem. Rev. 254, 431–455.
- Britovsek, G. J. P., Baugh, S. P. D., Hoarau, O., Gibson, V. C., Wass, D. F., White, A. J. P. & Williams, D. J. (2003). *Inorg. Chim. Acta*, **345**, 279–291.

Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Doherty, S., Knight, J. G., Scanlam, T. H., Elsegood, M. R. J. & Clegg, W. (2002). J. Organomet. Chem. 650, 231–248.
- Motswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I. & Darkwa, J. (2011). Polyhedron, 30, 2574-2580.
- Ojwach, S. O., Guzei, I. A. & Darkwa, J. (2009). J. Organomet. Chem. 694, 1393–1399.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, W., Sun, W.-H., Wu, B., Zhang, S., Ma, H., Li, Y., Cheng, J. & Hao, P. (2006). J. Organomet. Chem. 691, 4759–4767.

supporting information

Acta Cryst. (2011). E67, m1392 [https://doi.org/10.1107/S1600536811037214] Dichlorido{2-[(thiophen-2-ylmethyl)iminomethyl]pyridine-κ²N,N'}palladium(II) Martin O. Onani and William M. Motswainyana

S1. Comment

Nitrogen based ligands have attracted considerable interest due to their stability and various activities (Bianchini *et al.*, 2010; Zhang *et al.*, 2006). These ligands can be complexed to various transition metals to form stable metal complexes which exhibit different colours and geometries (Bianchini *et al.*, 2010; Britovsek *et al.*, 2003; Motswainyana *et al.*, 2011). Herewith we present the crystal stucture of the title compound (I).

The asymmetric unit of (I) contains one molecule of the Pd^{II} complex (Fig 1). All bond lengths and angles are normal and comparable with those observed in the related complexes (Zhang *et al.*, 2006; Motswainyana *et al.*, 2011; Doherty *et al.*, 2002). Pd^{II} ion has a distorted square planar environment being coordinated by the *N*,*N'*-bidentate ligand and two Cl anios. The Pd – Cl bond length *trans* to the pyridyl N atom is slightly longer than the Pd – Cl bond length *trans* to the amine N atom showing the stronger *trans* influence of the pyridyl group compared to the secondary amine.

The crystal packing exhibits weak intermolecular C—H…Cl and C—H…S hydrogen bonds (Table 1).

S2. Experimental

To a solution of $[PdCl_2(cod)]$ (0.10 g, 0.35 mmol) in CH_2Cl_2 (15 ml) was added a solution of 1-phenyl-*N*-(2-thienyl-methyl)methanimine (0.07 g, 0.35 mmol) in CH_2Cl_2 (5 ml). The solution was stirred for 6 h to give a light yellow precipitate. The precipitate was filtered to obtain a light yellow solid. Recrystallization from a mixture of CH_2Cl_2 : hexane solution afforded single crystals suitable for X-ray analysis. Yield = 0.110 g (85%).

S3. Refinement

All hydrogen atoms were placed at idealized positions with d(C-H) = 0.95-0.99 Å and refined as riding on their parent atoms, with U_{iso} (H) = 1.2 – 1.5 U_{eq} (C). The thiophene ring was treated as rotationally disordered over two orientations in a ratio 1:1.

Figure 1

The molecular structure of (I) showing atomic numbering and 50% probability displacement ellipsoids. For the rotationally disordered thiophene ring only one orientation is shown.

Dichlorido{2-[(thiophen-2-ylmethyl)iminomethyl]pyridine- $\kappa^2 N, N'$ }palladium(II)

Crystal data

$[PdCl_2(C_{11}H_{10}N_2S)]$
$M_r = 379.57$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 8.0061 (19) Å
<i>b</i> = 17.768 (4) Å
c = 8.864 (2) Å
$\beta = 98.353 \ (3)^{\circ}$
V = 1247.6 (5) Å ³
Z = 4

F(000) = 744 $D_x = 2.021 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3002 reflections $\theta = 2.3-27.6^{\circ}$ $\mu = 2.06 \text{ mm}^{-1}$ T = 100 KPlate, yellow $0.24 \times 0.19 \times 0.06 \text{ mm}$ Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{min} = 0.638, T_{max} = 0.887$ <i>Refinement</i>	6411 measured reflections 2656 independent reflections 2238 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 27.8^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -22 \rightarrow 22$ $l = -11 \rightarrow 8$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.144$	neighbouring sites
S = 1.07	H-atom parameters constrained
2656 reflections	$w = 1/[\sigma^2(F_o^2) + (0.096P)^2]$
149 parameters	where $P = (F_o^2 + 2F_c^2)/3$
26 restraints	$(\Delta/\sigma)_{max} = 0.017$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.96$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.98$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pd1	0.30571 (5)	-0.01089 (2)	0.58087 (4)	0.01686 (18)	
Cl15	0.40550 (17)	-0.08117 (7)	0.79082 (15)	0.0254 (3)	
Cl16	0.16329 (16)	-0.11300 (7)	0.46964 (15)	0.0238 (3)	
N2	0.2291 (5)	0.0612 (2)	0.4078 (5)	0.0179 (9)	
N9	0.4236 (5)	0.0838 (2)	0.6682 (5)	0.0167 (8)	
C1	0.2820 (6)	0.1286 (3)	0.4327 (6)	0.0186 (10)	
H1	0.2521	0.1669	0.3590	0.022*	
C3	0.1145 (6)	0.0400 (3)	0.2666 (6)	0.0211 (10)	
H3A	0.1563	-0.0078	0.2285	0.025*	
H3B	0.0016	0.0298	0.2950	0.025*	
C10	0.3879 (6)	0.1454 (3)	0.5747 (6)	0.0208 (10)	
C11	0.4519 (6)	0.2153 (3)	0.6190 (6)	0.0218 (11)	
H11	0.4243	0.2577	0.5548	0.026*	
C12	0.5564 (7)	0.2239 (3)	0.7569 (6)	0.0225 (11)	
H12	0.6009	0.2720	0.7881	0.027*	
C13	0.5949 (7)	0.1613 (3)	0.8484 (6)	0.0219 (10)	

H13	0.6690	0.1653	0.9420	0.026*	
C14	0.5223 (6)	0.0922 (3)	0.8001 (6)	0.0203 (10)	
H14	0.5449	0.0496	0.8647	0.024*	
S8A	-0.0145 (4)	0.1806 (2)	0.1442 (4)	0.0239 (7)*	0.50
C4A	0.095 (2)	0.0978 (8)	0.1389 (14)	0.024 (9)*	0.50
C5A	0.1525 (17)	0.0901 (7)	-0.0021 (15)	0.029 (4)*	0.50
H5A	0.2128	0.0473	-0.0287	0.035*	0.50
C6A	0.1126 (18)	0.1522 (8)	-0.1017 (14)	0.018 (4)*	0.50
H6A	0.1439	0.1564	-0.2007	0.021*	0.50
C7A	0.0239 (15)	0.2047 (6)	-0.0361 (13)	0.016 (3)*	0.50
H7A	-0.0137	0.2506	-0.0848	0.019*	0.50
S8B	0.1827 (5)	0.07989 (19)	-0.0198 (4)	0.0248 (8)*	0.50
C4B	0.093 (3)	0.0937 (10)	0.1403 (18)	0.011 (12)*	0.50
C5B	0.0011 (15)	0.1601 (7)	0.1324 (13)	0.025 (3)*	0.50
H5B	-0.0583	0.1773	0.2111	0.030*	0.50
C6B	0.0055 (17)	0.1999 (8)	-0.0075 (15)	0.030 (4)*	0.50
H6B	-0.0496	0.2466	-0.0327	0.036*	0.50
C7B	0.098 (2)	0.1628 (9)	-0.0980 (19)	0.037 (6)*	0.50
H7B	0.1144	0.1804	-0.1959	0.045*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.0192 (3)	0.0166 (3)	0.0149 (3)	0.00044 (13)	0.00286 (17)	0.00049 (13)
Cl15	0.0346 (7)	0.0195 (6)	0.0212 (7)	0.0002 (5)	0.0014 (5)	0.0049 (5)
Cl16	0.0279 (7)	0.0199 (6)	0.0233 (7)	-0.0034 (5)	0.0028 (5)	-0.0032 (5)
N2	0.016 (2)	0.024 (2)	0.014 (2)	0.0025 (17)	0.0029 (16)	0.0014 (16)
N9	0.016 (2)	0.019 (2)	0.015 (2)	0.0022 (15)	0.0009 (16)	0.0031 (15)
C1	0.022 (3)	0.020 (2)	0.014 (2)	0.0006 (19)	0.0036 (19)	0.0013 (18)
C3	0.021 (3)	0.021 (2)	0.022 (3)	-0.002 (2)	0.002 (2)	-0.003 (2)
C10	0.017 (2)	0.023 (2)	0.023 (3)	0.0010 (19)	0.004 (2)	0.003 (2)
C11	0.024 (3)	0.022 (2)	0.019 (3)	-0.001 (2)	0.003 (2)	0.004 (2)
C12	0.028 (3)	0.018 (2)	0.021 (3)	0.000 (2)	0.005 (2)	-0.0017 (19)
C13	0.023 (3)	0.027 (3)	0.015 (2)	-0.002 (2)	-0.0009 (19)	-0.001 (2)
C14	0.021 (3)	0.019 (2)	0.022 (3)	-0.0049 (19)	0.006 (2)	0.003 (2)

Geometric parameters (Å, °)

Pd1—N2	2.024 (4)	C13—C14	1.400 (7)	
Pd1—N9	2.027 (4)	C13—H13	0.9500	
Pd1—Cl15	2.2866 (13)	C14—H14	0.9500	
Pd1—Cl16	2.2885 (13)	S8A—C4A	1.715 (13)	
N2—C1	1.279 (6)	S8A—C7A	1.725 (11)	
N2—C3	1.489 (6)	C4A—C5A	1.402 (14)	
N9—C14	1.321 (7)	C5A—C6A	1.420 (14)	
N9—C10	1.378 (6)	C5A—H5A	0.9500	
C1-C10	1.443 (7)	C6A—C7A	1.354 (14)	
C1—H1	0.9500	С6А—Н6А	0.9500	

supporting information

C3—C4B	1.462 (13)	С7А—Н7А	0.9500
C3—C4A	1.519 (12)	S8B—C4B	1.698 (14)
C3—H3A	0 9900	S8B-C7B	1 726 (14)
C3—H3B	0.9900	C4B-C5B	1.388(15)
C10-C11	1 379 (7)	C5B—C6B	1.333(12) 1.432(14)
C_{11} C_{12}	1.375 (7)	C5B_H5B	0.9500
C11 H11	0.0500	C6B C7B	1.340(15)
C_{12} C_{13}	1 385 (7)	C6B H6B	0.0500
C12 - C13	1.385(7)	C7P H7P	0.9500
C12—H12	0.9300	С/Б—П/В	0.9300
N2—Pd1—N9	80.64 (16)	C12—C13—C14	118.6 (5)
N2—Pd1—Cl15	173.71 (12)	С12—С13—Н13	120.7
N9—Pd1—Cl15	93.10 (12)	C14—C13—H13	120.7
N_2 —Pd1—Cl16	95.62 (13)	N9-C14-C13	122.6 (5)
N9—Pd1—Cl16	176 22 (11)	N9-C14-H14	118 7
C115—Pd1— $C116$	90.63 (5)	C13 - C14 - H14	118.7
C1 - N2 - C3	1220(4)	C4A = S8A = C7A	91.6 (5)
C1 N2 Pd1	122.0(4) 113.0(3)	$C_{TA} = S_{TA} = C_{TA}$	125.9(10)
$C_1 = N_2 = I dI$ $C_3 = N_2 = P dI$	113.9(3) 124.0(3)	$C_{3}A = C_{4}A = C_{3}$	123.9(10)
$C_3 = N_2 = I dI$	124.0(3)	C_{3} C_{4} S_{5}	110.1(9) 122.0(8)
C14 = N9 = C10	119.2 (4) 128.1 (2)	$C_{4A} = C_{5A} = C_{6A}$	123.9(8)
C14 = N9 = Pd1	126.1(3)	C4A = C5A = U5A	113.9 (11)
C10 N2 $C1$ $C10$	112.7 (3)	C4A—C5A—H5A	123.2
N2-C1-C10	118.8 (4)	C6A—C5A—H5A	122.9
N2—C1—H1	120.6	С/А—С6А—С5А	110.7 (11)
C10—C1—H1	120.6	С7А—С6А—Н6А	124.7
C4B—C3—N2	117.9 (10)	С5А—С6А—Н6А	124.7
N2—C3—C4A	116.2 (8)	C6A—C7A—S8A	113.7 (9)
C4B—C3—H3A	108.0	С6А—С7А—Н7А	123.2
N2—C3—H3A	107.8	S8A—C7A—H7A	123.1
С4А—С3—НЗА	109.4	C4B—S8B—C7B	91.3 (7)
C4B—C3—H3B	107.6	C5B—C4B—C3	126.5 (11)
N2—C3—H3B	107.8	C5B—C4B—S8B	111.5 (9)
C4A—C3—H3B	108.1	C3—C4B—S8B	122.0 (10)
НЗА—СЗ—НЗВ	107.2	C4B—C5B—C6B	112.6 (11)
N9—C10—C11	120.6 (5)	C4B—C5B—H5B	123.7
N9—C10—C1	113.9 (4)	C6B—C5B—H5B	123.7
C11—C10—C1	125.6 (5)	C7B—C6B—C5B	111.1 (12)
C10-C11-C12	120.2 (5)	С7В—С6В—Н6В	124.5
C10-C11-H11	119.9	C5B—C6B—H6B	124.4
C12—C11—H11	119.9	C6B—C7B—S8B	113.5 (11)
C13—C12—C11	118.8 (5)	C6B—C7B—H7B	123.2
C13—C12—H12	120.6	S8B—C7B—H7B	123.2
C11—C12—H12	120.6		
N9—Pd1—N2—C1	-1.8 (3)	Pd1—N9—C14—C13	-179.1 (4)
Cl16—Pd1—N2—C1	177.6 (3)	C12—C13—C14—N9	2.5 (8)
N9—Pd1—N2—C3	-178.8 (4)	C4B—C3—C4A—C5A	-50 (37)
Cl16—Pd1—N2—C3	0.6 (4)	N2—C3—C4A—C5A	112.1 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
C12—H12…Cl15 ⁱ	0.95	2.70	3.508 (6)	143
C6 <i>B</i> —H6 <i>B</i> ···Cl16 ⁱⁱ	0.95	2.74	3.622 (14)	155
C7A—H7A····S8A ⁱⁱⁱ	0.95	2.69	3.468 (12)	139

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x, y+1/2, -z+1/2; (iii) x, -y+1/2, z-1/2.