

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Hydroxy-2-[(2E)-1-(2-hydroxy-6oxocvclohex-1-en-1-vl)-3-(2-methoxvphenyl)prop-2-en-1-yl]cyclohex-2-en-1one

Joo Hwan Cha,^a Myung Hee Son,^b Sun-Joon Min,^b Yong Seo Cho^b and Jae Kyun Lee^b*

^aAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro, 14-gil, Seongbuk-gu, Seoul, 136-791, South Korea, and ^bCenter for Neuro-Medicine, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul, 136-791, South Korea

Correspondence e-mail: j9601@kist.re.kr

Received 26 August 2011; accepted 19 September 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.119; data-to-parameter ratio = 16.9.

In the title compound, $C_{22}H_{24}O_5$, each of the cyclohexenone rings adopts a half-chair conformation. The hydroxy and carbonyl O atoms face each other and are orientated to allow for the formation of the two intramolecular $O-H\cdots O$ hydrogen bonds which are typical of xanthene derivatives. In the crystal, weak intermolecular $C-H \cdots O$ hydrogen bonds link molecules into layers parallel to the *ab* plane.

Related literature

For the biological activity of xanthenes and their derivatives, see: Jonathan et al. (1988); Delfourne et al. (2000); Koeller et al. (2003); For related xanthene structures, see: Bolte et al. (2001); Palakshi Reddy et al. (2010).

Experimental

Crystal data C22H24O5

 $M_r = 368.43$

Monoclinic, $P2_1/n$ a = 10.7988 (8) Å b = 12.0509 (8) Å c = 15.0238 (10) Å $\beta = 104.536 \ (2)^{\circ}$ V = 1892.5 (3) Å³

Data collection

Rigaku R-AXIS RAPID	18125 measured reflections
diffractometer	4304 independent reflections
Absorption correction: multi-scan	2465 reflections with $F^2 > 2.0\sigma(F^2)$
(ABSCOR; Rigaku, 1995)	$R_{\rm int} = 0.033$
$T_{\min} = 0.715, \ T_{\max} = 0.982$	

Z = 4Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

 $0.40 \times 0.20 \times 0.20$ mm

T = 297 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.119$	independent and constrained
S = 1.05	refinement
4304 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
255 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$03-H3A\cdots O5$	0.82	1.85	2.644 (3)	163
$04-H4A\cdots O2$	0.82	1.80	2.594 (3)	162
$C19-H19A\cdots O4^{i}$	0.97	2.49	3.272 (3)	137

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: IL MILIONE (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5143).

References

- Bolte, M., Degen, A. & Rühl, S. (2001). Acta Cryst. C57, 446-451.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- Delfourne, E., Roubin, C. & Bastide, J. (2000). J. Org. Chem. 65, 5476-5479. Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117.
- Koeller, K. M., Haggarty, S. J., Perkins, S. D., Leykin, I., Wang, J. C., Kao, M. C. J. & Schreiber, S. L. (2003). Chem. Biol. 10, 397-410.
- Palakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806-o2807.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2739 [https://doi.org/10.1107/S1600536811038207]

3-Hydroxy-2-[(2*E*)-1-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-3-(2-methoxy-phenyl)prop-2-en-1-yl]cyclohex-2-en-1-one

Joo Hwan Cha, Myung Hee Son, Sun-Joon Min, Yong Seo Cho and Jae Kyun Lee

S1. Comment

Xanthenes constitute an important class of organic compounds that have attracted strong interest due to their useful biological and pharmacological properties, such as antibacterial, antiviral and antiinflammatory activities (Jonathan *et al.*, 1988). They also constitute a structural unit of a series of natural products (Delfourne *et al.*, 2000). Also they are being developed to act as new clinical agents in cancer therapy (Koeller *et al.*, 2003). Herewith we present the crystal structure of the title compound (I) (Fig. 1), which is a Xanthene derivative.

The molecular structure of xanthenedione features two cyclohexene rings, each has a half-chair conformation and lie above the respective least-squares plane through the remaining five carbon atoms (Palakshi Reddy *et al.*, 2010). Bolte and colleagues determined the crystal structures of bis-dimedone derivatives which showed nearly the same packing pattern irrespective of the different substituent in the *para* position of the aromatic ring (Bolte *et al.*, 2001). Two cyclohexenone rings in (I) display envelope conformation, and atoms C14 and C19 are directed towards the aromatic ring. The hydroxy and carbonyl O atoms face each other and are orientated to allow for the formation of two intramolecular O—H···O hydrogen bonds (Table 1) typical for Xanthene derivative.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) links the molecules into layers parallel to *ab* plane.

S2. Experimental

To solution of 1,3-cyclohexanedione (4.68 mmol), 2-methoxycinnamaldehyde (1.87 mmol) and 4Å MS was added catalytic amounts of *L*-proline (0.47 mmol) in under nitrogen atmosphere. After stirring for 5 h, the anhydrous ethyl acetate (0.5 ml) was added to a reaction mixture and the solution was stirred for 2 days. The reaction mixture was filtered through pad of celite to remove MS and concentrated. The residue oil was purified by flash column chromatography to afford product which was recrystallized from ethanol to give crystals suitable for X-ray analysis.

S3. Refinement

Atoms H8 and H9 were located on a difference map and isotropically refined. All the rest H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. Rotating group model was applied for the methyl groups.

The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.

3-Hydroxy-2-[(2*E*)-1-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-3-(2-methoxy phenyl)prop-2-en-1-yl]cyclohex-2-en-1-one

C₂₂H₂₄O₅

$$M_r = 368.43$$

Monoclinic, P2₁/n
Hall symbol: -P 2yn
 $a = 10.7988$ (8) Å
 $b = 12.0509$ (8) Å
 $c = 15.0238$ (10) Å
 $\beta = 104.536$ (2)°
 $V = 1892.5$ (3) Å³
 $Z = 4$

F(000) = 784.00 $D_x = 1.293 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 11442 reflections $\theta = 3.2-27.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 297 KChunk, colourless $0.40 \times 0.20 \times 0.20 \text{ mm}$ Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Rigaku, 1995) $T_{\min} = 0.715, T_{\max} = 0.982$ 18125 measured reflections	4304 independent reflections 2465 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^{\circ}$ $h = -14 \rightarrow 13$ $k = -15 \rightarrow 13$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.119$ S = 1.05 4304 reflections 255 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0612P)^2 + 0.0196P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

$U_{ m iso}$ */ $U_{ m eq}$
0.0658 (4)
0.0645 (4)
0.0663 (4)
0.0724 (4)
0.0632 (4)
0.0742 (6)
0.0488 (4)
0.0626 (5)
0.0678 (5)
0.0625 (5)
0.0520 (4)
0.0434 (4)
0.0446 (4)
0.0459 (4)
0.0416 (4)
0.0429 (4)
0.0517 (4)

supporting information

C13	0.72021 (16)	0.17659 (15)	0.35550 (12)	0.0646 (5)
C14	0.83130 (17)	0.22703 (16)	0.32580 (14)	0.0732 (6)
C15	0.79534 (15)	0.34015 (16)	0.28366 (13)	0.0653 (5)
C16	0.67165 (14)	0.33779 (13)	0.21009 (11)	0.0497 (4)
C17	0.26577 (14)	0.28332 (13)	0.18620 (11)	0.0492 (4)
C18	0.14924 (15)	0.35094 (15)	0.18728 (12)	0.0622 (5)
C19	0.10349 (16)	0.41715 (15)	0.10015 (13)	0.0679 (6)
C20	0.21250 (16)	0.48847 (15)	0.08684 (13)	0.0664 (5)
C21	0.33291 (15)	0.42426 (12)	0.09539 (11)	0.0492 (4)
C22	0.35061 (13)	0.31784 (11)	0.13452 (10)	0.0417 (4)
H1A	-0.0834	-0.0000	-0.1195	0.0890*
H1B	-0.0175	0.0201	-0.1999	0.0890*
H1C	-0.0698	0.1209	-0.1544	0.0890*
Н3	0.0427	-0.1499	-0.1225	0.0751*
H3A	0.4882	0.4448	0.0851	0.0795*
H4	0.1682	-0.3010	-0.0655	0.0813*
H4A	0.4409	0.1351	0.2632	0.0868*
Н5	0.3578	-0.2783	0.0444	0.0750*
H6	0.4251	-0.1021	0.0942	0.0624*
H8	0.2464 (14)	0.1475 (12)	0.0421 (10)	0.043 (4)*
Н9	0.4989 (16)	0.0791 (13)	0.1032 (11)	0.057 (5)*
H10	0.4924	0.2827	0.0750	0.0499*
H13A	0.7402	0.1001	0.3735	0.0776*
H13B	0.7081	0.2163	0.4088	0.0776*
H14A	0.8555	0.1789	0.2812	0.0878*
H14B	0.9042	0.2339	0.3785	0.0878*
H15A	0.7873	0.3917	0.3315	0.0783*
H15B	0.8631	0.3668	0.2573	0.0783*
H18A	0.1692	0.4011	0.2394	0.0747*
H18B	0.0813	0.3019	0.1947	0.0747*
H19A	0.0318	0.4636	0.1044	0.0815*
H19B	0.0753	0.3675	0.0482	0.0815*
H20A	0.1881	0.5225	0.0265	0.0797*
H20B	0.2280	0.5474	0.1322	0.0797*

Atomic	displ	lacement	parameters	$(Å^2)$
--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0519 (7)	0.0618 (7)	0.0705 (8)	-0.0035 (6)	-0.0095 (6)	0.0080 (6)
02	0.0689 (8)	0.0638 (8)	0.0656 (8)	-0.0072 (6)	0.0257 (6)	0.0071 (6)
03	0.0630 (8)	0.0536 (7)	0.0817 (9)	0.0034 (6)	0.0172 (7)	0.0186 (6)
04	0.0691 (8)	0.0665 (8)	0.0769 (9)	-0.0077 (7)	0.0098 (7)	0.0239 (7)
05	0.0572 (7)	0.0508 (7)	0.0782 (8)	-0.0137 (5)	0.0107 (6)	0.0069 (6)
C1	0.0495 (10)	0.0975 (15)	0.0642 (11)	-0.0084 (10)	-0.0070 (9)	0.0180 (10)
C2	0.0461 (9)	0.0512 (9)	0.0466 (9)	-0.0057 (7)	0.0067 (7)	0.0001 (7)
C3	0.0601 (10)	0.0625 (11)	0.0596 (10)	-0.0195 (9)	0.0046 (8)	-0.0101 (9)
C4	0.0716 (12)	0.0504 (10)	0.0816 (13)	-0.0154 (9)	0.0199 (10)	-0.0154 (9)
C5	0.0592 (11)	0.0444 (9)	0.0842 (13)	-0.0005 (8)	0.0184 (10)	-0.0037 (9)

supporting information

C6	0.0430 (9)	0.0493 (9)	0.0618 (10)	-0.0009 (7)	0.0095 (8)	-0.0019 (8)
C7	0.0418 (8)	0.0425 (8)	0.0454 (8)	-0.0040 (6)	0.0096 (7)	-0.0015 (7)
C8	0.0433 (8)	0.0420 (8)	0.0456 (8)	0.0013 (7)	0.0058 (7)	-0.0019 (7)
C9	0.0421 (8)	0.0419 (8)	0.0511 (9)	-0.0004 (7)	0.0073 (7)	-0.0022 (7)
C10	0.0390 (8)	0.0400 (7)	0.0442 (8)	-0.0033 (6)	0.0076 (7)	-0.0007 (7)
C11	0.0386 (8)	0.0391 (7)	0.0492 (8)	-0.0009 (6)	0.0077 (7)	-0.0026 (7)
C12	0.0526 (9)	0.0446 (8)	0.0553 (9)	0.0035 (7)	0.0084 (8)	0.0009 (7)
C13	0.0668 (12)	0.0593 (10)	0.0562 (10)	0.0119 (9)	-0.0062 (9)	0.0020 (9)
C14	0.0473 (10)	0.0858 (13)	0.0741 (12)	0.0122 (9)	-0.0079 (9)	-0.0055 (11)
C15	0.0421 (9)	0.0754 (11)	0.0720 (11)	-0.0108 (8)	0.0026 (8)	-0.0105 (10)
C16	0.0414 (8)	0.0488 (8)	0.0568 (9)	-0.0024 (7)	0.0086 (7)	-0.0072 (8)
C17	0.0448 (9)	0.0504 (9)	0.0507 (9)	-0.0078 (7)	0.0086 (7)	-0.0110 (8)
C18	0.0466 (9)	0.0694 (11)	0.0731 (12)	-0.0054 (8)	0.0193 (8)	-0.0233 (10)
C19	0.0439 (9)	0.0700 (11)	0.0824 (13)	0.0101 (8)	0.0016 (9)	-0.0209 (10)
C20	0.0605 (11)	0.0552 (10)	0.0769 (12)	0.0145 (8)	0.0047 (9)	-0.0055 (9)
C21	0.0475 (9)	0.0467 (8)	0.0486 (9)	-0.0012 (7)	0.0031 (7)	-0.0041 (7)
C22	0.0377 (8)	0.0413 (8)	0.0427 (8)	-0.0030 (6)	0.0034 (6)	-0.0046 (7)

Geometric parameters (Å, °)

01—C1	1.4183 (19)	C20—C21	1.491 (3)
O1—C2	1.3657 (18)	C21—C22	1.404 (2)
O2—C17	1.281 (2)	O3—H3A	0.820
O3—C21	1.286 (3)	O4—H4A	0.820
O4—C12	1.290 (3)	C1—H1A	0.960
O5—C16	1.278 (2)	C1—H1B	0.960
C2—C3	1.383 (3)	C1—H1C	0.960
C2—C7	1.4061 (19)	С3—Н3	0.930
C3—C4	1.379 (3)	C4—H4	0.930
C4—C5	1.370 (3)	С5—Н5	0.930
C5—C6	1.386 (3)	С6—Н6	0.930
С6—С7	1.387 (2)	С8—Н8	0.944 (15)
C7—C8	1.473 (2)	С9—Н9	0.954 (17)
C8—C9	1.317 (2)	C10—H10	0.980
C9—C10	1.524 (2)	C13—H13A	0.970
C10—C11	1.5287 (18)	C13—H13B	0.970
C10—C22	1.519 (2)	C14—H14A	0.970
C11—C12	1.389 (3)	C14—H14B	0.970
C11—C16	1.407 (2)	C15—H15A	0.970
C12—C13	1.494 (2)	C15—H15B	0.970
C13—C14	1.509 (3)	C18—H18A	0.970
C14—C15	1.512 (3)	C18—H18B	0.970
C15—C16	1.505 (2)	C19—H19A	0.970
C17—C18	1.503 (3)	C19—H19B	0.970
C17—C22	1.404 (3)	C20—H20A	0.970
C18—C19	1.507 (3)	C20—H20B	0.970
C19—C20	1.511 (3)		

O1…C8	2.7196 (17)	C8····H13B ⁱ	3.1204
O2…O4	2.5943 (17)	C8····H15A ⁱ	3.2285
O2…C8	3.130 (2)	C9…H6 ^{iv}	3.5698
O2…C9	3.064 (3)	C9····H14B ⁱ	3.5664
O2…C10	2.930 (2)	C10····H5 ^{iv}	3.5801
O2…C11	3.424 (2)	C11····H1B ^{viii}	3.3634
O2…C12	3.309 (2)	C11····H1C ^{viii}	3.3161
O2…C21	3.593 (2)	C12····H1C ^{viii}	3.2985
03…05	2.6443 (16)	C13····H8viii	3.470 (15)
O3…C10	2.8741 (18)	C13····H20A ^{viii}	3.5946
O3…C11	3.5961 (18)	C14…H5 ^v	3.4339
O3…C16	3.4622 (19)	C14…H6 ^v	3.3192
03···C17	3,590 (3)	C15…H4 ^{iv}	3.4312
O4…C9	2.905 (2)	C15…H6 ^v	3.1913
O4…C10	2.924 (2)	C16…H1B ^{viii}	3.2120
04…C17	3.4162 (19)	C16…H4 ^{iv}	3.1300
04…C22	3,5593 (18)	C17···H1B ^{viii}	3,4654
05···C10	2 8497 (18)	C17···H1C ^{viii}	2.8440
05 C12	3587(2)	$C18 \cdots H1C^{\text{viii}}$	3 3703
05C21	3.354(2)	$C18 \cdots H3^{vi}$	3 1780
05	3.334(2) 3.4341(19)	$C18 \cdots H4^{vi}$	3 5086
C1C3	2 821 (3)	$C18 \cdots H15B^{xii}$	3 5102
C2···C5	2.021(3) 2 774(3)	$C19 \cdots H4^{vi}$	3 1730
C2 C5	2.774(3)	$C19 \cdots H4 \Delta^{ix}$	3 4414
CJ C0 C4C7	2.748(3)		3 3752
C4 C7	3,053,(2)	$C19 \cdot H20\Delta^{xiii}$	3.3732
C8···C17	3.179 (3)	C_{20} $H_{4^{x}}$	3 3600
C8···C22	2,949(2)	$C20$ $H4 \Delta^{ix}$	3 5808
C9C12	2.949(2) 3 020(2)	C20 $H4X$	3 3 5 6 6
C9C17	3.117 (3)	C20 HI3 $C20$ ···H13 Δ^{i}	3 4621
C11C14	2,853(2)	$C20 \cdots H19A^{xiii}$	3 4272
C11C17	2.655(2)	C_{20} H_{19} K_{10}	3.1656
C11 ··· C21	3.502(2)	C21 mB	3.1050
C12C15	3.408(2)	C21H12Pi	2 2621
C12···C13	2.801(3)	C22H1Dviii	3.2031
C12···C22	3.439(2)		2 1592
C13C10	2.872(3)	C22H12Pi	3.1382
C10····C22	3.373(2)		2.022
C17C20	2.871(3)		3.0828
C18···C21	2.828(3)		2.2092
01 015	2.851 (3)		2.8827
01C13 ⁴	3.595 (3)		3.5351
0303"	2.978 (2)		3.5387
0305"	3.4039 (18)		2.8961
04019	3.272 (3)		3.1454
0503 ¹¹	3.4039 (18)		3.5908
U5…C4 ¹	3.428 (3)		2.938/
05…C13 ^v	3.417 (3)		3.1954
$C1 \cdots C2^{v_1}$	3.521 (3)	$H1B\cdots O3^{1}$	3.4446

C1…C17 ⁱ	3.558 (3)	H1B····O5 ⁱ	3.3091
C2…C1 ^{vi}	3.521 (3)	H1B····C11 ⁱ	3.3634
C4····O5 ^{iv}	3.428 (3)	H1B····C16 ⁱ	3.2120
C4···C16 ^{iv}	3.428 (3)	H1B····C17 ⁱ	3.4654
C13…O5 ^{vii}	3.417 (3)	H1B···C21 ⁱ	3.1656
C15…O1 ^{viii}	3.595 (3)	H1B····C22 ⁱ	3.2018
C16…C4 ^{iv}	3.428 (3)	H1B···H3A ⁱ	3.2729
C17····C1 ^{viii}	3.558 (3)	H1B···H14A ^{iv}	3.3723
C19····O4 ^{ix}	3.272 (3)	H1B···H15A ⁱ	3.3772
01···H3	2.6295	H1B···H18A ⁱ	3.4114
01H8	2 390 (14)	H1B···H20B ⁱ	3 3308
02···H4A	1 8023	$H1C\cdots O2^{i}$	2.9723
02	2 893 (15)	$H1C\cdots O4^{i}$	3 4764
02···H18A	2.7740	H1C···C2 ^{vi}	3 5878
02H18B	2.4700	H1C···C11 ⁱ	3 3161
O3…H10	2.1700	H1C···C12 ⁱ	3 2985
O3H20A	2.1202	$H1C\cdots C17^{i}$	2 8440
O3H20R	2.4773	$H1C\cdots C18^{i}$	3 3703
O4H9	2.0713 2.835 (17)	$H1C \cdots C22^{i}$	3 1 5 8 2
04 H13	2.855 (17)		3 2020
04H13R	2.4755		3.2039
05	1.8483		2 8820
05H10	2 4540		2.8820
051154	2.4340		2 1790
05H15P	2.1529		3.1/80 2.9966
	2.4870		2.8800
	2.5202		2.3030
	2.6034		3.2330 2.8477
	2.0000		2.8477
	3.1862		3.2/29
C2H4	3.2307		2.9488
	3.2298		3.4928
C2H8	2.626 (15)		3.4020
	2./126		2.9416
	2.8037		3.4312
C3H5	3.2300		3.1300
C4···H6	3.2099		3.5086
C5H3	3.2255		3.1730
C6···H4	3.2162		3.3690
C6H8	3.294 (15)		3.5105
C6…H9	2.809 (16)	H4…H15B ¹	2.9262
C7…H3	3.2601	H4···H18B ^{v1}	2.8985
C/…H5	3.2616	H4…H19A ^{vi}	2.8654
С7…Н9	2.694 (16)	H4…H19B ^{v1}	2.8224
С8…Н4А	3.1867	H4···H20A ^{x1}	2.5151
С8…Н6	2.6746	H4···H20B ^{xi}	3.4074
С8…Н10	2.9324	H4A···C19 ⁱⁱⁱ	3.4414
С9…Н4А	2.5271	H4A…C20 ⁱⁱⁱ	3.5808
С9…Н6	2.7961	H4A…H1C ^{viii}	3.2039

С10…НЗА	2.4763	H4A…H18A ⁱⁱⁱ	3.0575
C10…H4A	2.5403	H4A…H19A ⁱⁱⁱ	2.8330
С10…Н8	2.662 (14)	H4A····H20B ⁱⁱⁱⁱ	2.8906
C11…H3A	2.9679	H5…O3 ^{xi}	3.0571
C11…H4A	2.3780	H5…O5 ^{iv}	3.3769
С11…Н9	2.631 (16)	H5…C10 ^{iv}	3.5801
C11…H13A	3.2271	H5…C14 ^{vii}	3.4339
C11…H13B	3.0252	H5…C20 ^{xi}	3.3566
C11…H14A	3.0235	H5…H3A ^{iv}	3.4928
C11H15A	3.0236	H5…H10 ^{iv}	2.7005
C11H15B	3.2498	H5…H14A ^{vii}	3.5555
C12H9	2.889 (16)	H5…H14B ^{vii}	2.5446
C12···H10	3 2647	H5…H20A ^{xi}	2,9903
C12···H14A	2 7721	H5H20B ^{xi}	3 0067
C12···H14B	3 3185	H6C9 ^{iv}	3 5698
C12···H15A	3 2309	$H6 \cdots C14^{vii}$	3 3192
C13···H4A	3.0282	H6···C15 ^{vii}	3 1913
C13H15A	2 7395	H6H9 ^{iv}	3 2824
C13H15R	3 3097	$H6\cdots H14B^{vii}$	2 6633
C15H13A	3 3091		3 0262
C15···H13B	2 7458	H6···H15B ^{vii}	2 7899
С16НЗА	2.7430		2.7855
C16···H10	2.5723		3 3928
C16···H13B	3 2591	$H8\cdots C13^{i}$	3.3720
C16···H14A	2 7721	$H8 \cdots H1 \Delta^{vi}$	2 9387
C16···H14R	3 3296	$H8\cdots H13B^{i}$	2.5507
С10 Ш4Д	2 6467	$H8 \cdots H15\Delta^{i}$	3 3368
C17···H8	2.6407 2 680 (15)	H9····C5 ^{iv}	3 536 (19)
C17···H10	3 2916	H9····C6 ^{iv}	3 181 (19)
C17···H19A	3 3245	H9····C7 ^{iv}	3.101(19) 3.448(19)
C17H19R	2 7239	H9···H6 ^{iv}	3 2824
C17···H20B	3 2846		3 2033
C18····H20A	3 2862	H9···H15B ^{vii}	3 4048
C18···H20R	2 7145	$H10\cdots C4^{iv}$	3 5768
C20···H3A	3 0298		2 9791
C20···H18A	2 6689	H10 - C5 $H10 - C6^{iv}$	3 5256
C20 H18A	3 2925		2 7005
C21H8	3.2923	H10 $H3H10$ $H13$ Bi	3 4366
C21 H10	2 4969	H10 $H13DH10 H14B^{i}$	2 8717
C21···H18A	3 1320		3 1455
C21H19A	3 3218	$H13A \cdots O5^{vii}$	2 5517
C21H19R	2 7781	H13AC 20^{viii}	3 4621
С21 ШУБ	2.7781	$H13A \cdots C21^{viii}$	3 2451
С22 ПЗА С22Н4А	2.5781	$H13 \Delta \cdots H3 \Delta^{vii}$	3 4020
С22 нях	2.550-	H13A \cdots H15R ^{vii}	3 4506
С22 но	2.377(17) 3 382 (17)	H13A····H19A ⁱⁱⁱ	3 4546
C22·112	2 9800	H13A····H19 R^{viii}	3 5436
C22····H18B	3 2603		2 9036
	5.2005	1113/1 1120/1	2.7050

C22…H19B	2.9905	H13B…O1 ^{viii}	3.0081
C22…H20A	3.2202	H13B····C8 ^{viii}	3.1204
C22…H20B	3.0637	H13B…C21 ^{viii}	3.2631
H1A…H3	2.2690	H13B…C22 ^{viii}	3.3789
H1B…H3	2.3646	H13B…H1C ^{viii}	3.5103
Н1С…Н3	3.4728	H13B…H8 ^{viii}	2.5419
H3…H4	2.3031	H13B…H10 ^{viii}	3.4366
H3A…H10	1.9610	H13B…H19B ^{viii}	2.9943
H3A···H20A	3.2743	H13B···H20A ^{viii}	3.4126
H3A···H20B	3 3049	H14A····O5 ^{vii}	3 3092
H4…H5	2 3014	H14A····C3 ^{iv}	3 1 5 0 7
H4A…H8	3 4579	H14A····C4 ^{iv}	3 5164
H4AH9	2 7158	H14A…H1B ^{iv}	3 3723
$H4A\cdots H10$	3 5005		2 8866
H4AH13A	3 2681	$H1\Delta A \cdots H\Delta^{iv}$	3 5105
H4AH13B	3 3016	H14AH5v	3 5555
Нял пізы н5…н6	2 3077	$H144 \cdots H18B^{xiv}$	3 3802
H6H8	3 5527	$H1/4BC5^{v}$	3 1512
Но но	2 3176	H14B = C5 $H14B = C6^{v}$	3 2107
но ну нено	2.3170		3.5664
H8H10	2.77 (3)	H14DU5y	2 5 4 4 6
110 ¹¹¹⁰	2 2466	H14DH6y	2.5440
H0H10	5.2400 2.4876		2.0033
	2.4670		2.0/1/
ПІЗА […] ПІ4А	2.2890		2.8304
H13A···H14B	2.3826		3.0500
	2.8184		3.19/4
H13B…H14B	2.2847		3.2285
HI3B····HI5A	2.6544		3.3772
H14A…H15A	2.8224		3.0262
HI4A···HI5B	2.2972		3.3368
H14B…H15A	2.2932	H15A…H9 ^v	3.2033
H14B…H15B	2.3813	H15B····O4 ^v	3.4160
H18A…H19A	2.3178	H15B···C4 ^{IV}	3.5109
H18A…H19B	2.8261	H15B···C18 ^{xiv}	3.5102
H18A···H20A	3.5710	H15B···H4 ^{IV}	2.9262
H18A…H20B	2.5737	H15B…H6 ^v	2.7899
H18B…H19A	2.3578	H15B…H9 ^v	3.4048
H18B…H19B	2.3246	H15B···H13A ^v	3.4506
H18B…H20B	3.5909	H15B····H18A ^{xiv}	3.4073
H19A…H20A	2.3907	H15B····H18B ^{xiv}	2.8571
H19A…H20B	2.2891	H15B…H19A ^{xiv}	3.4726
H19B…H20A	2.2973	H18A…O2 ^{ix}	3.5903
H19B…H20B	2.8231	H18A…O4 ^{ix}	3.1696
O1…H1A ^{vi}	3.0828	H18A…C1 ^{viii}	3.3400
O1…H13B ⁱ	3.0081	H18A····C6 ^{ix}	3.2131
O1…H15A ⁱ	2.8504	H18A…H1A ^{viii}	3.1954
O2…H1A ^{vi}	3.3695	H18A…H1B ^{viii}	3.4114
O2…H1C ^{viii}	2.9723	H18A…H1C ^{viii}	2.8820

O2…H3 ^{vi}	3.5452	H18A…H4A ^{ix}	3.0575
O2…H18A ⁱⁱⁱ	3.5903	H18A····H6 ^{ix}	2.9252
O2···H20B ⁱⁱⁱ	2.6927	H18A…H15B ^{xii}	3.4073
O3…H1B ^{viii}	3.4446	H18B····C3 ^{vi}	3.1087
O3····H3A ⁱⁱ	2.8477	H18B····C4 ^{vi}	3.3700
O3…H5 ^x	3.0571	H18B····H3 ^{vi}	2.3650
O3…H13A ⁱ	3.1455	$H18B$ ···· $H4^{vi}$	2.8985
O4…H1C ^{viii}	3.4764	H18B…H6 ^{ix}	3.3928
O4…H15B ^{vii}	3.4160	H18B···H14A ^{xii}	3.3802
O4…H18A ⁱⁱⁱ	3,1696	H18B····H15B ^{xii}	2.8571
O4···H19A ⁱⁱⁱ	2 4938	H19A····O4 ^{ix}	2 4938
O4···H20B ⁱⁱⁱ	3 1709	H19A····C19 ^{xiii}	3 3752
O5···H1B ^{viii}	3 3091	$H19A\cdots C20^{xiii}$	3 4272
$05 \cdots H4^{iv}$	2 9416	$H19A \cdots H4^{vi}$	2 8654
O5····H5 ^{iv}	3 3769	$H10\Delta \dots H4\Delta^{ix}$	2.0054
05H13Av	2 5517		2.0550
05 mBA	2.3317		3.4340
C1H18Ai	3.3092		3.4720
	3.3400 2.8827		3.1027
	2.0027		2.0003
	3.3878		2.0813
	3.0500		3.3019
	3.5331		3.3424
	3.1507		3.2350
	3.108/	H19B····H4 ^{vi}	2.8224
C3…H19B ^M	3.5619	H19B···H13A ¹	3.5436
C4…H10 ¹	3.5768	H19B···H13B ¹	2.9943
C4···H14A ^{iv}	3.5164	H19B···H19A ^{xiii}	3.0665
C4···H15B ^{iv}	3.5109	H19B···H20A ^{xiii}	3.0827
C4···H18B ^{vi}	3.3700	H20A····C4 ^x	3.1710
C4···H19B ^{vi}	3.3424	H20A····C5 ^x	3.4057
C4····H20A ^{xi}	3.1710	H20A····C13 ⁱ	3.5946
C5····H9 ^{iv}	3.536 (19)	H20A····C19 ^{xiii}	3.3249
C5…H10 ^{iv}	2.9791	H20A····H4 ^x	2.5151
C5…H14B ^{vii}	3.1512	H20A····H5 ^x	2.9903
C5···H20A ^{xi}	3.4057	H20A…H13A ⁱ	2.9036
C5····H20B ^{xi}	3.5141	H20A…H13B ⁱ	3.4126
C6…H1A ^{vi}	3.5387	H20A····H19A ^{xiii}	2.6815
C6…H9 ^{iv}	3.181 (19)	H20A…H19B ^{xiii}	3.0827
C6…H10 ^{iv}	3.5256	H20B····O2 ^{ix}	2.6927
C6····H14B ^{vii}	3.2197	H20B····O4 ^{ix}	3.1709
C6…H18A ⁱⁱⁱ	3.2131	H20B····C5 ^x	3.5141
C7…H1A ^{vi}	2.8961	H20B…H1B ^{viii}	3.3308
C7…H9 ^{iv}	3.448 (19)	H20B…H4 ^x	3.4074
C7…H15A ⁱ	3.1974	H20B…H4A ^{ix}	2.8906
C8…H1A ^{vi}	3.1454	H20B…H5 ^x	3.0067
			2.2007
C1—O1—C2	118.76 (13)	H1B—C1—H1C	109.479
01-C2-C3	123.88 (13)	C2—C3—H3	119 939
0. 02 00	120.00 (10)	02 00 110	11/./5/

O1—C2—C7	115.66 (13)	С4—С3—Н3	119.939
C3—C2—C7	120.46 (14)	C3—C4—H4	119.629
C2—C3—C4	120.12 (15)	C5—C4—H4	119.623
C3—C4—C5	120.75 (16)	C4—C5—H5	120.477
C4—C5—C6	119.06 (15)	С6—С5—Н5	120.466
C5—C6—C7	122.10 (14)	С5—С6—Н6	118.958
C2—C7—C6	117.51 (13)	С7—С6—Н6	118.945
C2—C7—C8	119.33 (13)	С7—С8—Н8	115.8 (9)
C6—C7—C8	123.08 (12)	С9—С8—Н8	117.0 (9)
C7—C8—C9	127.10 (14)	С8—С9—Н9	119.3 (10)
C8—C9—C10	125.51 (14)	С10—С9—Н9	115.1 (10)
C9—C10—C11	112.43 (11)	C9—C10—H10	104.489
C9-C10-C22	113.82 (11)	C11—C10—H10	104.490
C11—C10—C22	115.61 (12)	C22—C10—H10	104.498
C10-C11-C12	122.53 (13)	C12—C13—H13A	109.122
C10-C11-C16	118.62 (13)	C12—C13—H13B	109.121
C_{12} $-C_{11}$ $-C_{16}$	118.75 (13)	C14—C13—H13A	109 120
04-012 011 010	122.89 (13)	C14— $C13$ — $H13B$	109.120
04 - C12 - C13	122.09(15) 114.90(15)	H13A - C13 - H13B	107.853
C_{11} C_{12} C_{13}	114.90(15) 122.20(15)	C13 C14 H14A	107.855
$C_{12} = C_{12} = C_{13}$	122.20(15) 112.40(15)	C13 - C14 - H14R	109.580
C_{12} C_{13} C_{14} C_{15}	112.40(15) 110.32(15)	C_{15} C_{14} H_{14A}	109.587
C_{13} C_{14} C_{15} C_{16}	110.32(15) 112.10(15)	C15 - C14 - H14R	109.392
C14-C15-C10	112.19(13) 122.86(12)	C13 - C14 - H14B	109.387
05-016-011	122.80(13)	HI4A - CI4 - HI4B	108.131
05-015	116.05 (14)	C14—C15—H15A	109.166
	121.08 (15)	C14—C15—H15B	109.165
02-017-018	116.30 (16)	CI6—CI5—HI5A	109.164
02-017-022	123.05 (15)	C16—C15—H15B	109.166
C18—C17—C22	120.64 (14)	H15A—C15—H15B	107.891
C17—C18—C19	111.76 (16)	C17—C18—H18A	109.268
C18—C19—C20	108.65 (14)	C17—C18—H18B	109.261
C19—C20—C21	112.65 (15)	C19—C18—H18A	109.270
O3—C21—C20	114.76 (14)	C19—C18—H18B	109.262
O3—C21—C22	122.93 (15)	H18A—C18—H18B	107.941
C20—C21—C22	122.31 (16)	C18—C19—H19A	109.957
C10—C22—C17	122.56 (13)	C18—C19—H19B	109.959
C10—C22—C21	119.72 (14)	C20—C19—H19A	109.965
C17—C22—C21	117.58 (14)	C20—C19—H19B	109.962
С21—О3—НЗА	109.468	H19A—C19—H19B	108.341
C12—O4—H4A	109.461	C19—C20—H20A	109.067
O1—C1—H1A	109.469	C19—C20—H20B	109.070
O1—C1—H1B	109.475	C21—C20—H20A	109.054
01—C1—H1C	109.465	C21—C20—H20B	109.061
H1A—C1—H1B	109.469	H20A—C20—H20B	107.825
H1A—C1—H1C	109.470		
C1—O1—C2—C3	0.5 (3)	C10-C11-C12-C13	172.78 (13)
C1—O1—C2—C7	-178.50 (14)	C10-C11-C16-O5	7.5 (3)

O1—C2—C3—C4	-178.93 (15)	C10-C11-C16-C15	-173.79 (12)
O1—C2—C7—C6	178.35 (13)	C12-C11-C16-O5	-169.16 (15)
O1—C2—C7—C8	1.5 (3)	C12-C11-C16-C15	9.5 (3)
C3—C2—C7—C6	-0.7 (3)	C16-C11-C12-O4	167.84 (15)
C3—C2—C7—C8	-177.51 (15)	C16-C11-C12-C13	-10.7 (3)
C7—C2—C3—C4	0.0 (3)	O4—C12—C13—C14	161.33 (14)
C2—C3—C4—C5	0.8 (3)	C11—C12—C13—C14	-20.0 (3)
C3—C4—C5—C6	-1.0 (4)	C12—C13—C14—C15	50.1 (2)
C4—C5—C6—C7	0.3 (3)	C13—C14—C15—C16	-51.0 (2)
C5—C6—C7—C2	0.5 (3)	C14—C15—C16—O5	-159.17 (16)
C5—C6—C7—C8	177.25 (16)	C14—C15—C16—C11	22.0 (3)
C2—C7—C8—C9	-162.38 (15)	O2-C17-C18-C19	-153.73 (12)
C6—C7—C8—C9	21.0 (3)	O2—C17—C22—C10	6.0 (2)
C7—C8—C9—C10	179.16 (14)	O2—C17—C22—C21	-169.71 (12)
C8—C9—C10—C11	153.67 (15)	C18—C17—C22—C10	-175.32 (12)
C8—C9—C10—C22	19.8 (3)	C18—C17—C22—C21	9.0 (2)
C9—C10—C11—C12	-43.38 (19)	C22-C17-C18-C19	27.47 (19)
C9—C10—C11—C16	140.09 (13)	C17—C18—C19—C20	-55.86 (18)
C9—C10—C22—C17	53.17 (17)	C18—C19—C20—C21	50.0 (2)
C9—C10—C22—C21	-131.23 (12)	C19—C20—C21—O3	164.22 (14)
C11—C10—C22—C17	-79.22 (15)	C19—C20—C21—C22	-15.3 (3)
C11—C10—C22—C21	96.37 (15)	O3—C21—C22—C10	-10.8 (2)
C22-C10-C11-C12	89.66 (16)	O3—C21—C22—C17	165.03 (13)
C22-C10-C11-C16	-86.88 (16)	C20-C21-C22-C10	168.73 (13)
C10-C11-C12-O4	-8.7 (3)	C20—C21—C22—C17	-15.5 (2)

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) -x+1, -y+1, -z; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+1, -y, -z; (v) -x+3/2, y+1/2, -z+1/2; (vi) -x, -y, -z; (vii) -x+3/2, y-1/2, -z+1/2; (viii) x+1/2, -y+1/2, z+1/2; (ix) -x+1/2, y+1/2, -z+1/2; (iv) -x+1, -y, -z; (viii) x-1, y, z; (viii) -x, -y+1, -z; (viii) x+1/2, -y+1/2, z+1/2; (viii) x+1/2, -y+1/2, z+1/2; (viii) x+1/2, -y+1/2, z+1/2; (viii) x+1/2, -y+1/2; (viii) x+1/2; (viii) x+1/2, -y+1/2; (viii) x+1/2; (viii) x+1/2; (viii) -x+1/2; (viii)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O3—H3A…O5	0.82	1.85	2.644 (3)	163
O4—H4 <i>A</i> …O2	0.82	1.80	2.594 (3)	162
C19—H19A····O4 ^{ix}	0.97	2.49	3.272 (3)	137

Symmetry code: (ix) -x+1/2, y+1/2, -z+1/2.